Numerical Linear Algebra for Model Reduction in Control and Simulation

Peter Benner

Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz

Mathematical Colloquium University of Osijek 22 March 2007

Overview

Model Reduction

1 Introduction

- Model Reduction
- Systems Theory
- Model Reduction for Linear Systems
- Application Areas
- 2 Model Reduction
 - Goals
 - Modal Truncation
 - Padé Approximation
 - Balanced Truncation
- 3 Examples
 - Optimal Control: Cooling of Steel Profiles
 - Microthruster
 - Butterfly Gyro
 - Interconnect
- Current and Future Work
- References

Thanks to

Model Reduction

- Enrique Quintana-Ortí, Gregorio Quintana-Ortí, Rafa Mayo, José Manuel Badía, and Sergio Barrachina (Universidad Jaume I de Castellón, Spain).
- Thilo Penzl for LyaPack.
- Ulrike Baur, Matthias Pester, Jens Saak (M)).
- Viatcheslav Sokolov (former MT).
- Heike Faßbender (TU Braunschweig).

Introduction Model Reduction

Model Reduction

Peter Benn

Introduction

Model Reduction Systems Theory

Application Areas

Model Reduct

Current and

Future Worl

Referen

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction Model Reduction

Problem

Model Reduction

Peter Benn

Model Reduction Systems Theory

Linear Systems
Application

Model Reduc

Current and

Future Wo

Application

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Introduction Model Reduction

Model Reduction

Peter Benn

Model Reduction Systems Theory

Linear Systems
Application
Areas

Model Reduct

Current and

Doforon

Problem

Given a physical problem with dynamics described by the states $x \in \mathbb{R}^n$, where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order reduction).

Motivation: Image Compression by Truncated SVD

Model Reduction

Peter B

ntroducti

Model Reduction Systems Theory Linear Systems Application Areas

Model Reduc

Examples

Current and Future Work ■ A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ij} contains color information of pixel (i,j).

■ Memory: $4 \cdot n_x \cdot n_y$ bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-*r* approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\widehat{X} = \sum_{j=1}^{r} \sigma_j u_j v_j^{\mathsf{T}},$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X.

The approximation error is $||X - \widehat{X}||_2 = \sigma_{r+1}$.

Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$.

 \rightarrow memory = $r \times (n_x + n_y)$ bytes.

Motivation: Image Compression by Truncated SVD

Model Reduction

reter be

ntroducti

Model Reduction Systems Theory Linear Systems Application Areas

Wiodel Reddet

Examples

Current and Future Wor ■ A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ij} contains color information of pixel (i,j).

■ Memory: $4 \cdot n_x \cdot n_y$ bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_{x} \times n_{y}}$ w.r.t. spectral norm:

$$\widehat{X} = \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T},$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \widehat{X}||_2 = \sigma_{r+1}$.

Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightsquigarrow memory $= r \times (n_x + n_y)$ bytes.

Motivation: Image Compression by Truncated SVD

Model Reduction

I ctci De

ntroducti

Model Reduction Systems Theory Linear Systems Application Areas

Model Reduct

Examples

Current and Future Wor ■ A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ij} contains color information of pixel (i,j).

■ Memory: $4 \cdot n_x \cdot n_y$ bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\widehat{X} = \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T},$$

where $X = U\Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $||X - \widehat{X}||_2 = \sigma_{r+1}$.

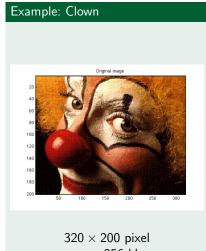
Idea for dimension reduction

Instead of X save $u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r$. \rightsquigarrow memory $= r \times (n_x + n_y)$ bytes.

Example: Image Compression by Truncated SVD

Model Reduction

Model Reduction



 $\rightsquigarrow \approx 256 \text{ kb}$

Example: Image Compression by Truncated SVD

Model Reduction

. ----

Introductio

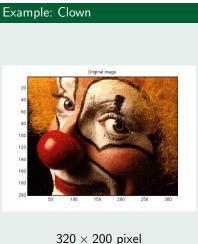
Model Reduction
Systems Theory
Linear Systems
Application

Areas

E.......

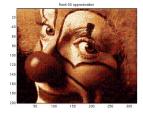
Current and Future Wor

Referenc



 320×200 pixel $\Rightarrow \approx 256$ kb

 \blacksquare rank r = 50, ≈ 104 kb



Example: Image Compression by Truncated SVD

Model Reduction

Model Reduction

 $\rightsquigarrow \approx 256 \text{ kb}$

 \blacksquare rank r = 50, ≈ 104 kb



■ rank r = 20, ≈ 42 kb

Dimension Reduction via SVD

Model Reduction

Model Reduction

Linear Systems
Application

Model Reducti

Examples

Current and Future World

Referenc

Example: Gatlinburg

Organizing committee Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

 640×480 pixel, ≈ 1229 kb

Dimension Reduction via SVD

Model Reduction

.

ntroductio

Model Reduction Systems Theory Linear Systems Application

model reduce

Examples

Current and Future Worl

Example: Gatlinburg

Organizing committee Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

 640×480 pixel, ≈ 1229 kb

 \blacksquare rank r=100, pprox 448 kb

Dimension Reduction via SVD

Model Reduction

reter be

ntroductior

Model Reduction Systems Theory Linear Systems Application

Woder Reducti

Examples

Current and Future Worl

Example: Gatlinburg

Organizing committee Gatlinburg/Householder Meeting 1964: James H. Wilkinson, Wallace Givens, George Forsythe, Alston Householder, Peter Henrici, Fritz L. Bauer.

 640×480 pixel, ≈ 1229 kb

 \blacksquare rank r=100, pprox 448 kb

 \blacksquare rank r = 50, ≈ 224 kb

Background

Model Reduction

Introduction

Model Reduction Systems Theory Linear Systems Application

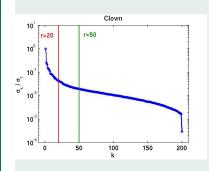
Model Reduction

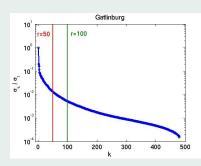
Current and Future Worl

Referen

Image data compression via SVD works, if the singular values decay (exponentially).

Singular Values of the Image Data Matrices





Systems Theory

Model Reduction

Peter Benne

Introduction
Model Reduction
Systems Theory
Linear Systems
Application

Model Reduction

Examples

Current and Future Worl

Referenc

Dynamical Systems

$$\Sigma : \left\{ \begin{array}{lcl} \dot{x}(t) & = & f(t, x(t), u(t)), & x(t_0) = x_0, \\ y(t) & = & g(t, x(t), u(t)) \end{array} \right.$$

with

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Model Reduction for Dynamical Systems

Model Reduction

Peter Benne

Introduction Model Reductio Systems Theory

Linear Systems Application Areas

Woder Reducti

Examples

Current and Future Worl

Reference

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Goal

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals

Model Reduction for Dynamical Systems

Model Reduction

Peter Benne

Introduction
Model Reductio
Systems Theory
Linear Systems
Application

Model Reduction

Examples

Current and Future Worl

Referenc

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order System

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), \underline{u(t)}), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), \underline{u(t)}). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goal

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals

Model Reduction for Dynamical Systems

Model Reduction

Peter Benne

Introduction
Model Reductio
Systems Theory
Linear Systems
Application

woder Reducti

Examples

Current and Future Wor

Referenc

Original System

$$\Sigma: \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order System

$$\widehat{\Sigma}: \left\{ \begin{array}{l} \dot{\widehat{x}}(t) = \widehat{f}(t, \widehat{x}(t), \underline{u(t)}), \\ \hat{y}(t) = \widehat{g}(t, \widehat{x}(t), \underline{u(t)}). \end{array} \right.$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goal:

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Model Reduction

Peter Benne

Model Reduction
Systems Theory
Linear Systems
Application

Model Reduct

Examples

Current and

D-f----

Linear, Time-Invariant (LTI) Systems

$$f(t,x,u) = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},$$

$$g(t,x,u) = Cx + Du, \qquad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.$$

Model Reduction

Peter Benne

Model Reduction
Systems Theory
Linear Systems
Application
Areas

Woder Reduc

Examples

Current and Future Work

D-f----

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} f(t,x,u) & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ g(t,x,u) & = & Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{array}$$

State-Space Description for I/O-Relation

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t Ce^{A(t-\tau)} Bu(\tau) d\tau \quad \text{for all } t \in \mathbb{R}.$$

Model Reduction

Peter Benne

Introduction
Model Reductic
Systems Theory
Linear Systems
Application
Areas

model reduc

Examples

Current and Future Work

Referenc

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} f(t,x,u) & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ g(t,x,u) & = & Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{array}$$

State-Space Description for I/O-Relation

$$\mathcal{S}: u \mapsto y, \quad y(t) = \int_{-\infty}^t Ce^{A(t-\tau)} Bu(\tau) d\tau \quad \text{for all } t \in \mathbb{R}.$$

Note: operator S not suitable for approximation as singular values are continuous; for model reduction use Hankel operator \mathcal{H} .

Model Reduction

Peter Benne

Introduction
Model Reductic
Systems Theory
Linear Systems
Application
Areas

Woder Reduc

Examples

Current and Future Work

Referenc

Linear, Time-Invariant (LTI) Systems

$$\begin{array}{lll} f(t,x,u) & = & Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ g(t,x,u) & = & Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{array}$$

State-Space Description for I/O-Relation

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 Ce^{A(t-\tau)} Bu(\tau) d\tau \quad \text{for all } t > 0.$$

Note: operator S not suitable for approximation as singular values are continuous; for model reduction use Hankel operator \mathcal{H} .

Model Reduction

Peter Benne

Model Reduction
Systems Theory
Linear Systems
Application
Areas

Model Reduc

Lxampics

Current and Future Work

Referen

Linear, Time-Invariant (LTI) Systems

$$f(t, x, u) = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $g(t, x, u) = Cx + Du,$ $C \in \mathbb{R}^{p \times n},$ $D \in \mathbb{R}^{p \times m}.$

State-Space Description for I/O-Relation

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 Ce^{A(t-\tau)} Bu(\tau) d\tau \quad \text{for all } t > 0.$$

Note: operator S not suitable for approximation as singular values are continuous; for model reduction use Hankel operator \mathcal{H} .

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD \leadsto Hankel singular values

Model Reduction

Linear Systems

Linear, Time-Invariant (LTI) Systems

$$f(t,x,u) = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},$$

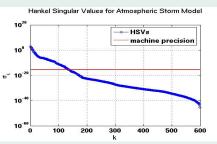
$$g(t,x,u) = Cx + Du, \qquad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.$$

State-Space Description for I/O-Relation

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 Ce^{A(t-\tau)} Bu(\tau) d\tau \quad \text{for all } t > 0.$$

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^{\infty} Ce^{\lambda(t-t)} Bu(\tau) d\tau \quad \text{for all } t > 0.$$

 \mathcal{H} compact \Rightarrow \mathcal{H} has discrete SVD → Hankel singular values



Model Reduction

Peter Benner

Introduction
Model Reductic
Systems Theory
Linear Systems
Application
Areas

Woder Redde

Examples

Current and

Referen

Linear, Time-Invariant (LTI) Systems

$$f(t, x, u) = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $g(t, x, u) = Cx + Du,$ $C \in \mathbb{R}^{p \times n},$ $D \in \mathbb{R}^{p \times m}.$

State-Space Description for I/O-Relation

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 Ce^{A(t-\tau)} Bu(\tau) d\tau \quad \text{for all } t > 0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

- ⇒ Best approx. problem w.r.t. 2-induced operator norm (Hankel norm) well-posed.
- ⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

Model Reduction

Peter Benner

Introduction
Model Reductic
Systems Theory
Linear Systems
Application
Areas

Woder Reduc

Examples

Current and Future Work

Referen

Linear, Time-Invariant (LTI) Systems

$$f(t, x, u) = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $g(t, x, u) = Cx + Du,$ $C \in \mathbb{R}^{p \times n},$ $D \in \mathbb{R}^{p \times m}.$

State-Space Description for I/O-Relation

$$\mathcal{H}: u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^0 Ce^{A(t-\tau)} Bu(\tau) d\tau \quad \text{for all } t > 0.$$

 \mathcal{H} compact $\Rightarrow \mathcal{H}$ has discrete SVD

- ⇒ Best approx. problem w.r.t. 2-induced operator norm (Hankel norm) well-posed.
- ⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally unfeasible for large-scale systems.

Linear Systems in Frequency Domain

Model Reduction

Peter Benne

Introduction
Model Reduction
Systems Theory
Linear Systems
Application
Areas

Model Reduct

Examples

Current and Future Work

Referenc

Linear, Time-Invariant (LTI) Systems

$$f(t,x,u) = Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, g(t,x,u) = Cx + Du, \qquad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.$$

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain

$$y(s) = \left(\underbrace{C(sI_n - A)^{-1}B + D}\right)u(s)$$

G is the transfer function of Σ .

Linear Systems in Frequency Domain

Model Reduction

Peter Benne

Introduction
Model Reduction
Systems Theory
Linear Systems
Application
Areas

Woder Reducti

- -

Current and Future Worl

oforon.

Linear, Time-Invariant (LTI) Systems

$$f(t, x, u) = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $g(t, x, u) = Cx + Du,$ $C \in \mathbb{R}^{p \times n},$ $D \in \mathbb{R}^{p \times m}.$

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain

$$y(s) = \left(\underbrace{C(sl_n - A)^{-1}B + D}_{-:G(s)}\right)u(s)$$

G is the transfer function of Σ

Linear Systems in Frequency Domain

Model Reduction

Peter Benne

Introduction
Model Reductic
Systems Theory
Linear Systems
Application
Areas

Model Reduction

Current and

Current and Future Wor

Linear, Time-Invariant (LTI) Systems

$$f(t, x, u) = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $g(t, x, u) = Cx + Du,$ $C \in \mathbb{R}^{p \times n},$ $D \in \mathbb{R}^{p \times m}.$

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{C(sl_n - A)^{-1}B + D}\right)u(s)$$
=: G(s)

G is the transfer function of Σ .

Model Reduction

Peter Benne

Introduction
Model Reduction
Systems Theory
Linear Systems
Application
Areas

Woder Reduct

Examples

Current and Future Wor

Referenc

Problem

Approximate the dynamical system

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx + Du,$ $C \in \mathbb{R}^{p \times n},$ $D \in \mathbb{R}^{p \times m}.$

by reduced-order system

of order $r \ll n$, such that

$$||y - \hat{y}|| = ||Gu - \hat{G}u|| \le ||G - \hat{G}|||u|| < \text{tolerance} \cdot ||u||.$$

 \implies Approximation problem: min_{audou} $(\hat{G}) < \pi \|G - \hat{G}\|$

Model Reduction

Peter Benne

Introduction
Model Reduction
Systems Theory
Linear Systems
Application
Areas

model reduct

Examples

Current and Future Worl

Reference

Problem

Approximate the dynamical system

$$\dot{x} = Ax + Bu,$$
 $A \in \mathbb{R}^{n \times n},$ $B \in \mathbb{R}^{n \times m},$
 $y = Cx + Du,$ $C \in \mathbb{R}^{p \times n},$ $D \in \mathbb{R}^{p \times m}.$

by reduced-order system

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u, \qquad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m},
\hat{y} = \hat{C}\hat{x} + \hat{D}u, \qquad \hat{C} \in \mathbb{R}^{p \times r}, \quad \hat{D} \in \mathbb{R}^{p \times m}.$$

of order $r \ll n$, such that

$$||y - \hat{y}|| = ||Gu - \hat{G}u|| \le ||G - \hat{G}|||u|| < \text{tolerance} \cdot ||u||.$$

 \implies Approximation problem: $\min_{\text{order}(\hat{G}) \le r} \|G - \hat{G}\|$.

Application Areas (Optimal) Control

Model Reduction

Peter Benne

Model Reduction
Systems Theory
Linear Systems
Application

MILEL

...

Examples

Current and Future Wor

Current and

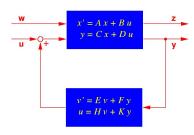
Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$

 \Rightarrow reduce order of original system.



Application Areas (Optimal) Control

Model Reduction

Peter Benne

Model Reduction
Systems Theory
Linear Systems
Application

Areas

model reduce

Examples

Current an Future Wo

Referen

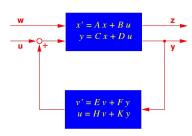
Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$

⇒ reduce order of original system.



Application Areas Micro Electronics

Model Reduction

Peter Benn

Introduction

Model Reductio
Systems Theory
Linear Systems
Application
Areas

Model Reductio

Example:

Current and Future Worl

Referen

- Progressive miniaturization: **Moore's Law** states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconnect to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines.
 - modeling pin packages in VLSI chips.
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Application Areas Micro Electronics

Model Reduction

Peter Benn

Introduction
Model Reductio
Systems Theory
Linear Systems
Application
Areas

Woder Reductio

Examples

Current and Future Wor

Referen

Progressive miniaturization: Moore's Law states that the number of on-chip transistors doubles each 12 (now: 18) months.

- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconncet to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits.
 - modeling transmission lines.
 - modeling pin packages in VLSI chips.
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Application Areas Micro Electronics

Model Reduction

Peter Benn

Introduction
Model Reductio
Systems Theory
Linear Systems
Application
Areas

nodel Reducti

Examples

Current and Future Worl

Referer

- Progressive miniaturization: **Moore's Law** states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconnect to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines.
 - modeling pin packages in VLSI chips
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Application Areas Micro Electronics

Model Reduction

Peter Benn

Introduction
Model Reduction
Systems Theory
Linear Systems
Application
Areas

Model Reducti

Examples

Current and Future Wor

Referen

- Progressive miniaturization: Moore's Law states that the number of on-chip transistors doubles each 12 (now: 18) months.
- Verification of VLSI/ULSI chip design requires high number of simulations for different input signals.
- Increase in packing density requires modeling of interconnect to ensure that thermic/electro-magnetic effects do not disturb signal transmission.
- Linear systems in micro electronics occur through modified nodal analysis (MNA) for RLC networks, e.g., when
 - decoupling large linear subcircuits,
 - modeling transmission lines,
 - modeling pin packages in VLSI chips,
 - modeling circuit elements described by Maxwell's equation using partial element equivalent circuits (PEEC).

Application Areas Micro Electronics: Example for Miniaturization

Model Reduction

Peter Benne

Introduction

Model Reduction

Systems Theory

Linear Systems

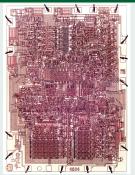
Application

Model Reduc

Examples

Current and Future Wor

Intel 4004 (1971)



- 1 layer, 10μ technology,
- 2,300 transistors.
- 64 kHz clock speed.

Intel Pentium IV (2001)

- \blacksquare 7 layers, 0.18μ technology,
- 42,000,000 transistors,
- 2 GHz clock speed,
- 2km of interconnect.

Model Reduction

Peter Benne

Model Reduction
Systems Theor
Linear Systems
Application

Aicas

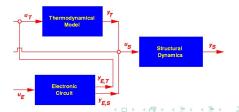
....

Examples

Current and Future Worl Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

Problems and Challenges

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.
- Multi-scale phenomena



Model Reduction

Peter Benne

Introduction

Model Reduction

Systems Theory

Linear Systems

Application

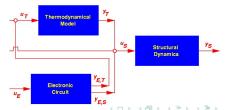
Model Reduction

Examples

Current and Future Worl References Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

Problems and Challenges:

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.
- Multi-scale phenomena



Model Reduction

Peter Benne

Introduction
Model Reduction
Systems Theore
Linear Systems
Application

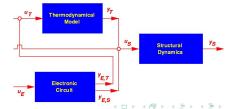
Woder Reduction

Exampl

Current and Future Wor Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

Problems and Challenges:

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.
- Multi-scale phenomena



Model Reduction

Peter Benne

Introduction
Model Reduction
Systems Theore
Linear Systems
Application
Areas

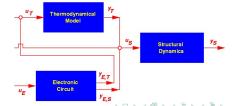
iviodei Reductioi

Example

Current and Future Wor Typical problem in MEMS simulation: coupling of different models (thermic, structural, electric, electro-magnetic) during simulation.

Problems and Challenges:

- Reduce simulation times by replacing sub-systems with their reduced-order models.
- Stability properties of coupled system may deteriorate through model reduction even when stable sub-systems are replaced by stable reduced-order models.
- Multi-scale phenomena.



Model Reduction

ntroduction

Model Reduction

Goals

Modal

Truncation Padé

Approxima

Balanced Truncation

_ .

Current and Future Wor

Reference

■ Automatic generation of compact models.

 Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

→ Need computable error bound/estimate!

■ Preserve physical properties:

Model Reduction

Wodel Reducti

Goals

Modal Truncation

Approxima

Balanced Truncati

Example

Current and

Reference

Automatic generation of compact models.

 Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

⇒ Need computable error bound/estimate!

■ Preserve physical properties:

Model Reduction

Model Reductio

C. I

Modal Truncation Padé Approximat

Approximat Balanced Truncation

Example

Current and Future Wor

Referenc

Automatic generation of compact models.

 Satisfy desired error tolerance for all admissible input signals, i.e., want

$$||y - \hat{y}|| < \text{tolerance} \cdot ||u|| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

⇒ Need computable error bound/estimate!

■ Preserve physical properties:

 \cdot minimum phase (zeroes of G in $\mathbb C$

passivity ("system does not generate energy"

Model Reduction

M IID I ...

iviodei Reductio

Modal Truncation Padé Approximat

Approxima Balanced Truncation

Example

Current and

Reference

Automatic generation of compact models.

 Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

⇒ Need computable error bound/estimate!

- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-).
 - passivity ("system does not generate energy")

Model Reduction

IIIIOduction

iviodel Reducti

Modal Truncation Padé Approximat

Approxima Balanced Truncation

Examples

Current and Future Worl

Doforon

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy")

Model Reduction Goals

Model Reduction

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

$$||y - \hat{y}|| < \text{tolerance} \cdot ||u|| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$$

- ⇒ Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy").

Model Reduction

Peter Benne

....oaaction

Model Reduction

Goals Modal

Truncation
Padé
Approximatio

Balanced Truncation

Example:

Current and

References

Modal Truncation

Padé-Approximation and Krylov Subspace Methods

Balanced Truncation

4 many more...

Model Reduction

M. LLD. L. ...

Model Reduction

Modal Truncation Padé Approximat

Padé Approximat Balanced Truncation

Example

Current and Future Wor

Referen

Modal Truncation

- Padé-Approximation and Krylov Subspace Methods
- 3 Balanced Truncation
- 4 many more...

Joint feature of many methods: Galerkin or Petrov-Galerkin-type projection of state-space onto low-dimensional subspace \mathcal{V} along \mathcal{W} : assume $x \approx VW^Tx =: \tilde{x}$, where

range
$$(V) = V$$
, range $(W) = W$, $W^T V = I_r$.

Then, with $\hat{x} = W^T x$, we obtain $x \approx V \hat{x}$ and

$$||x - \tilde{x}|| = ||x - V\hat{x}||.$$

Modal Truncation

Model Reduction

ntroduction

Model Reductio

Modal

Truncation
Padé
Approximat

Approxima Balanced Truncation

Examples

Current and Future Wor

References

Idea:

Project state-space onto A-invariant subspace \mathcal{V} , where

$$V = \operatorname{span}(v_1, \ldots, v_r),$$

 $v_k = \text{eigenvectors corresp. to "dominant" } \text{modes} \equiv \text{eigenvalues of } A.$

Modal Truncation

Model Reduction

i ctti Dei

ntroduction

Model Reduction

Modal Truncation Padé

Padé Approxima Balanced

Truncat

_....

Future Wo

Referen

Idea:

Project state-space onto A-invariant subspace \mathcal{V} , where

$$V = \operatorname{span}(v_1, \ldots, v_r),$$

 $v_k = \text{eigenvectors corresp. to "dominant" modes} \equiv \text{eigenvalues of } A.$

Properties:

- Simple computation for large-scale systems, using, e.g., Krylov subspace methods (Lanczos, Arnoldi), Jacobi-Davidson method.
- Error bound:

$$\|\mathit{G} - \hat{\mathit{G}}\|_{\infty} \leq \operatorname{cond}_2\left(\mathit{T}\right)\|\mathit{C}_2\|_2\|\mathit{B}_2\|_2 \frac{1}{\min_{\lambda \in \Lambda\left(\mathit{A}_2\right)}|\operatorname{Re}(\lambda)|},$$

where
$$T^{-1}AT = \operatorname{diag}(A_1, A_2)$$
.

Modal Truncation

Model Reduction

ntroductio

Model Reductio Goals

Modal Truncation Padé Approximati

Approxima Balanced Truncation

Examples

Current and Future Wor

Referen

Idea:

Project state-space onto A-invariant subspace \mathcal{V} , where

$$V = \operatorname{span}(v_1, \ldots, v_r),$$

 $v_k = \text{eigenvectors corresp. to "dominant" modes} \equiv \text{eigenvalues of } A.$

- Eigenvalues contain only limited system information.
- Dominance measures are difficult to compute. (Litz 1979: use Jordan canoncial form; otherwise merely heuristic criteria.)
- Error bound not computable for really large-scale probems.

Model Reduction

Peter Benne

troduction ■ Consider

Idea:

Ex =

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with rational transfer function $G(s) = C(sE - A)^{-1}B$.

Peter Renner

Goals Modal Truncation Padé

Approximation Balanced

F......

Current an

References

Model Reduction

Padé

Approximation

Idea:

Consider

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with rational transfer function $G(s) = C(sE - A)^{-1}B$.

■ For $s_0 \notin \Lambda(A, E)$:

$$G(s) = m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$$

Model Reduction

ntroduction

Model Reduction Goals Modal

Padé Approximation Balanced Truncation

Fxamples

Future Wo

Referen

Idea:

Consider

$$E\dot{x} = Ax + Bu, \quad y = Cx$$

with rational transfer function $G(s) = C(sE - A)^{-1}B$.

■ For $s_0 \notin \Lambda(A, E)$:

$$G(s) = m_0 + m_1(s - s_0) + m_2(s - s_0)^2 + \dots$$

■ As reduced-order model use rth Padé approximant \hat{G} to G:

$$G(s) = \hat{G}(s) + \mathcal{O}((s-s_0)^{2r}),$$

i.e.,
$$m_i = \widehat{m}_i$$
 for $j = 0, ..., 2r - 1$

$$\leadsto$$
 moment matching if $s_0 < \infty$,

 \rightsquigarrow partial realization if $s_0 = \infty$.

Model Reduction

Introduction

Model Reductio Goals

Truncation Padé

Approximation Balanced

Balanced Truncation

Examples

Current and Future Wor

Reference

Padé-via-Lanczos Method (PVL)

 Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$V = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{r-1}B) = \mathcal{K}(\tilde{A}, \tilde{B}, r)$$

(where
$$\tilde{A} = (s_0 E - A)^{-1} E$$
, $\tilde{B} = (s_0 E - A)^{-1} B$) along

$$\mathcal{W} = \mathrm{span}(C^H, \tilde{A}^H C^H, \dots, (\tilde{A}^H)^{r-1} C^H) = \mathcal{K}(\tilde{A}^H, C^H, r).$$

Model Reduction

Introduction

Model Reductio Goals Model

Padé Approximation

Approximat Balanced Truncation

Examples

Current and Future Wor

D-f----

Padé-via-Lanczos Method (PVL)

 Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{r-1}B) = \mathcal{K}(\tilde{A}, \tilde{B}, r)$$

(where
$$\tilde{A} = (s_0 E - A)^{-1} E$$
, $\tilde{B} = (s_0 E - A)^{-1} B$) along

$$E(A - (30E - A) - E, D - (30E - A) - D)$$
 along

$$\mathcal{W} = \operatorname{span}(C^H, \tilde{A}^H C^H, \dots, (\tilde{A}^H)^{r-1} C^H) = \mathcal{K}(\tilde{A}^H, C^H, r).$$

 Computation via unsymmetric Lanczos method, yields system matrices of reduced-order model as by-product.

Model Reduction

Approximation

Padé-via-Lanczos Method (PVL)

 Moments need not be computed explicitly; moment matching is equivalent to projecting state-space onto

$$\mathcal{V} = \operatorname{span}(\tilde{B}, \tilde{A}\tilde{B}, \dots, \tilde{A}^{r-1}B) = \mathcal{K}(\tilde{A}, \tilde{B}, r)$$

(where
$$\tilde{A} = (s_0 E - A)^{-1} E$$
, $\tilde{B} = (s_0 E - A)^{-1} B$) along

$$W = \operatorname{span}(C^H, \tilde{A}^H C^H, \dots, (\tilde{A}^H)^{r-1} C^H) = \mathcal{K}(\tilde{A}^H, C^H, r).$$

- Computation via unsymmetric Lanczos method, yields system matrices of reduced-order model as by-product.
- PVL applies w/o changes for singular E if $s_0 \notin \Lambda(A, E)$:
 - for $s_0 \neq \infty$: Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1996, Grimme 1997
 - for $s_0 = \infty$: B./Sokolov 2005

Model Reduction

ntroduction

Model Reduction

Goals

Truncation Padé

Approximation

Balanced

Examples

Current an

References

Padé-via-Lanczos Method (PVL)

Difficulties:

■ No computable error estimates/bounds for $||y - \hat{y}||_2$.

Model Reduction

Introduction

Model Reduction

Modal Truncation Padé Approximation Balanced

Example

Current and Future Wor Padé-via-Lanczos Method (PVL)

- No computable error estimates/bounds for $||y \hat{y}||_2$.
- Mostly heuristic criteria for choice of expansion points.
 Optimal choice for second-order systems with proportional/Rayleigh damping (Beattie/Gugeroin 2005).

Model Reduction

Introductio

Model Reduction
Goals
Modal

Modal Truncation Padé Approximation Balanced Truncation

Examples

Current and Future Wor

Referen

Padé-via-Lanczos Method (PVL)

- No computable error estimates/bounds for $||y \hat{y}||_2$.
- Mostly heuristic criteria for choice of expansion points.
 Optimal choice for second-order systems with proportional/Rayleigh damping (Beattie/Gugercin 2005).
- Good approximation quality only locally.

Model Reduction

Peter Be

ntroductio

Model Reductio Goals Modal

Modal
Truncation
Padé
Approximation
Balanced
Truncation

Examples

Current and Future Wor

Referen

Padé-via-Lanczos Method (PVL)

- No computable error estimates/bounds for $||y \hat{y}||_2$.
- Mostly heuristic criteria for choice of expansion points.
 Optimal choice for second-order systems with proportional/Rayleigh damping (Beattie/Gugercin 2005).
- Good approximation quality only locally.
- Preservation of physical properties only in very special cases; usually requires post processing which (partially) destroys moment matching properties.

Model Reduction

Madal Paduatio

Goals

Truncation Padé

Approxima Balanced

Truncati

_

.

Future Wo

Idea:

■ A system Σ , realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy:
$$P=Q=\mathrm{diag}(\sigma_1,\ldots,\sigma_n)$$
 with $\sigma_1\geq\sigma_2\geq\ldots\geq\sigma_n>0$.

Model Reduction

Model Reduction

Goals Modal Truncation

Padé Approximat

Approxima Balanced

Truncat

_....

Current and Future Wor

Referenc

Idea:

■ A system Σ , realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$AP + PA^T + BB^T \ = \ 0, \qquad A^TQ + QA + C^TC \ = \ 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

{ $\sigma_1, \ldots, \sigma_n$ } are the Hankel singular values (HSVs) of Σ.

Model Reduction

ntroduction

Model Reduction Goals

Modal Truncation Padé Approximati

Approximat Balanced

Truncation

Examples

Future Wor

Doforon

Idea:

■ A system Σ , realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0,$$

satisfy:
$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 with $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

- \bullet $\{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$\mathcal{T}: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

Model Reduction

ntroductio

Model Reduction

Modal Truncation Padé Approximation

Balanced Truncation

Evamples

Current and

Future Wo

Referen

Idea:

■ A system Σ , realized by (A, B, C, D), is called balanced, if solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy: $P=Q=\mathrm{diag}(\sigma_1,\ldots,\sigma_n)$ with $\sigma_1\geq\sigma_2\geq\ldots\geq\sigma_n>0$.

- \bullet $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- Compute balanced realization of the system via state-space transformation

$$T: (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

$$= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)$$

■ Truncation \rightsquigarrow $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (A_{11}, B_1, C_1, D).$

Model Reduction

. .

Introduction

Model Reductio

Modal Truncation

Padé Approxima

Balanced Truncation

Truncati

Lxampics

Current an Future Wo

References

Motivation:

HSV are system invariants: they are preserved under $\mathcal T$ and determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty,0) \mapsto L_2(0,\infty): \textit{u}_- \mapsto \textit{y}_+.$$

Model Reduction

ntroduction

Model Reductio Goals

Modal Truncation Padé

Approxima Ralanced

Balanced Truncation

Examples

Current an

Doforon

Motivation:

HSV are system invariants: they are preserved under $\mathcal T$ and determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty,0) \mapsto L_2(0,\infty): u_- \mapsto y_+.$$

In balanced coordinates . . . energy transfer from u_- to y_+ :

$$E := \sup_{u \in L_2(-\infty,0] \atop x(0) = x_0} \frac{\int\limits_0^\infty y(t)^T y(t) dt}{\int\limits_{-\infty}^0 u(t)^T u(t) dt} = \frac{1}{\|x_0\|_2} \sum_{j=1}^n \sigma_j^2 x_{0,j}^2$$

Model Reduction

ntroductio

Model Reductio Goals

Truncation Padé

Approxima Balanced

Balanced Truncation

Truncat

Examples

Current an Future Wo

D-f----

Motivation:

HSV are system invariants: they are preserved under $\mathcal T$ and determine the energy transfer given by the Hankel map

$$\mathcal{H}: L_2(-\infty,0) \mapsto L_2(0,\infty): u_- \mapsto y_+.$$

In balanced coordinates ... energy transfer from u_- to y_+ :

$$E := \sup_{u \in L_2(-\infty,0] \atop x(0) = x_0} \frac{\int\limits_0^\infty y(t)^T y(t) dt}{\int\limits_{-\infty}^0 u(t)^T u(t) dt} = \frac{1}{\|x_0\|_2} \sum_{j=1}^n \sigma_j^2 x_{0,j}^2$$

- ⇒ Truncate states corresponding to "small" HSVs
- ⇒ complete analogy to best approximation via SVD!

Model Reduction

r eter beilite

Model Reduction

Goals

Truncation Padé

Approxima Balanced

Truncati

Examples

Current an

References

Implementation: SR Method

Compute Cholesky factors of the solutions of the Lyapunov equations,

$$P = S^T S$$
, $Q = R^T R$.

Model Reduction

Model Reduction

Modal Truncation Padé

Balanced Truncation

Iruncati

Current a

Future Wo

Referen

Implementation: SR Method

Compute Cholesky factors of the solutions of the Lyapunov equations,

$$P = S^T S$$
, $Q = R^T R$.

Compute SVD

$$SR^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}.$$

Model Reduction

Model Reduction

Modal Truncation Padé Approximatio

Balanced Truncatio

Examples

Current an Future Wo

Doforon

Implementation: SR Method

Compute Cholesky factors of the solutions of the Lyapunov equations,

$$P = S^T S$$
, $Q = R^T R$.

Compute SVD

$$SR^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}.$$

3 Set

$$W = R^T V_1 \Sigma_1^{-1/2}, \qquad V = S^T U_1 \Sigma_1^{-1/2}.$$

4 Reduced model is (W^TAV, W^TB, CV, D) .

Model Reduction

Model Reduction

Goals

Truncation

Padé Approximat

Balanced Truncation

Truncatio

Examples

Current an Future Wo

References

Properties:

■ Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.

Model Reduction

Balanced

Truncation

Properties:

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of r via computable error bound:

$$||y - \hat{y}||_2 \le \left(2\sum_{k=r+1}^n \sigma_k\right) ||u||_2.$$

 ${\sf Model}\,\,{\sf Reduction}$

Model Reductio

Goals

Modal Truncation

Padé

Approxima Balanced

Truncation

Examples

Current and Future Woo

References

Properties:

General misconception: complexity $\mathcal{O}(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

Model Reduction

Introduction

Model Reduction

Modal Truncation

Padé Approximat

Balanced Truncation

Examples

Current and

References

Properties:

General misconception: complexity $\mathcal{O}(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Model Reduction

Introductio

Model Reduction
Goals
Modal
Truncation
Padé
Approximation
Ralanced

Truncation

Future Wo

Referen

Properties:

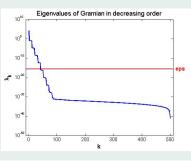
General misconception: complexity $\mathcal{O}(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

- Instead of Gramians P, Q compute $S, R \in \mathbb{R}^{n \times k}$, $k \ll n$, such that

$$P \approx SS^T$$
, $Q \approx RR^T$.

 Compute S, R with problem-specific Lyapunov solvers of "low" complexity directly.



Model Reduction

introductio

Model Reductio

Truncation
Padé
Approximation

Balanced Truncation

Examples

Future Wo

Reference

Properties:

General misconception: complexity $\mathcal{O}(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Parallelization:

- Efficient parallel algorithms based on matrix sign function.
- Complexity $\mathcal{O}(n^3/q)$ on q-processor machine.
- Software library PLICMR with WebComputing interface.

(B./Quintana-Ortí/Quintana-Ortí since 1999)

Model Reduction

ntroductio

Model Reduction Goals Modal

Truncation Padé Approximati

Balanced Truncation

Current and

Referen

Properties:

General misconception: complexity $\mathcal{O}(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Parallelization:

- Efficient parallel algorithms based on matrix sign function.
- Complexity $\mathcal{O}(n^3/q)$ on q-processor machine.
- Software library PLICMR with WebComputing interface.

(B./Quintana-Ortí/Quintana-Ortí since 1999)

Formatted Arithmetic:

For special problems from PDE control use implementation based on hierarchical matrices and matrix sign function method (Baur/B.), complexity $\mathcal{O}(n\log^2(n)r^2)$.

Model Reduction

Introductio

Model Reduction Goals Modal

Truncation
Padé
Approximation

Truncation

Examples

Current an Future Wo

Referen

Properties:

General misconception: complexity $\mathcal{O}(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

New algorithmic ideas from numerical linear algebra:

Sparse Balanced Truncation:

- Sparse implementation using sparse Lyapunov solver (ADI+MUMPS/SuperLU).
- Complexity $\mathcal{O}(n(k^2+r^2))$.
- Software:
 - + MATLAB toolbox LyaPack (Penzl 1999),
 - + Software library SPARED with WebComputing interface. (BADÍA/B./QUINTANA-ORTÍ/QUINTANA-ORTÍ since 2003)

Examples Optimal Control: Cooling of Steel Profiles

Model Reduction

reter be

ntroductio

Model Reduction

_ .

Optimal Cooling Microthruster Butterfly Gyro Interconnect

Current and Future Wor

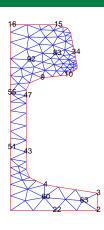
Reference

Mathematical model: boundary control for linearized 2D heat equation.

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$
$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \le k \le 7,$$
$$\frac{\partial}{\partial n} x = 0, \quad \xi \in \Gamma_7.$$

$$\implies m=7, p=6.$$

FEM Discretization, different models for initial mesh (n = 371),
 1, 2, 3, 4 steps of mesh refinement ⇒ n = 1357,5177,20209,79841.



Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.

Examples Optimal Control: Cooling of Steel Profiles

Model Reduction

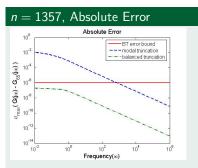
Peter Benner

Model Reduction

Model Reduction

Optimal Cooling Microthruster Butterfly Gyro Interconnect

Future Worl



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

Examples Optimal Control: Cooling of Steel Profiles

Model Reduction

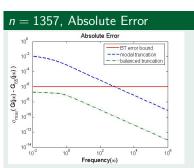
Introduction

Model Reductio

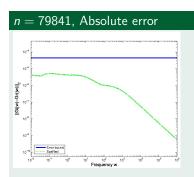
Optimal Cooling Microthruster Butterfly Gyro

Current and Future Work

Referen



- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.



- BT model computed using SpaRed,
- computation time: 8 min.

Model Reduction

ntroduction

Model Reduction

Optimal Cooling
Microthruster
Butterfly Gyro
Interconnect

Future Worl

- Co-integration of solid fuel with silicon micromachined system.
- Goal: Ignition of solid fuel cells by electric impulse.
- Application: nano satellites.
- Thermo-dynamical model, ignition via heating an electric resistance by applying voltage source.
- Design problem: reach ignition temperature of fuel cell w/o firing neighbouring cells.
- Spatial FEM discretization of thermo-dynamical model \rightsquigarrow linear system, m=1, p=7.

PolySi	SOG
SiNx	
SiO2	
Fuel	Si-substrate

 $Source: The \ Oberwolfach \ Benchmark \ Collection \ {\tt http://www.imtek.de/simulation/benchmark}$

Model Reduction

introduction

Model Reducti

Optimal Coolir Microthruster Butterfly Gyro Interconnect

Current and Future Worl

- FEM discretisation using linear (quadratic) elements $\rightsquigarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.

Model Reduction

. ----

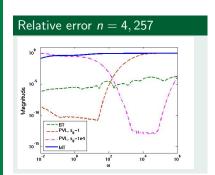
Introduction

Model Reducti

Optimal Coolin
Microthruster
Butterfly Gyro
Interconnect

Future Worl

- FEM discretisation using linear (quadratic) elements $\rightsquigarrow n = 4,257$ (11,445) m = 1, p = 7.
- \blacksquare Reduced model computed using ${\rm SPARED}.$ modal truncation using ARPACK, and Z. Bai's PVL implementation.



Model Reduction

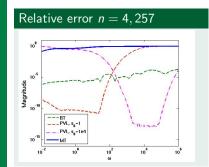
Introduction

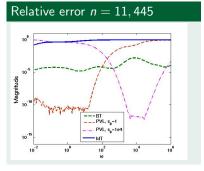
Model Reduction

Examples
Optimal Cooli
Microthruster
Butterfly Gyro
Interconnect

Future Wo

- FEM discretisation using linear (quadratic) elements $\rightsquigarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.





Model Reduction

ntroduction

Model Reducti

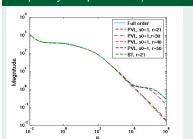
Optimal Coolir Microthruster Butterfly Gyro Interconnect

Future Worl

axial-symmetric 2D model

- FEM discretisation using linear (quadratic) elements $\rightsquigarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.

Frequency Response BT/PVL



Model Reduction

. ----

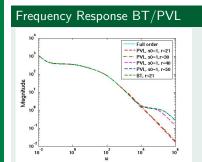
ntroduction

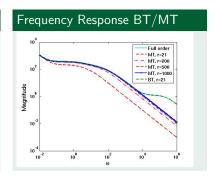
Model Reduction

Examples
Optimal Coolin
Microthruster
Butterfly Gyro
Interconnect

Referen

- FEM discretisation using linear (quadratic) elements $\rightsquigarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED. modal truncation using ARPACK, and Z. Bai's PVL implementation.





Examples MEMS: Microgyroscope (Butterfly Gyro)

Model Reduction

..

Examples
Optimal Cooli

Microthruster

Butterfly Gyro

Interconnect

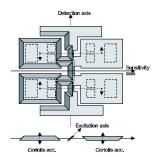
Current and

Future Work

Future Wor References

- By applying AC voltage to electrodes, wings are forced to vibrate in anti-phase in wafer plane.
- Coriolis forces induce motion of wings out of wafer plane yielding sensor data.

- Vibrating micro-mechanical gyroscope for inertial navigation.
- Rotational position sensor.



Source: The Oberwolfach Benchmark Collection http://www.intek.de/simulation/benchmark Courtesy of D. Billger (Imego Institute, Göteborg), Saab Bofors Dynamics AB.

Examples MEMS: Butterfly Gyro

Model Reduction

Peter Benne

....

iviodei Reductio

Optimal Coolir Microthruster Butterfly Gyro Interconnect

Current and

i dedic vve

■ Reduced model computed using SPARED, r = 30.

Examples MEMS: Butterfly Gyro

Model Reduction

....

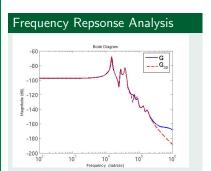
Model Reduction

Optimal Coolir Microthruster Butterfly Gyro Interconnect

Future Wo

■ FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
→ n = 34,722, m = 1, p = 12.

■ Reduced model computed using SPARED, r = 30.



Examples MEMS: Butterfly Gyro

Model Reduction

introduction

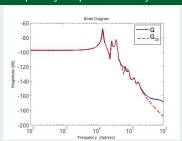
Model Reduction

Examples
Optimal Coolir
Microthruster
Butterfly Gyro
Interconnect
Current and

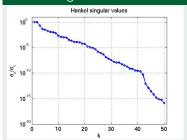
ruture vi

■ Reduced model computed using SPARED, r = 30.

Frequency Repsonse Analysis



Hankel Singular Values



Examples Micro-electronics: Interconnect

Model Reduction

- RLC circuit, characteristic curve has falling edge at $\omega = 100 \, \text{Hz}$.
- n = 1999, m = p = 2, reduced model using PLICMR: r = 20.

Examples Micro-electronics: Interconnect

Model Reduction

Model Reducti

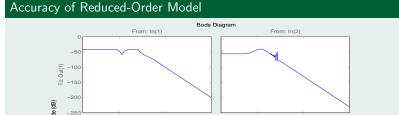
Optimal Cool
Microthruster
Butterfly Gyro

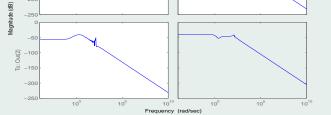
Current and

ruture vvo

lacktriangle RLC circuit, characteristic curve has falling edge at $\omega=100\,\mathrm{Hz}.$

■ n = 1999, m = p = 2, reduced model using PLICMR: r = 20.





Model Reduction

Peter Benne

introduction

Model Reduction

_ .

Current and Future Work

. . .

Parametric Models

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x + D(p)u,$$

where $p \in \mathbb{R}^s$ are free parameters which should be preserved in the reduced-order model.

Model Reduction

Peter Benne

Model Reduction

Model Reduction

Current and Future Worl

References

Parametric Models

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x + D(p)u,$$

where $p \in \mathbb{R}^s$ are free parameters which should be preserved in the reduced-order model.

• Frequently: B, C, D parameter independent,

$$A(p) = A_0 + p_1 A_1 + \ldots + p_s A_s.$$

- \Rightarrow (Modified) linear model reduction methods applicable.
- Multipoint expansion combined with Padé-type approx. possible.
- New idea: BT for reference parameters combined with interpolation yields parametric reduced-order models.

Model Reduction

Peter Benne

Model Reduction

Model Reduction

Current and Future Worl

Reference

Parametric Models

$$\dot{x} = A(p)x + B(p)u, \quad y = C(p)x + D(p)u,$$

where $p \in \mathbb{R}^s$ are free parameters which should be preserved in the reduced-order model.

■ Frequently: B, C, D parameter independent,

$$A(p) = A_0 + p_1 A_1 + \ldots + p_s A_s.$$

- ⇒ (Modified) linear model reduction methods applicable.
- Multipoint expansion combined with Padé-type approx. possible.
- New idea: BT for reference parameters combined with interpolation yields parametric reduced-order models.

Model Reduction

Current and Future Work **Nonlinear Systems** ■ Linear projection

$$x \approx V\hat{x}, \quad \dot{\hat{x}} = W^T f(V\hat{x}, u)$$

is in general not model reduction!

Model Reduction

Current and

Nonlinear Systems

Linear projection

$$x \approx V \hat{x}, \quad \dot{\hat{x}} = W^T f(V \hat{x}, u)$$

is in general not model reduction!

- Need specific methods
 - POD + balanced truncation → empirical Gramians (Lall/Marsden/Glavaski 1999/2002),
 - Approximate inertial manifold method (∼ static condensation for nonlinear systems).

Model Reduction

Peter Benne

ntroduction

Model Reduction

Examples

Current and Future Work

Referen

Nonlinear Systems

Linear projection

$$x \approx V \hat{x}, \quad \dot{\hat{x}} = W^T f(V \hat{x}, u)$$

is in general not model reduction!

- Exploit structure of nonlinearities, e.g., in optimal control of linear PDEs with nonlinear BCs →
 - bilinear control systems $\dot{x} = Ax + \sum_{i} N_{j}xu_{j} + Bu$,
 - formal linear systems (cf. Föllinger 1982)

$$\dot{x} = Ax + Ng(Hx) + Bu = Ax + \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} u \\ g(z) \end{bmatrix},$$

where
$$z := Hx \in \mathbb{R}^{\ell}$$
, $\ell \ll n$.

References

Model Reduction

ntroduction

Model Reducti

Current and

Future vvor

References

 G. Obinata and B.D.O. Anderson. *Model Reduction for Control System Design*. Springer-Verlag, London, UK, 2001.

Z. Bai.

Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems.

Appl. Nimer. Math. 43(1–2):9–44, 2002.

Appl. Numer. Math, 43(1-2):9-44, 2002.

3 R. Freund.

Model reduction methods based on Krylov subspaces.

ACTA NUMERICA, 12:267-319, 2003.

4 P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí. State-space truncation methods for parallel model reduction of large-scale systems. PARALLEL COMPUT., 29:1701–1722, 2003.

P. Benner, V. Mehrmann, and D. Sorensen (editors). Dimension Reduction of Large-Scale Systems. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING, Vol. 45, Springer-Verlag. Berlin / Heidelberg. Germany. 2005.

6 A.C. Antoulas. Lectures on the Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia, PA, 2005.

7 P. Benner, R. Freund, D. Sorensen, and A. Varga (editors). Special issue on Order Reduction of Large-Scale Systems. LINEAR ALGEBRA APPL., Vol. 415, Issues 2-3, pp. 231–578, June 2006.

Thanks for your attention!