# A KRYLOV-SCHUR-TYPE ALGORITHM FOR EIGENPROBLEMS WITH HAMILTONIAN SPECTRAL SYMMETRY

# Peter Benner

Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz







## RANMEP2008

National Tsinghua University, Taiwan, January 4-8, 2008

Joint work with Heike Faßbender and Martin Stoll

Dedicated to Ralph Byers (1955-2007)



# Overview

Hamiltonian Krylov-Schur

#### Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# 1 Introduction

- Hamiltonian Eigenproblems
- Applications
- 2 The Symplectic Lanczos Algorithm
- 3 The SR Algorithm
- 4 A Hamiltonian Krylov-Schur-Type Algorithm
  - Derivation
  - Shift-and-invert
  - Numerical Example
- 5 Quadratic Eigenvalue Problems
  - Shift-and-invert
  - Corner singularities
  - Gyroscopic systems
- 6 Conclusions and Outlook
- 7 References



## Introduction Hamiltonian Eigenproblems

Definition

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Let $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ , then $H \in \mathbb{R}^{2n \times 2n}$ is called

- Hamiltonian, if  $(HJ)^T = HJ$ ,
- skew-Hamiltonian, if  $(HJ)^T = -HJ$ .

A matrix pencil  $\lambda N - H$  is called a Hamiltonian/skew-Hamiltonian pencil, if H is Hamiltonian and N is skew-Hamiltonian.

## Explicit block form

# of Hamiltonian matrices:

$$\left[\begin{array}{cc}A & G\\Q & -A^{\mathcal{T}}\end{array}\right], \text{ where } A, G, Q \in \mathbb{R}^{n \times n} \text{ and } G = G^{\mathcal{T}}, \ Q = Q^{\mathcal{T}},$$

of skew-Hamiltonian Matrices:

$$\begin{bmatrix} A & G \\ Q & A^T \end{bmatrix}$$
, where  $A, G, Q \in \mathbb{R}^{n \times n}$  and  $G = -G^T, Q = -Q^T$ .



## Introduction Hamiltonian Eigenproblems

Definition

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Let $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ , then $H \in \mathbb{R}^{2n \times 2n}$ is called

• Hamiltonian, if 
$$(HJ)^T = HJ$$
,

**skew-Hamiltonian**, if  $(HJ)^T = -HJ$ .

A matrix pencil  $\lambda N - H$  is called a Hamiltonian/skew-Hamiltonian pencil, if H is Hamiltonian and N is skew-Hamiltonian.

## Explicit block form

## of Hamiltonian matrices:

$$\begin{bmatrix} A & G \\ Q & -A^T \end{bmatrix}$$
, where  $A, G, Q \in \mathbb{R}^{n \times n}$  and  $G = G^T, Q = Q^T$ ,

# of skew-Hamiltonian Matrices:

 $\begin{bmatrix} A & G \\ Q & A^T \end{bmatrix}$ , where  $A, G, Q \in \mathbb{R}^{n \times n}$  and  $G = -G^T, Q = -Q^T$ .



## Introduction Hamiltonian Eigenproblems

Definition

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Let $J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ , then $H \in \mathbb{R}^{2n \times 2n}$ is called

• Hamiltonian, if 
$$(HJ)^T = HJ$$
,

**skew-Hamiltonian**, if  $(HJ)^T = -HJ$ .

A matrix pencil  $\lambda N - H$  is called a Hamiltonian/skew-Hamiltonian pencil, if H is Hamiltonian and N is skew-Hamiltonian.

## Explicit block form

## of Hamiltonian matrices:

$$\left[\begin{array}{cc}A & G\\Q & -A^{T}\end{array}\right], \text{ where } A, G, Q \in \mathbb{R}^{n \times n} \text{ and } G = G^{T}, \ Q = Q^{T},$$

of skew-Hamiltonian Matrices:

$$\left[\begin{array}{cc}A & G\\Q & A^{\mathcal{T}}\end{array}\right], \text{ where } A, G, Q \in \mathbb{R}^{n \times n} \text{ and } G = -G^{\mathcal{T}}, \ Q = -Q^{\mathcal{T}}.$$



# Introduction Spectral Properties

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Hamiltonian Eigensymmetry

Hamiltonian matrices and Hamiltonian/skew-Hamiltonian pencils exhibit the Hamiltonian eigensymmetry: if  $\lambda$  is a finite eigenvalue of  $H - \lambda N$ , then  $\overline{\lambda}, -\lambda, -\overline{\lambda}$  are eigenvalues of  $H - \lambda N$ , too.



# Introduction Spectral Properties

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Hamiltonian Eigensymmetry

Hamiltonian matrices and Hamiltonian/skew-Hamiltonian pencils exhibit the Hamiltonian eigensymmetry: if  $\lambda$  is a finite eigenvalue of  $H - \lambda N$ , then  $\overline{\lambda}, -\lambda, -\overline{\lambda}$  are eigenvalues of  $H - \lambda N$ , too.

## Typical Hamiltonian spectrum:





# Hamiltonian Eigenproblems

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

нкѕ

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of $H - \lambda N$ , then $\overline{\tilde{\lambda}}, -\tilde{\lambda}, -\overline{\tilde{\lambda}}$ should also be computed eigenvalues.

# Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

#### Definition

Goal

 $S \in \mathbb{R}^{2n \times 2n}$  is symplectic iff  $S^T J S = J$ , i.e.,  $S^{-1} = J^T S^T J$ .

#### \_emma

If *H* is Hamiltonian (skew-Hamiltonian) and *S* is symplectic, then  $S^{-1}HS$ 

is Hamiltonian (skew-Hamiltonian), too.



# Hamiltonian Eigenproblems

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

нкѕ

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of $H - \lambda N$ , then $\overline{\tilde{\lambda}}, -\tilde{\lambda}, -\overline{\tilde{\lambda}}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

## Definition

Goal

 $S \in \mathbb{R}^{2n \times 2n}$  is symplectic iff  $S^T J S = J$ , i.e.,  $S^{-1} = J^T S^T J$ .

#### emma

If H is Hamiltonian (skew-Hamiltonian) and S is symplectic, then  $S^{-1}HS$ 

is Hamiltonian (skew-Hamiltonian), too.



# Hamiltonian Eigenproblems

#### Hamiltonian Krylov-Schur

Goal

Peter Benner

#### Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

нкѕ

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of $H - \lambda N$ , then $\overline{\tilde{\lambda}}, -\tilde{\lambda}, -\overline{\tilde{\lambda}}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

# Definition $S \in \mathbb{R}^{2n \times 2n}$ is symplectic iff $S^T J S = J$ , i.e., $S^{-1} = J^T S^T J$ .LemmaIf H is Hamiltonian (skew-Hamiltonian) and S is symplectic, then $S^{-1}HS$ is Hamiltonian (skew-Hamiltonian), too.



# Introduction Applications



Peter Benner

- Introduction
- Hamiltonian Eigenproblems Applications
- Symplectic Lanczos
- The SR Algorithm
- нкs
- Quadratic Eigenvalue Problems
- Conclusions and Outlook

References

Hamiltonian eigenproblems arise in many different applications, e.g.:

- Systems and control:
  - Solution methods for algebraic and differential Riccati equations.
  - Design of  $LQR/LQG/H_2/H_{\infty}$  controllers and filters for continuous-time linear control systems.
  - Stability radii and system norm computations; optimization of system norms.
  - Passivity-preserving model reduction based on balancing.
  - Reduced-order control for infinite-dim. systems based on inertial manifolds.
- Computational physics:

exponential integrators for Hamiltonian dynamics.

 $[{\rm Eirola}~'03,~{\rm Lopez}/{\rm Simoncini}~'06]$ 

# Quantum chemistry:

computing excitation energies in many-particle systems using random phase approximation (RPA).

Quadratic eigenvalue problems...



# Introduction Applications

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

# Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ ,

These QEPs arise in linear elasticity gyroscopic systems vibro-acoustics opto-electronics

w



# Introduction Applications

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

## Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ ,

These QEPs arise in

## linear elasticity

computation of corner singularities in 3D anisotropic elastic structures [Apel/Mehrmann/Watkins '01];

gyroscopic systems

vibro-acoustics

opto-electronics



# Introduction Applications

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

## Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ ,

## These QEPs arise in

v

linear elasticity

#### gyroscopic systems

used for modeling vibrations of spinning structures such as the simulation of tire noise, helicopter rotor blades, inertial navigation systems and components, or spin-stabilized satellites with appended solar panels or antennas [LANCASTER '99, NACKENHORST '04, ELSSEL/VOSS '06, ...];

## vibro-acoustics

opto-electronics



# Introduction Applications

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

## Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ ,

These QEPs arise in linear elasticity

M

gyroscopic systems

### vibro-acoustics

modeling of flexible piping systems by coupling of linear wave equation with structural Lamé-Navier equations at fluid-structure interfaces; [MAESS/GAUL '05];

#### opto-electronics



# Introduction Applications

M

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Hamiltonian Eigenproblems Applications

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

## Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ ,

These QEPs arise in linear elasticity gyroscopic systems vibro-acoustics opto-electronics optical waveguide design, using Maxwell eigenproblems

[Schmidt et al '03].



Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Symplectic Lanczos Algorithm for Hamiltonian operators H

■ is based on transpose-free unsymmetric Lanczos process

[Freund '94];

- computes partial *J*-tridiagonalization;
- provides a symplectic (*J*-orthogonal) Lanczos basis  $V_k \in \mathbb{R}^{2n \times 2k}$ , i.e.,  $V_k^T J_n V_k = J_k$ ;
- was derived in several variants: [FREUND/MEHRMANN '94, FERNG/LIN/WANG '97, B./FASSBENDER '97, WATKINS '04];
- requires re-*J*-orthogonalization using, e.g., modified symplectic Gram-Schmidt;
- can be restarted implicitly using implicit SR steps

[B./FASSBENDER '97];

exhibits convergence problems without locking & purging.

# The Hamiltonian *J*-Tridiagonal Form or Hamiltonian *J*-Hessenberg Form



- can be computed by symplectic similarity  $T_n = S^{-1}HS$  almost always,
- is computed partially by symplectic Lanczos process, based on symplectic Lanczos recursion

$$HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{2k}^T, \qquad V_k = [S(:, 1:k), S(:, k+1:2k)].$$



Derivation using Partial J-Tridiagonalization

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

#### Theorem

If  $T = S^{-1}HS$  is in Hamiltonian *J*-tridiagonal form, then

$$K(H, 2n-1, v) = SR$$
 with  $s_1 = v$ 

is an SR decomposition of the Krylov matrix

$$K(H, 2n-1, v) := [v, Hv, \dots, H^{2n-1}v].$$

If R is nonsingular, then T is unreduced, i.e.,  $\zeta_j \neq 0$  for all j.

Column-wise evaluation of  $HS = ST_n$  yields  $(S := [v_1, \ldots, v_n, w_1, \ldots, w_n])$ 

 $\begin{aligned} H\mathbf{v}_{k} &= \delta_{k}\mathbf{v}_{k} + \nu_{k}\mathbf{w}_{k} \iff \nu_{k}\mathbf{w}_{k} = H\mathbf{v}_{k} - \delta_{k}\mathbf{v}_{k} =: \widetilde{\mathbf{w}}_{k}, \\ H\mathbf{w}_{m} &= \zeta_{m}\mathbf{v}_{k-1} + \beta_{k}\mathbf{v}_{k} - \delta_{k}\mathbf{w}_{k} + \zeta_{k+1}\mathbf{v}_{k+1} \\ \iff \zeta_{k+1}\mathbf{v}_{k+1} = H\mathbf{w}_{k} - \zeta_{k}\mathbf{v}_{k-1} - \beta_{k}\mathbf{v}_{k} + \delta_{k}\mathbf{w}_{k} =: \widetilde{\mathbf{v}}_{k+1}. \end{aligned}$ 

 $\implies$  Choose parameters  $\delta_k, \beta_k, \nu_k, \zeta_k$  such that resulting algorithm computes symplectic (*J*-orthogonal) basis of Krylov subspace

 $\mathcal{K}(H, v_1, 2m) = \operatorname{span}\{v_1, Hv_1, \dots, H^{2m-1}v_1\}.$ 



Derivation using Partial J-Tridiagonalization

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

#### Theorem

If  $T = S^{-1}HS$  is in Hamiltonian *J*-tridiagonal form, then

$$K(H, 2n-1, v) = SR$$
 with  $s_1 = v$ 

is an SR decomposition of the Krylov matrix

$$K(H, 2n-1, v) := [v, Hv, \dots, H^{2n-1}v].$$

If R is nonsingular, then T is unreduced, i.e.,  $\zeta_j \neq 0$  for all j.

Column-wise evaluation of  $HS = ST_n$  yields  $(S := [v_1, \ldots, v_n, w_1, \ldots, w_n])$ 

 $\begin{aligned} H\mathbf{v}_{k} &= \delta_{k}\mathbf{v}_{k} + \nu_{k}\mathbf{w}_{k} \iff \nu_{k}\mathbf{w}_{k} = H\mathbf{v}_{k} - \delta_{k}\mathbf{v}_{k} =: \widetilde{\mathbf{w}}_{k}, \\ H\mathbf{w}_{m} &= \zeta_{m}\mathbf{v}_{k-1} + \beta_{k}\mathbf{v}_{k} - \delta_{k}\mathbf{w}_{k} + \zeta_{k+1}\mathbf{v}_{k+1} \\ \iff \zeta_{k+1}\mathbf{v}_{k+1} = H\mathbf{w}_{k} - \zeta_{k}\mathbf{v}_{k-1} - \beta_{k}\mathbf{v}_{k} + \delta_{k}\mathbf{w}_{k} =: \widetilde{\mathbf{v}}_{k+1}. \end{aligned}$ 

 $\implies$  Choose parameters  $\delta_k, \beta_k, \nu_k, \zeta_k$  such that resulting algorithm computes symplectic (*J*-orthogonal) basis of Krylov subspace

$$\mathcal{K}(H, v_1, 2m) = \operatorname{span}\{v_1, Hv_1, \ldots, H^{2m-1}v_1\}.$$

Algorithm based on symplectic Lanczos recursion  $HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{2k}^T$ 

Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

INPUT: 
$$H \in \mathbb{R}^{2n \times 2n}, m \in \mathbb{N}$$
, and start vector  $\tilde{v}_1 \neq 0 \in \mathbb{R}^{2n}$ .  
OUTPUT:  $T_m \in \mathbb{R}^{2m \times 2m}, V_m \in \mathbb{R}^{2n \times 2m}, \zeta_{m+1}$ , and  $v_{m+1}$ .  
**1**  $\zeta_1 = \|\tilde{v}_1\|_2$   
**2**  $v_1 = \frac{1}{\zeta_1} \tilde{v}_1$   
**3** FOR  $k = 1, 2, ..., m$   
(a)  $t = Hv_m, u = Hw_m$   
(b)  $\delta_m = \langle t, v_m \rangle$   
(c)  $\tilde{w}_m = t - \delta_m v_m$   
(d)  $v_m = \langle t, v_m \rangle_J$   
(e)  $w_m = \frac{1}{v_m} \tilde{w}_m$   
(f)  $\beta_m = -\langle u, w_m \rangle_J$   
(g)  $\tilde{v}_{m+1} = u - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m$   
(h)  $\zeta_{m+1} = \|\tilde{v}_{m+1}\|_2$   
(i)  $v_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$   
ENDFOR

Note: 3(b) yields orthogonality of  $v_k$ ,  $w_k$  [FERNG/LIN/WANG '97] and optimal conditioning of Lanczos basis [B. '03] if  $||v||_2 = 1$  is forced.

Algorithm based on symplectic Lanczos recursion  $HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{2k}^T$ 

Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

INPUT: 
$$H \in \mathbb{R}^{2n \times 2n}, m \in \mathbb{N}$$
, and start vector  $\tilde{v}_1 \neq 0 \in \mathbb{R}^{2n}$ .  
OUTPUT:  $T_m \in \mathbb{R}^{2m \times 2m}, V_m \in \mathbb{R}^{2n \times 2m}, \zeta_{m+1}$ , and  $v_{m+1}$ .  
**1**  $\zeta_1 = \|\tilde{v}_1\|_2$   
**2**  $v_1 = \frac{1}{\zeta_1} \tilde{v}_1$   
**3** FOR  $k = 1, 2, ..., m$   
(a)  $t = Hv_m, u = Hw_m$   
(b)  $\delta_m = \langle t, v_m \rangle$   
(c)  $\tilde{w}_m = t - \delta_m v_m$   
(d)  $\nu_m = \langle t, v_m \rangle_J$   
(e)  $w_m = \frac{1}{\nu_m} \tilde{w}_m$   
(f)  $\beta_m = -\langle u, w_m \rangle_J$   
(g)  $\tilde{v}_{m+1} = u - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m$   
(h)  $\zeta_{m+1} = \|\tilde{v}_{m+1}\|_2$   
(i)  $v_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$   
ENDFOR

Note: 3(b) yields orthogonality of  $v_k$ ,  $w_k$  [FERNG/LIN/WANG '97] and optimal conditioning of Lanczos basis [B. '03] if  $||v||_2 = 1$  is forced.

Algorithm based on symplectic Lanczos recursion  $HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{2k}^T$ 

Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Symplectic Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

INPUT: 
$$H \in \mathbb{R}^{2n \times 2n}, m \in \mathbb{N}$$
, and start vector  $\tilde{v}_1 \neq 0 \in \mathbb{R}^{2n}$ .  
OUTPUT:  $T_m \in \mathbb{R}^{2m \times 2m}, V_m \in \mathbb{R}^{2n \times 2m}, \zeta_{m+1}$ , and  $v_{m+1}$ .  
1  $\zeta_1 = \|\tilde{v}_1\|_2$   
2  $v_1 = \frac{1}{\zeta_1} \tilde{v}_1$   
3 FOR  $k = 1, 2, ..., m$   
(a)  $t = Hv_m, u = Hw_m$   
(b)  $\delta_m = \langle t, v_m \rangle$   
(c)  $\tilde{w}_m = t - \delta_m v_m$   
(d)  $v_m = \langle t, v_m \rangle_J$   
(e)  $w_m = \frac{1}{v_m} \tilde{w}_m$   
(f)  $\beta_m = -\langle u, w_m \rangle_J$   
(g)  $\tilde{v}_{m+1} = u - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m$   
(h)  $\zeta_{m+1} = \|\tilde{v}_{m+1}\|_2$   
(i)  $v_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$   
ENDFOR

Note: 3(b) yields orthogonality of  $v_k$ ,  $w_k$  [FERNG/LIN/WANG '97] and optimal conditioning of Lanczos basis [B. '03] if  $||v||_2 = 1$  is forced.



# The Symplectic Lanczos Algorithm Implicit Restarts for given k-step Lanczos recursion $HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{1k}^T$ .

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Extend Lanczos recursion by p symplectic Lanczos steps, yielding

$$HV_{k+p} = V_{k+p}T_{k+p} + \zeta_{k+p+1}v_{k+p+1}\mathbf{e}_{2(k+p)}^{T}.$$

Let  $S_{k+p} \in \mathbb{R}^{2(k+p) \times 2(k+p)}$  be symplectic. Then with



 $\hat{V}_{k+p}$  is J-orthogonal,  $\hat{T}_{k+p}$  is Hamiltonian. Thus,

\*) 
$$H\hat{V}_{k+p} = \hat{V}_{k+p}\hat{T}_{k+p} + \zeta_{k+p+1}v_{k+p+1}s_{k+p}^{T}$$
  $(s_{k+p}^{T} := S_{k+p}(2(k+p), :)).$ 

Obtain new Lanczos recursion from (\*) by truncating back to k and choosing  $\mathcal{S}_{k+p}$  so that

- $\hat{T}_k$  is Hamiltonian *J*-tridiagonal,
- the residual term  $\hat{\zeta}_{k+1}\hat{v}_{k+1}\hat{s}_k$  has the form vector  $\times e_{2k}$ .
- $\implies \text{ implicit SR steps with structure-induced shift polynomials, e.g.,} \\ p_2(x) = (x \mu)(x + \mu) \text{ or } p_4(x) = p_2(x)\overline{p_2(x)}.$



# The Symplectic Lanczos Algorithm Implicit Restarts for given k-step Lanczos recursion $HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{1k}^T$ .

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Extend Lanczos recursion by p symplectic Lanczos steps, yielding

$$HV_{k+p} = V_{k+p}T_{k+p} + \zeta_{k+p+1}v_{k+p+1}e_{2(k+p)}^{T}.$$

Let  $S_{k+p} \in \mathbb{R}^{2(k+p) \times 2(k+p)}$  be symplectic. Then with

$$H\underbrace{(V_{k+p}S_{k+p})}_{\hat{V}_{k+p}} = \underbrace{(V_{k+p}S_{k+p})}_{\hat{V}_{k+p}}\underbrace{(S_{k+p}^{-1}T_{k+p}S_{k+p})}_{\hat{\tau}_{k+p}} + \zeta_{k+p+1}v_{k+p+1}e_{2(k+p)}^{T}S_{k+p},$$

 $\hat{V}_{k+p}$  is J-orthogonal,  $\hat{T}_{k+p}$  is Hamiltonian. Thus,

(\*) 
$$H\hat{V}_{k+p} = \hat{V}_{k+p}\hat{T}_{k+p} + \zeta_{k+p+1}v_{k+p+1}s_{k+p}^{T}$$
  $(s_{k+p}^{T} := S_{k+p}(2(k+p), :)).$ 

Obtain new Lanczos recursion from (\*) by truncating back to k and choosing  $S_{k+p}$  so that

- $\hat{T}_k$  is Hamiltonian *J*-tridiagonal,
- the residual term  $\hat{\zeta}_{k+1}\hat{v}_{k+1}\hat{s}_k$  has the form vector  $\times e_{2k}$ .
- $\Rightarrow \text{ implicit SR steps with structure-induced shift polynomials, e.g.,}$  $p_2(x) = (x - \mu)(x + \mu) \text{ or } p_4(x) = p_2(x)\overline{p_2(x)}.$



# The Symplectic Lanczos Algorithm Implicit Restarts for given k-step Lanczos recursion $HV_k = V_k T_k + \zeta_{k+1} V_{k+1} e_{2k}^T$

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Extend Lanczos recursion by p symplectic Lanczos steps, yielding

$$HV_{k+p} = V_{k+p}T_{k+p} + \zeta_{k+p+1}v_{k+p+1}\mathbf{e}_{2(k+p)}^{T}.$$

Let  $S_{k+p} \in \mathbb{R}^{2(k+p) \times 2(k+p)}$  be symplectic. Then with

$$H\underbrace{(V_{k+p}S_{k+p})}_{\hat{V}_{k+p}} = \underbrace{(V_{k+p}S_{k+p})}_{\hat{V}_{k+p}}\underbrace{(S_{k+p}^{-1}T_{k+p}S_{k+p})}_{\hat{\tau}_{k+p}} + \zeta_{k+p+1}v_{k+p+1}e_{2(k+p)}^{T}S_{k+p},$$

 $\hat{V}_{k+p}$  is J-orthogonal,  $\hat{T}_{k+p}$  is Hamiltonian. Thus,

(\*) 
$$H\hat{V}_{k+p} = \hat{V}_{k+p}\hat{T}_{k+p} + \zeta_{k+p+1}v_{k+p+1}s_{k+p}^{T}$$
  $(s_{k+p}^{T} := S_{k+p}(2(k+p), :)).$ 

Obtain new Lanczos recursion from (\*) by truncating back to k and choosing  $S_{k+p}$  so that

- $\hat{T}_k$  is Hamiltonian *J*-tridiagonal,
- the residual term  $\hat{\zeta}_{k+1}\hat{v}_{k+1}\hat{s}_k$  has the form vector  $\times e_{2k}$ .
- $\implies \qquad \underset{p_2(x) = (x \mu)(x + \mu) \text{ or } p_4(x) = p_2(x)\overline{p_2(x)}.$



# The SR Algorithm

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplecti Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- Bulge-chasing algorithm of GR class based on symplectic
   (*J*-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic × "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

[BUNSE-GERSTNER/MEHRMANN '86]

- Preserves the Hamiltonian *J*-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of  $p_2(H) = (H \mu I)(H + \mu I)$  or  $p_4(H) = p_2(H)\overline{p_2(H)}$ .
- Converges to Schur-like form with local cubic convergence rate. [WATKINS/ELSNER '91]
- Can be implemented using the 4n 1 parameters of the J-tridiagonal form only ~> parametric SR algorithm.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplecti Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- Bulge-chasing algorithm of GR class based on symplectic (*J*-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic × "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

[BUNSE-GERSTNER/MEHRMANN '86]

- Preserves the Hamiltonian *J*-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of  $p_2(H) = (H \mu I)(H + \mu I)$  or  $p_4(H) = p_2(H)\overline{p_2(H)}$ .
- Converges to Schur-like form with local cubic convergence rate. [WATKINS/ELSNER '91]
- Can be implemented using the 4n 1 parameters of the J-tridiagonal form only ~> parametric SR algorithm.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplecti Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- Bulge-chasing algorithm of GR class based on symplectic (*J*-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic × "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

[BUNSE-GERSTNER/MEHRMANN '86]

- Preserves the Hamiltonian *J*-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of  $p_2(H) = (H \mu I)(H + \mu I)$  or  $p_4(H) = p_2(H)\overline{p_2(H)}$ .
- Converges to Schur-like form with local cubic convergence rate. [WATKINS/ELSNER '91]
- Can be implemented using the 4n 1 parameters of the J-tridiagonal form only ~> parametric SR algorithm.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- Bulge-chasing algorithm of GR class based on symplectic (*J*-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic × "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

[BUNSE-GERSTNER/MEHRMANN '86]

- Preserves the Hamiltonian *J*-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of p<sub>2</sub>(H) = (H − μI)(H + μI) or p<sub>4</sub>(H) = p<sub>2</sub>(H)p<sub>2</sub>(H).
- Converges to Schur-like form with local cubic convergence rate. [WATKINS/ELSNER '91]
- Can be implemented using the 4n 1 parameters of the *J*-tridiagonal form only  $\rightsquigarrow$  parametric SR algorithm.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- Bulge-chasing algorithm of GR class based on symplectic (*J*-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic × "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

[BUNSE-GERSTNER/MEHRMANN '86]

- Preserves the Hamiltonian *J*-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of p<sub>2</sub>(H) = (H − μI)(H + μI) or p<sub>4</sub>(H) = p<sub>2</sub>(H)p<sub>2</sub>(H).
- Converges to Schur-like form with local cubic convergence rate. [WATKINS/ELSNER '91]
- Can be implemented using the 4n 1 parameters of the J-tridiagonal form only ~> parametric SR algorithm.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- Bulge-chasing algorithm of GR class based on symplectic (*J*-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic × "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

[BUNSE-GERSTNER/MEHRMANN '86]

- Preserves the Hamiltonian *J*-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of p<sub>2</sub>(H) = (H − μI)(H + μI) or p<sub>4</sub>(H) = p<sub>2</sub>(H)p<sub>2</sub>(H).
- Converges to Schur-like form with local cubic convergence rate. [WATKINS/ELSNER '91]
- Can be implemented using the 4n 1 parameters of the J-tridiagonal form only ~> parametric SR algorithm.



# The SR Algorithm

Hamiltonian Schur-like form obtained from SR algorithm



• the blocks  $\begin{bmatrix} A_j & G_j \\ Q_j & -A_j^T \end{bmatrix}$  represent purely imaginary eigenvalues.

Re-ordering of eigenvalues requires (block-)permutation only!



# The SR Algorithm

Hamiltonian Schur-like form obtained from SR algorithm



- the  $1 \times 1$  blocks  $A_j$  represent real eigenvalues with  $\lambda_j < 0$ ,
- Re-ordering of eigenvalues requires (block-)permutation only!



# A Hamiltonian Krylov-Schur-Type Algorithm

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-inver Numerical

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

 To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for

- locking: deflate converged and wanted Ritz pairs,

- purging: deflate converged but unwanted Ritz pairs,

 Deflation, locking & purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.

[Lehoucq/Sorensen '96, Sorensen '02].

- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
- Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

 $AV_k = V_k H_k + r_{k+1} e_k^T$  with upper Hessenberg matrix  $H_k$ 

use Krylov-Schur decomposition

 $AW_k = W_k T_k + r_{k+1} t_{k+1}^T$  with  $T_k$  in (real) Schur form for locking & purging.

# Mi

# A Hamiltonian Krylov-Schur-Type Algorithm

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectio Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-inver Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
  - locking: deflate converged and wanted Ritz pairs,

purging: deflate converged but unwanted Ritz pairs,
 but re-(*J*-) orthogonalize against converged Ritz vectors!

 Deflation, locking & purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.

[Lehoucq/Sorensen '96, Sorensen '02].

- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
- Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

 $AV_k = V_k H_k + r_{k+1} e_k^T$  with upper Hessenberg matrix  $H_k$  use Krylov-Schur decomposition

 $AW_k = W_k T_k + r_{k+1} t_{k+1}^T$  with  $T_k$  in (real) Schur form for locking & purging.
## A Hamiltonian Krylov-Schur-Type Algorithm

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-inver Numerical

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
  - locking: deflate converged and wanted Ritz pairs,
  - purging: deflate converged but unwanted Ritz pairs, but re-(*J*-) orthogonalize against converged Ritz vectors!
- Deflation, locking & purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.

[Lehoucq/Sorensen '96, Sorensen '02].

- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
- Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

 $AV_k = V_k H_k + r_{k+1} e_k^T$  with upper Hessenberg matrix  $H_k$  use Krylov-Schur decomposition

 $AW_k = W_k T_k + r_{k+1} t_{k+1}^T$  with  $T_k$  in (real) Schur form for locking & purging.

## A Hamiltonian Krylov-Schur-Type Algorithm

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-inve

Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
  - locking: deflate converged and wanted Ritz pairs,
  - purging: deflate converged but unwanted Ritz pairs, but re-(*J*-) orthogonalize against converged Ritz vectors!
- Deflation, locking & purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.

[Lehoucq/Sorensen '96, Sorensen '02].

- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
- Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

 $AV_k = V_k H_k + r_{k+1} e_k^T$  with upper Hessenberg matrix  $H_k$ use Krylov-Schur decomposition

 $AW_k = W_k T_k + r_{k+1} t_{k+1}^T$  with  $T_k$  in (real) Schur form for locking & purging.

## A Hamiltonian Krylov-Schur-Type Algorithm

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-invert Numerical

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
  - locking: deflate converged and wanted Ritz pairs,
  - purging: deflate converged but unwanted Ritz pairs, but re-(*J*-) orthogonalize against converged Ritz vectors!
- Deflation, locking & purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.

[Lehoucq/Sorensen '96, Sorensen '02].

- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
- Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

 $AV_k = V_k H_k + r_{k+1} e_k^T$  with upper Hessenberg matrix  $H_k$ 

use Krylov-Schur decomposition

 $AW_k = W_k T_k + r_{k+1} t_{k+1}^T$  with  $T_k$  in (real) Schur form for locking & purging.



### A Hamiltonian Krylov-Schur-Type Algorithm Krylov-Schur for symplectic Lanczos

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Derivation Shift-and-invert Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Assume we have constructed a symplectic Lanczos decomposition of length 2(k + p) = 2m of the form

$$HV_m = V_m T_m + \zeta_{m+1} v_{m+1} e_{2m}^T.$$

#### Definition

$$d\hat{V}_m = \hat{V}_m\hat{T}_m + \hat{\zeta}_{m+1}\hat{v}_{m+1}\hat{s}_m^T$$

is a Hamiltonian Krylov-Schur-type decomposition if

$$\square \operatorname{rank}\left(\left[\hat{V}_m, v_{m+1}\right]\right) = 2m + 1,$$

- $\hat{V}_m$  is *J*-orthogonal,
- $\hat{T}_m$  is in Hamiltonian Schur-type form.



### A Hamiltonian Krylov-Schur-Type Algorithm Krylov-Schur for symplectic Lanczos

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Derivation Shift-and-invert Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Assume we have constructed a symplectic Lanczos decomposition of length 2(k + p) = 2m of the form

$$HV_m = V_m T_m + \zeta_{m+1} v_{m+1} e_{2m}^T.$$

#### Definition

$$d\hat{V}_m = \hat{V}_m\hat{T}_m + \hat{\zeta}_{m+1}\hat{v}_{m+1}\hat{s}_m^T$$

is a Hamiltonian Krylov-Schur-type decomposition if

• 
$$\operatorname{rank}\left([\hat{V}_m, v_{m+1}]\right) = 2m + 1,$$

ŀ

- $\hat{V}_m$  is *J*-orthogonal,
- $\hat{T}_m$  is in Hamiltonian Schur-type form.



Symplectic Lanczos decomposition  $\Rightarrow$  Hamiltonian Krylov-Schur-type decomposition

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Derivation

Shift-and-inver Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Applying SR algorithm to  $T_m$  yields symplectic matrix  $S_m$  such that  $\hat{T}_m := S_m^{-1} T_m S_m$  has Hamiltonian Schur-like form.

As noted before,  $\hat{T}_k$  can be ordered by *J*-orthogonal permutations so that converged and wanted/unwanted Ritz values appear in the leading/trailing blocks.

$$\hat{T}_m = \begin{bmatrix} A_1 & G_1 & \\ A_2 & G_2 & \\ \hline Q_1 & -A_1^T & \\ Q_2 & -A_2^T \end{bmatrix}$$

#### A Hamiltonian Krylov-Schur-Type Algorithm Symplectic Lanczos decomposition $\Rightarrow$ Hamiltonian Krylov-Schur-type decomposition

Hamiltonian Krylov-Schur

Peter Benne

H(

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Derivation

Shift-and-inver Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Applying SR algorithm to  $T_m$  yields symplectic matrix  $S_m$  such that  $\hat{T}_m := S_m^{-1} T_m S_m$  has Hamiltonian Schur-like form  $\rightsquigarrow$ 

$$V_{m}S_{m}) = (V_{m}S_{m})(S_{m}^{-1}T_{m}S_{m}) + \zeta_{m+1}v_{m+1}e_{2m}^{T}S_{m}$$
  
=  $[V_{k}, V_{p}, W_{k}, W_{p}] \begin{bmatrix} A_{1} & G_{1} \\ A_{2} & G_{2} \\ \hline Q_{1} & -A_{1}^{T} \\ Q_{2} & -A_{2}^{T} \end{bmatrix} + \zeta_{m+1}v_{m+1}s_{m}^{T}$ 

Note: in case of deflation ( $\rightsquigarrow$  locking possible),  $s_m^T = [0, s_{p,1}^T, 0, s_{p,2}^T]$ .

## A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition  $\Rightarrow$  Hamiltonian Krylov-Schur-type decomposition

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Derivation

Shift-and-inver Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Applying SR algorithm to  $T_m$  yields symplectic matrix  $S_m$  such that  $\hat{T}_m := S_m^{-1} T_m S_m$  has Hamiltonian Schur-like form

$$H(V_m S_m) = (V_m S_m)(S_m^{-1} T_m S_m) + \zeta_{m+1} v_{m+1} e_{2m}^T S_m$$
  
=  $[V_k, V_p, W_k, W_p] \begin{bmatrix} A_1 & G_1 \\ A_2 & G_2 \\ \hline Q_1 & -A_1^T \\ Q_2 & -A_2^T \end{bmatrix} + \zeta_{m+1} v_{m+1} s_m^T$ 

Note: in case of deflation ( $\rightsquigarrow$  locking possible),  $s_m^T = [0, s_{p,1}^T, 0, s_{p,2}^T]$ .

Purging: continue with Hamiltonian Krylov-Schur-type decomposition

 $H[\mathbf{V}_k, \mathbf{W}_k] = [\mathbf{V}_k, \mathbf{W}_k] \mathbf{T}_k + \zeta_{m+1} \mathbf{v}_{m+1} \mathbf{s}_k^{\mathsf{T}}$ 

## A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition  $\Rightarrow$  Hamiltonian Krylov-Schur-type decomposition

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Derivation

Shift-and-inver Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Applying SR algorithm to  $T_m$  yields symplectic matrix  $S_m$  such that  $\hat{T}_m := S_m^{-1} T_m S_m$  has Hamiltonian Schur-like form

$$H(V_m S_m) = (V_m S_m)(S_m^{-1} T_m S_m) + \zeta_{m+1} v_{m+1} e_{2m}^T S_m$$
  
=  $[V_k, V_p, W_k, W_p] \left[ \begin{array}{c|c} A_1 & G_1 \\ \hline A_2 & G_2 \\ \hline Q_1 & -A_1^T \\ \hline Q_2 & -A_2^T \end{array} \right] + \zeta_{m+1} v_{m+1} s_m^T$ 

Note: in case of deflation ( $\rightsquigarrow$  locking possible),  $s_m^T = [0, s_{p,1}^T, 0, s_{p,2}^T]$ .

Purging: continue with Hamiltonian Krylov-Schur-type decomposition

$$H[V_k, W_k] = [V_k, W_k]T_k + \zeta_{m+1}v_{m+1}s_k^{\mathsf{T}}$$

Locking: continue with Hamiltonian Krylov-Schur-type decomposition

$$H[V_p, W_p] = [V_p, W_p]T_p + \zeta_{m+1}v_{m+1}s_p^T$$

## A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition  $\Rightarrow$  Hamiltonian Krylov-Schur-type decomposition

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Derivation

Shift-and-inver Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Applying SR algorithm to  $T_m$  yields symplectic matrix  $S_m$  such that  $\hat{T}_m := S_m^{-1} T_m S_m$  has Hamiltonian Schur-like form

$$H(V_m S_m) = (V_m S_m)(S_m^{-1} T_m S_m) + \zeta_{m+1} v_{m+1} e_{2m}^T S_m$$
  
=  $[V_k, V_p, W_k, W_p] \left[ \begin{array}{c|c} A_1 & G_1 \\ \hline A_2 & G_2 \\ \hline Q_1 & -A_1^T \\ \hline Q_2 & -A_2^T \end{array} \right] + \zeta_{m+1} v_{m+1} s_m^T$ 

Note: in case of deflation ( $\rightsquigarrow$  locking possible),  $s_m^T = [0, s_{p,1}^T, 0, s_{p,2}^T]$ .

Purging: continue with Hamiltonian Krylov-Schur-type decomposition

$$H[V_k, W_k] = [V_k, W_k]T_k + \zeta_{m+1}v_{m+1}s_k^T$$

Locking: continue with Hamiltonian Krylov-Schur-type decomposition

$$H[\mathbf{V}_{p}, \mathbf{W}_{p}] = [\mathbf{V}_{p}, \mathbf{W}_{p}] \mathbf{T}_{p} + \zeta_{m+1} \mathbf{v}_{m+1} \mathbf{s}_{p}^{\mathsf{T}}$$

In order to expand subspace back to length m, need to return to symplectic Lanczos decomposition!



Hamiltonian Krylov-Schur-type decomposition  $\Rightarrow$  symplectic Lanczos decomposition

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

#### Derivation Shift-and-inver Numerical

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

#### Theorem

Every Hamiltonian Krylov-Schur-type decomposition is equivalent to a symplectic Lanczos decomposition.

#### Constructive proof:

Given a Hamiltonian Krylov-Schur-type decomposition of length k,

$$HU = UT + us^{T}$$
.

J-orthogonalize 
$$u$$
 w.r.t.  $U$  so that  $U^T J u = 0 \Rightarrow \hat{u} := \frac{1}{\gamma} (u - Ut)$ ,  
 $HU = UT + (\gamma \hat{u} + Ut) s^T = U(T + ts^T) + \gamma \hat{u} s^T =: UB + \hat{u} \hat{s}^T$ .



Hamiltonian Krylov-Schur-type decomposition  $\Rightarrow$  symplectic Lanczos decomposition

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-invert Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

#### Theorem

Every Hamiltonian Krylov-Schur-type decomposition is equivalent to a symplectic Lanczos decomposition.

#### Constructive proof:

Given a Hamiltonian Krylov-Schur-type decomposition of length k,

$$HU = UT + us^{T}$$
.

**1** J-orthogonalize u w.r.t. U so that  $U^T J u = 0 \Rightarrow H U = U B + \hat{u} \hat{s}^T$ .

2 Compute orthogonal symplectic matrix W such that  $W^T \hat{s} = \hat{\zeta} e_{2k}^T \Rightarrow$  $HUW = UW(W^T BW) + \hat{u}\hat{s}^T W =: UW\tilde{B} + \hat{\zeta}\hat{u}e_{2k}^T.$ 



Hamiltonian Krylov-Schur-type decomposition  $\Rightarrow$  symplectic Lanczos decomposition

#### Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-invert Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

#### Theorem

Every Hamiltonian Krylov-Schur-type decomposition is equivalent to a symplectic Lanczos decomposition.

#### Constructive proof:

Given a Hamiltonian Krylov-Schur-type decomposition of length k,

$$HU = UT + us^{T}.$$

J-orthogonalize u w.r.t. U so that U<sup>T</sup> Ju = 0 ⇒ HU = UB + ûŝ<sup>T</sup>.
 Compute orthogonal symplectic matrix W such that W<sup>T</sup>ŝ = ζ̂e<sup>T</sup><sub>2k</sub> ⇒

$$HUW = UW\tilde{B} + \hat{\zeta}\hat{u}e_{2k}^{T}.$$

**3** Compute symplectic matrix *S* restoring *J*-tridiagonal form of  $\tilde{B}$ , i.e.,  $S^{-1}\tilde{B}S = \hat{T}$  is Hamiltonian *J*-tridiagonal and  $e_{2k}^TS = e_{2k}^T$ ( $\rightsquigarrow$  row-wise bottom-to-top *J*-tridiagonalization)  $\Rightarrow$ 

$$H\underbrace{UWS}_{=:V} = \underbrace{UWS}_{=:V}\underbrace{\overset{\mathsf{S}^{-1}\tilde{B}S}_{=\hat{\tau}}} + \hat{\zeta}\hat{u}e_{2k}^{\mathsf{T}}$$

is an equivalent symplectic Lanczos decomposition.



## Algorithm HKS

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplection Lanczos

The SR Algorithm

нкѕ

Derivation Shift-and-invert Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

Use *k* steps of symplectic Lanczos process to compute symplectic Lanczos decomposition

$$HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{2k}^T.$$

Expand Krylov subspace to length 2(k + p) using p steps of symplectic Lanczos process,

$$HV_{k+p} = V_{k+p}T_{k+p} + \zeta_{k+p+1}v_{k+p+1}e_{2(k+p)}^{T}.$$

**3** Run (parametrized) SR algorithm on  $T_{k+p}$  to obtain Hamiltonian Krylov-Schur type decomposition

$$HU_{k+p} = U_{k+p}\tilde{T}_{k+p} + \zeta_{k+p+1}v_{k+p+1}s_{k+p}^{T}.$$

 Re-order Hamiltonian Schur-type form as desired, deflate/purge, yielding new Hamiltonian Krylov-Schur type decomposition

$$H\tilde{U}_k = \tilde{U}_k \tilde{T}_k + \tilde{\zeta}_{k+1} \tilde{v}_{k+1} \tilde{s}_k^T.$$

(In case of deflation of  $\ell$  converged Ritz values,  $k \leftarrow k - \ell$ .)

5 Compute equivalent symplectic Lanczos decomposition

$$H\hat{V}_k = \hat{V}_k\hat{T}_k + \hat{\zeta}_{k+1}\hat{v}_{k+1}e_{2k}^T.$$

6 IF *k* > 0, GOTO 2.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

нкз

Derivation Shift-and-invert

Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- HKS is suitable for computing largest or smallest magnitude eigenvalues (apply to H or H<sup>-1</sup>).
- For interior eigenvalues near target  $\tau$ , need Hamiltonian shift-andinvert operator! But:  $H - \tau I$ ,  $(H - \tau I)^{-1}$  are not Hamiltonian!
- [Mehrmann/Watkins '01]

$$\begin{aligned} R_2(\tau) &:= (H - \tau I)^{-1} (H + \tau I)^{-1}, \quad \tau \in \mathbb{R}, i\mathbb{C}, \\ R_4(\tau) &:= R_2(\tau) R_2(\overline{\tau}), \qquad \tau \in \mathbb{C}, \end{aligned}$$

are skew-Hamiltonian, suitable for solution with SHIRA (skew-Hamiltonian implicitly restarted Arnoldi).

[WATKINS '04]

$$H_1(\tau) = H^{-1}(H - \tau I)^{-1}(H + \tau I)^{-1}, \quad \tau \in \mathbb{R}, i\mathbb{C},$$
  

$$H_2(\tau) = H(H - \tau I)^{-1}(H + \tau I)^{-1}, \quad \tau \in \mathbb{R}, i\mathbb{C},$$
  

$$H_3(\tau) = H_1(\tau)R_2(\overline{\tau}), \quad \tau \in \mathbb{C},$$
  

$$H_4(\tau) = H_2(\tau)R_2(\overline{\tau}), \quad \tau \in \mathbb{C},$$

are Hamiltonian and real.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

нкз

Derivation Shift-and-invert

Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- HKS is suitable for computing largest or smallest magnitude eigenvalues (apply to H or H<sup>-1</sup>).
- For interior eigenvalues near target  $\tau$ , need Hamiltonian shift-andinvert operator! But:  $H - \tau I$ ,  $(H - \tau I)^{-1}$  are not Hamiltonian!
- [Mehrmann/Watkins '01]

$$\begin{aligned} R_2(\tau) &:= (H - \tau I)^{-1} (H + \tau I)^{-1}, \quad \tau \in \mathbb{R}, i\mathbb{C}, \\ R_4(\tau) &:= R_2(\tau) R_2(\overline{\tau}), \qquad \tau \in \mathbb{C}, \end{aligned}$$

are skew-Hamiltonian, suitable for solution with SHIRA (skew-Hamiltonian implicitly restarted Arnoldi).

[WATKINS '04]

are Hamiltonian and real.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectio Lanczos

The SR Algorithm

нкз

Derivation Shift-and-invert

Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- HKS is suitable for computing largest or smallest magnitude eigenvalues (apply to *H* or *H*<sup>-1</sup>).
- For interior eigenvalues near target  $\tau$ , need Hamiltonian shift-andinvert operator! But:  $H - \tau I$ ,  $(H - \tau I)^{-1}$  are not Hamiltonian!
- [Mehrmann/Watkins '01]

$$\begin{array}{lll} R_2(\tau) & := & (H - \tau I)^{-1} (H + \tau I)^{-1}, & \tau \in \mathbb{R}, \imath \mathbb{C}, \\ R_4(\tau) & := & R_2(\tau) R_2(\overline{\tau}), & \tau \in \mathbb{C}, \end{array}$$

are skew-Hamiltonian, suitable for solution with SHIRA (skew-Hamiltonian implicitly restarted Arnoldi).

[WATKINS '04]

$$H_{1}(\tau) = H^{-1}(H - \tau I)^{-1}(H + \tau I)^{-1}, \quad \tau \in \mathbb{R}, i\mathbb{C},$$
  

$$H_{2}(\tau) = H(H - \tau I)^{-1}(H + \tau I)^{-1}, \quad \tau \in \mathbb{R}, i\mathbb{C},$$
  

$$H_{3}(\tau) = H_{1}(\tau)R_{2}(\overline{\tau}), \quad \tau \in \mathbb{C},$$
  

$$H_{4}(\tau) = H_{2}(\tau)R_{2}(\overline{\tau}), \quad \tau \in \mathbb{C},$$

are Hamiltonian and real.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectio Lanczos

The SR Algorithm

нкз

Derivation Shift-and-invert

Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

- HKS is suitable for computing largest or smallest magnitude eigenvalues (apply to H or H<sup>-1</sup>).
- For interior eigenvalues near target  $\tau$ , need Hamiltonian shift-andinvert operator! But:  $H - \tau I$ ,  $(H - \tau I)^{-1}$  are not Hamiltonian!
- [Mehrmann/Watkins '01]

$$\begin{array}{lll} R_2(\tau) & := & (H - \tau I)^{-1} (H + \tau I)^{-1}, & \tau \in \mathbb{R}, \imath \mathbb{C}, \\ R_4(\tau) & := & R_2(\tau) R_2(\overline{\tau}), & \tau \in \mathbb{C}, \end{array}$$

are skew-Hamiltonian, suitable for solution with SHIRA (skew-Hamiltonian implicitly restarted Arnoldi).

[Watkins '04]

are Hamiltonian and real.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS Derivation Shift-and-invert Numerical

Example Quadratic Eigenvalue Problems

Conclusions and Outlook

References

 Mathematical model: boundary control for linearized 2D heat equation.

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$
  
$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \le k \le 7,$$
  
$$\frac{\partial}{\partial n} x = 0, \qquad \xi \in \Gamma_7.$$

$$\implies m = 7, p = 6.$$

- FEM discretization, different models for initial mesh (n = 371), 3 steps of mesh refinement ⇒ 20209.
- Spatial semi-discretization ⇒ linear, time-invariant system

$$\dot{x} = Ax + Bu, \quad y = Cx.$$

Source: Physical model: courtesy of Mannesmann/Demag. Math. model: TröLTZSCH/UNGER 1999/2001, PENZL 1999, SAAK 2003.





### A Hamiltonian Krylov-Schur-Type Algorithm Optimal cooling of steel profiles

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS Derivation Shift-and-inve

Numerical Example

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

• Want 12 eigenvalues of largest magnitude (k = 6, choose p = k).

- Compare eigs and HKS applied to  $H = \begin{bmatrix} A & BB^T \\ C^T C & -A^T \end{bmatrix}$ .
- HKS and eigs both need 3 iterations to achieve  $\frac{\|H\tilde{x}-\tilde{\lambda}\tilde{x}\|_1}{\|H\|_1\|\tilde{x}\|_1} < 10^{-10}$ , for 12 Ritz pairs  $(\tilde{\lambda}, \tilde{x})$ .
- Max. condition number in SR iterations: max(cond(SR)) = 573.
- Eigenvalues scaled by 0.001.

| eigs              |                    | HKS               |                   |
|-------------------|--------------------|-------------------|-------------------|
| Eigenvalue        | Residual           | Eigenvalue        | Residual          |
| -0.01807591600154 | $8\cdot10^{-17}$   | -0.01807591600155 | $1\cdot 10^{-13}$ |
| -0.03087837032049 | $2\cdot 10^{-16}$  | -0.03087837032047 | $4\cdot 10^{-13}$ |
| -0.08814494716419 | $1\cdot 10^{-16}$  | -0.08814494716421 | $5\cdot10^{-14}$  |
| -0.19258460926304 | $3\cdot 10^{-16}$  | -0.19258460926318 | $1\cdot 10^{-14}$ |
| -0.26388595299811 | $4 \cdot 10^{-16}$ | -0.26388595299809 | $8\cdot10^{-13}$  |
| -0.33668742939988 | $2\cdot 10^{-15}$  | -0.33668742939977 | $1\cdot 10^{-11}$ |



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

References

#### Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ 

#### can be solved using linearization

$$\left(\lambda \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} - \begin{bmatrix} -G & -K \\ I & 0 \end{bmatrix}\right) \begin{bmatrix} y \\ x \end{bmatrix} = 0 \qquad (y := \lambda x).$$

 $\rightsquigarrow$  unstructured (generalized) eigenproblem, spectral symmetry is destroyed in finite precision computations.



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

References

#### Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ 

#### can be solved using linearization

$$(\lambda N - H)z = \left(\lambda \begin{bmatrix} I & G \\ 0 & I \end{bmatrix} - \begin{bmatrix} 0 & -K \\ M^{-1} & 0 \end{bmatrix}\right) \begin{bmatrix} y \\ x \end{bmatrix} = 0 \quad (y := \lambda M x)$$

 $\rightsquigarrow$  skew-Hamiltonian/Hamiltonian eigenproblem as N is skew-Hamiltonian, H is Hamiltonian;



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

References

#### Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ 

#### can be solved using linearization

$$(\lambda N - H) z = \left(\lambda \begin{bmatrix} I & G \\ 0 & I \end{bmatrix} - \begin{bmatrix} 0 & -K \\ M^{-1} & 0 \end{bmatrix}\right) \begin{bmatrix} y \\ x \end{bmatrix} = 0 \quad (y := \lambda M x)$$

 $\rightsquigarrow$  skew-Hamiltonian/Hamiltonian eigenproblem as N is skew-Hamiltonian, H is Hamiltonian;

 $\rightsquigarrow$  spectral symmetry can be preserved in finite precision computations if structure-preserving algorithm is used!



Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

References

#### Quadratic Eigenproblems with Hamiltonian Symmetry

$$Q(\lambda)x := (\lambda^2 M + \lambda G + K)x = 0,$$
  
where  $M = M^T$ ,  $K = K^T$ ,  $G = -G^T$ 

#### can be solved using linearization

$$(\lambda N - H)z = \left(\lambda \begin{bmatrix} I & G \\ 0 & I \end{bmatrix} - \begin{bmatrix} 0 & -K \\ M^{-1} & 0 \end{bmatrix}\right) \begin{bmatrix} y \\ x \end{bmatrix} = 0 \quad (y := \lambda M x)$$

 $\rightsquigarrow$  skew-Hamiltonian/Hamiltonian eigenproblem as N is skew-Hamiltonian, H is Hamiltonian;

Skew-Hamiltonian/Hamiltonian eigenproblem is equivalent to Hamiltonian eigenproblem  $Hz = \lambda z$  with

$$H = \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right] \left[ \begin{array}{cc} 0 & -K \\ M^{-1} & 0 \end{array} \right] \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right].$$

For eigenvalues of largest magnitude apply HKS to

$$H = \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right] \left[ \begin{array}{cc} 0 & -K \\ M^{-1} & 0 \end{array} \right] \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right].$$

For eigenvalues of smallest magnitude apply HKS to

$$H^{-1} = \left[ \begin{array}{cc} I & \frac{1}{2}G \\ 0 & I \end{array} \right] \left[ \begin{array}{cc} 0 & M \\ -K^{-1} & 0 \end{array} \right] \left[ \begin{array}{cc} I & \frac{1}{2}G \\ 0 & I \end{array} \right].$$

Note: more efficient than SHIRA applied to  $H^{-2}$ !

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

#### Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

For eigenvalues of largest magnitude apply HKS to

$$H = \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right] \left[ \begin{array}{cc} 0 & -K \\ M^{-1} & 0 \end{array} \right] \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right].$$

For eigenvalues of smallest magnitude apply HKS to

$$H^{-1} = \left[ \begin{array}{cc} I & \frac{1}{2}G \\ 0 & I \end{array} \right] \left[ \begin{array}{cc} 0 & M \\ -K^{-1} & 0 \end{array} \right] \left[ \begin{array}{cc} I & \frac{1}{2}G \\ 0 & I \end{array} \right].$$

#### For interior real/purely imaginary eigenvalues apply HKS to

$$\begin{aligned} H_2(\tau) &= H(H-\tau I)^{-1}(H+\tau I)^{-1} \\ &= \begin{bmatrix} -\frac{1}{2}G & -K \\ I & 0 \end{bmatrix} \begin{bmatrix} I & \tau I \\ 0 & I \end{bmatrix} \begin{bmatrix} 0 & I \\ -Q(\tau)^{-1} & 0 \end{bmatrix} \begin{bmatrix} I & G \\ 0 & I \end{bmatrix} \\ &\times \begin{bmatrix} 0 & I \\ -Q(\tau)^{-\tau} & 0 \end{bmatrix} \begin{bmatrix} I & -\tau I \\ 0 & I \end{bmatrix} \begin{bmatrix} I & \frac{1}{2}G \\ 0 & M \end{bmatrix}. \end{aligned}$$

Applying  $Q(\tau)^{-1}$ ,  $Q(\tau)^{-\tau}$  requires only 1 LU factorization! Note: as efficient as SHIRA applied to  $R_2(\tau)$ !

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplection Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

#### Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

For eigenvalues of largest magnitude apply HKS to

$$H = \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right] \left[ \begin{array}{cc} 0 & -K \\ M^{-1} & 0 \end{array} \right] \left[ \begin{array}{cc} I & -\frac{1}{2}G \\ 0 & I \end{array} \right].$$

For eigenvalues of smallest magnitude apply HKS to

$$H^{-1} = \left[ \begin{array}{cc} I & \frac{1}{2}G \\ 0 & I \end{array} \right] \left[ \begin{array}{cc} 0 & M \\ -K^{-1} & 0 \end{array} \right] \left[ \begin{array}{cc} I & \frac{1}{2}G \\ 0 & I \end{array} \right].$$

For interior complex eigenvalues apply HKS to

$$H_4(\tau) = H(H - \tau I)^{-1}(H + \tau I)^{-1}(H - \overline{\tau} I)^{-1}(H + \overline{\tau} I)^{-1}$$

Note: as efficient as SHIRA applied to  $R_4(\tau)!$ 

Hamiltonian Krylov-Schur

Peter Benne

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

#### Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

## Quadratic Eigenvalue Problems

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplection Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

#### Shift-and-invert

Corner singularities Gyroscopic systems

Conclusions and Outlook

References

- We apply eigs and HKS (and SHIRA for nonzero shifts) to several test sets.
- Convergence is based on comparable stopping criteria: Ritz values are taken as converged if relative residuals for the shift-and-invert operators are smaller than given tolerance.
- Relative residuals in numerical examples are the residuals for the QEP, i.e.,

$$\frac{\|(\tilde{\lambda}^2 M + \tilde{\lambda} G + K)\tilde{x}\|_1}{\|\tilde{\lambda}^2 M + \tilde{\lambda} G + K\|_1 \|\tilde{x}\|_1},$$

where  $(\tilde{\lambda}, \tilde{x})$  is a converged Ritz pair.



Corner singularities

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplecti Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities Gyroscopic

systems

Conclusions and Outlook

References

- Solutions of elliptic boundary value problems like Laplace and linear elasticity (Lamé) equations in domains with polyhedral corners exhibit singularities in the neighborhood of the corners.
- Singularities can be quantified if this neighborhood is intersected with the unit ball centered at the corner and parameterized with spherical coordinates (r, φ, θ).
- The singular part of the solution can be expanded in a series with terms of the form r<sup>α</sup>u(φ, θ), where α is the singularity exponent.
- It turns out that  $\alpha =: \lambda 0.5$  and u can be computed as eigenpairs of quadratic operator eigenvalue problems of the form

$$\lambda^2 m(u,v) + \lambda g(u,v) = k(u,v),$$

where m(.,.), k(.,.) are Hermitian positive definite sesquilinear forms and g(.,.) is a skew-Hermitian sesquilinear form.

• Finite-element discretization of the operator eigenvalue problem leads to a QEP, where M and -K are positive definite.

## Quadratic Eigenvalue Problems

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities

Gyroscopic systems

Conclusions and Outlook

- Here: 3D elasticity problem for Fichera corner (cutting the cube  $[0,1] \times [0,1] \times [0,1]$  out of the cube  $(-1,1) \times (-1,1) \times (-1,1)$ ).
- n = 12,828, matrix assembly with software *CoCoS* [C. PESTER '05].
- Want 12 eigenvalues closest to target shift  $\tau = 1$ .
- Compare SHIRA applied to  $R_2(1)$ , eigs and HKS applied to  $H_2(1)$ .
- SHIRA needs 3, eigs 6, HKS 4 iterations.
- Max. condition number in SR iterations:  $max(cond(SR)) = 3.35 \cdot 10^5$ .

## Quadratic Eigenvalue Problems

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

нкs

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities

systems

Conclusions and Outlook

- Here: 3D elasticity problem for Fichera corner (cutting the cube  $[0,1] \times [0,1] \times [0,1]$  out of the cube  $(-1,1) \times (-1,1) \times (-1,1)$ ).
- n = 12,828, matrix assembly with software *CoCoS* [C. PESTER '05].
- Want 12 eigenvalues closest to target shift  $\tau = 1$ .
- Compare SHIRA applied to  $R_2(1)$ , eigs and HKS applied to  $H_2(1)$ .
- SHIRA needs 3, eigs 6, HKS 4 iterations.
- Max. condition number in SR iterations:  $max(cond(SR)) = 3.35 \cdot 10^5$ .

| SHIRA                          |                    | HKS              |                   |
|--------------------------------|--------------------|------------------|-------------------|
| Eigenvalue                     | Residual           | Eigenvalue       | Residual          |
| 0.9051092989 <mark>8162</mark> | $2 \cdot 10^{-14}$ | 0.90510929894951 | $6\cdot 10^{-16}$ |
| 0.9052956878 <mark>6502</mark> | $2 \cdot 10^{-14}$ | 0.90529568784944 | $5\cdot 10^{-16}$ |
| 1.0748059554498 <mark>3</mark> | $5\cdot 10^{-15}$  | 1.07480595544985 | $4\cdot 10^{-16}$ |
| 1.6011734510 <mark>4537</mark> | $1\cdot 10^{-13}$  | 1.60117345101134 | $6\cdot 10^{-16}$ |
| 1.657656086 <mark>89959</mark> | $4 \cdot 10^{-14}$ | 1.65765608679830 | $3\cdot 10^{-15}$ |
| 1.659145297 <mark>25492</mark> | $1\cdot 10^{-14}$  | 1.65914529702482 | $7\cdot 10^{-15}$ |

## Quadratic Eigenvalue Problems

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert

Corner singularities

systems

Conclusions and Outlook

- Here: 3D elasticity problem for Fichera corner (cutting the cube  $[0,1] \times [0,1] \times [0,1]$  out of the cube  $(-1,1) \times (-1,1) \times (-1,1)$ ).
- n = 12,828, matrix assembly with software *CoCoS* [C. PESTER '05].
- Want 12 eigenvalues closest to target shift  $\tau = 1$ .
- Compare SHIRA applied to  $R_2(1)$ , eigs and HKS applied to  $H_2(1)$ .
- SHIRA needs 3, eigs 6, HKS 4 iterations.
- Max. condition number in SR iterations:  $max(cond(SR)) = 3.35 \cdot 10^5$ .

| eigs                           |                    | HKS              |                   |
|--------------------------------|--------------------|------------------|-------------------|
| Eigenvalue                     | Residual           | Eigenvalue       | Residual          |
| 0.9051092989 <mark>8127</mark> | $4 \cdot 10^{-16}$ | 0.90510929894951 | $6\cdot 10^{-16}$ |
| 0.9052956878 <mark>6417</mark> | $4\cdot 10^{-16}$  | 0.90529568784944 | $5\cdot 10^{-16}$ |
| 1.0748059554 <mark>5002</mark> | $4\cdot 10^{-16}$  | 1.07480595544985 | $4\cdot 10^{-16}$ |
| 1.6011734510 <mark>2312</mark> | $2\cdot 10^{-16}$  | 1.60117345101134 | $6\cdot 10^{-16}$ |
| 1.657656086 <mark>88689</mark> | $2\cdot 10^{-16}$  | 1.65765608679830 | $3\cdot 10^{-15}$ |
| 1.659145297 <mark>26339</mark> | $1\cdot 10^{-16}$  | 1.65914529702482 | $7\cdot 10^{-15}$ |



Gyroscopic systems: micro-gyroscope

#### Hamiltonian Krylov-Schur

- Peter Benner
- Introduction
- Symplecti Lanczos
- The SR Algorithm
- нкs
- Quadratic Eigenvalue Problems
- Shift-and-invert Corner singularities
- Gyroscopic systems
- Conclusions and Outlook
- References



- By applying AC voltage to electrodes, wings are forced to vibrate in anti-phase in wafer plane.
- Coriolis forces induce motion of wings out of wafer plane yielding sensor data.

- Vibrating micro-mechanical gyroscope for inertial navigation.
- Rotational position sensor.



Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark Courtesy of D. Billger (Imego Institute, Göteborg), Saab Bofors Dynamics AB.



Gyroscopic systems: micro-gyroscope

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplection Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert Corner singularities

Gyroscopic systems

Conclusions and Outlook

References

■ FEM model (ANSYS), *n* = 17, 361.

■ Compare eigs and HKS applied to *H*<sup>-1</sup> and *H*<sub>2</sub>(10<sup>6</sup>*i*), request 12 eigenvalues.



Gyroscopic systems: micro-gyroscope

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert Corner

Gyroscopic systems

Conclusions and Outlook

References

• FEM model (ANSYS), n = 17,361.

Compare eigs and HKS applied to H<sup>-1</sup> and H<sub>2</sub>(10<sup>6</sup>i), request 12 eigenvalues.

#### $H^{-1}$

- Both need 3 iterations.
- Relative residuals < eps.</li>
- $\max(\text{cond}(SR)) = 1.5 \cdot 10^3$ .





Gyroscopic systems: micro-gyroscope

Hamiltonian Krylov-Schur

Peter Benner

 $H^{-1}$ 

Introduction

Symplectic Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert Corner singularities

Gyroscopic systems

Conclusions and Outlook

References

• FEM model (ANSYS), n = 17,361.

Compare eigs and HKS applied to H<sup>-1</sup> and H<sub>2</sub>(10<sup>6</sup>i), request 12 eigenvalues.

Both need 3 iterations.

- Relative residuals < eps.</li>
- $\max(\text{cond}(SR)) = 1.5 \cdot 10^3$ .



### $H_2(\tau) = H(H - \tau I)^{-1}(H + \tau I)^{-1}$

- HKS needs 3, eigs 2 iterations.
- Relative residuals < eps.</li>
- $\max(\text{cond}(SR)) = 3.15 \cdot 10^6$ .




### Quadratic Eigenvalue Problems Gyroscopic systems: rolling tire

#### Hamiltonian Krylov-Schur

- Peter Benner
- Introduction
- Symplectie Lanczos
- The SR Algorithm
- HKS
- Quadratic Eigenvalue Problems
- Shift-and-invert Corner singularities
- Gyroscopic systems
- Conclusions and Outlook
- References

- Modeling the noise of rolling tires requires to determine the transient vibrations, [NACKENHORST/VON ESTORFF '01].
- FEM model of a deformable wheel rolling on a rigid plane surface results in a gyroscopic system of order n = 124,992 [NACKENHORST '04].
- Sparse LU factorization of  $Q(\tau)$  requires about 6 GByte.
- Here, use reduced-order model of size n = 2,635 computed by AMLS [Elssel/Voss '06].



# Quadratic Eigenvalue Problems

Gyroscopic systems: rolling tire

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert Corner singularities

Gyroscopic systems

Conclusions and Outlook

References

- Compare eigs and HKS applied to H<sup>-1</sup> to compute the 12 smallest eigenvalues.
- eigs needs 8, HKS 6 iterations.
- max(cond(SR)) = 331.
- Eigenvalues scaled by 1,000.

| eigs                                 |                   | HKS                    |                   |
|--------------------------------------|-------------------|------------------------|-------------------|
| Eigenvalue                           | Residual          | Eigenvalue             | Residual          |
| $4 \cdot 10^{-12} + 1.73705142673i$  | $2\cdot 10^{-14}$ | 1.73705142671 <i>i</i> | $5\cdot10^{-17}$  |
| $-3 \cdot 10^{-12} + 1.66795405953i$ | $8\cdot 10^{-15}$ | 1.66795405955 <i>i</i> | $2\cdot 10^{-15}$ |
| $2 \cdot 10^{-13} + 1.66552788164i$  | $2\cdot 10^{-15}$ | 1.66552788164 <i>i</i> | $1\cdot 10^{-16}$ |
| $4 \cdot 10^{-14} + 1.58209209804i$  | $1\cdot 10^{-16}$ | 1.582092098041         | $5\cdot 10^{-17}$ |
| $-1 \cdot 10^{-14} + 1.13657108578i$ | $8\cdot10^{-17}$  | 1.136571085781         | $7\cdot 10^{-18}$ |
| $1 \cdot 10^{-14} + 0.80560062107i$  | $1\cdot 10^{-16}$ | 0.805600621071         | $6\cdot10^{-18}$  |



# Quadratic Eigenvalue Problems

Gyroscopic systems: rolling tire

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplecti Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Shift-and-invert Corner singularities

Gyroscopic systems

Conclusions an Outlook

References

 Compare eigs and HKS applied to H<sup>-1</sup> to compute the 180 smallest eigenvalues.





## Conclusions and Outlook

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

### Conclusions

- Solution of large-scale eigenproblems with Hamiltonian eigensymmetry in a numerically reliable way possible by combination of symplectic Lanczos process and Krylov-Schur restarting.
- Alternative to SHIRA, often with faster convergence.
- Relies on parameterized SR algorithm [FASSBENDER '07].
- Advantageous in particular in presence of eigenvalues on the imaginary axis, e.g., for stable gyroscopic systems.



# Conclusions and Outlook

#### Hamiltonian Krylov-Schur

- Peter Benne
- Introduction
- Symplectio Lanczos
- The SR Algorithm
- нкs
- Quadratic Eigenvalue Problems
- Conclusions and Outlook
- References

### Outlook

- Integration into HAPACK (≡ better and more reliable implementation...)
- Comparison to SOAR [BAI/SU '05] for second-order eigenproblems.
- Solution of higher-order, structured polynomial eigenproblems.
- Version for symplectic/palindromic eigenproblems based on symplectic Lanczos process and SZ iteration.
- Two-sided symplectic (implicitly restarted) Arnoldi based on symplectic URV decomposition [B./KRESSNER/MEHRMANN/XU], soon.



## References

#### Hamiltonian Krylov-Schur

Peter Benner

#### Introduction

Symplection Lanczos

The SR Algorithm

HKS

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

#### T. Apel, V. Mehrmann, and D. Watkins.

Structured eigenvalue methods for the computation of corner singularities in 3d anisotropic elastic structures. *Comput. Methods Appl. Mech. Engrg.*, 191:4459–4473, 2002.

#### 2 P. Benner.

Structured Krylov subspace methods for eigenproblems with spectral symmetries. Workshop Theoretical and Computational Aspects of Matrix Algorithms, Dagstuhl, October 2003.

#### 3 P. Benner and H. Faßbender.

An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Lin. Alg. Appl., 263:75–111, 1997.

#### P. Benner and H. Faßbender.

An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue problem. SIAM J. Matrix Anal. Appl., 22(3):682–713, 2000.

#### P. Benner, H. Faßbender, and M. Stoll.

A Krylov-Schur-type algorithm for Hamiltonian eigenproblems based on the symplectic Lanczos process. Submitted, 2007.

#### 6 P. Benner, H. Faßbender, and M. Stoll.

Solving large-scale quadratic eigenvalue problems with Hamiltonian eigenstructure using a structure-preserving Krylov subspace method.

Numerical Analysis Group Research Report NA-07/03, Oxford University, February 2007.

#### A. Bunse-Gerstner and V. Mehrmann.

A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation. *IEEE Trans. Automat. Control*, AC-31:1104–1113, 1986.

#### 8 H. Faßbender.

The Parameterized SR Algorithm for Hamiltonian Matrices. *ETNA*, 26:121–145, 2007.



### References

Hamiltonian Krylov-Schur

Peter Benner

Introduction

Symplectie Lanczos

The SR Algorithm

нкз

Quadratic Eigenvalue Problems

Conclusions and Outlook

References

#### 9 H. Faßbender.

A detailed derivation of the parameterized SR algorithm and the symplectic Lanczos method for Hamiltonian matrices. Technical report, TU Braunschweig, Institut Computational Mathematics, 2006.

#### 10 W. R. Ferng, W. W. Lin, and C. S. Wang.

The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations. *Comp. Math. Appl.*, 33(10):23740, 1997.

#### 11 M. Stoll.

Locking und Purging für den Hamiltonischen Lanczos-Prozess. Diplomarbeit, Fakultät für Mathematik, TU Chemnitz, September 2005.

#### 12 R.B. Lehoucq and D.C. Sorensen.

Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl., 17:789–821, 1996.

#### 13 V. Mehrmann and D. Watkins.

Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comp., 22:1905–1925, 2001.

#### 14 D. Sorensen.

Numerical methods for large eigenvalue problems. Acta Numerica, 11:519–584, 2002.

#### 15 G.W. Stewart.

A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl., 23(4):601–614, 2001.

#### 16 D. Watkins.

On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl., 385:23–45, 2004.