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Large-Scale Matrix Equtions
Large-Scale Algebraic Lyapunov and Riccati Equations

General form of algebraic Riccati equation (ARE) for
A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

Motivation

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Large-Scale Matrix Equtions
Large-Scale Algebraic Lyapunov and Riccati Equations

General form of algebraic Riccati equation (ARE) for
A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

Motivation

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Large-Scale Matrix Equtions
Large-Scale Algebraic Lyapunov and Riccati Equations

General form of algebraic Riccati equation (ARE) for
A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

Motivation

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Large-Scale Matrix Equtions
Large-Scale Algebraic Lyapunov and Riccati Equations

General form of algebraic Riccati equation (ARE) for
A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

Motivation

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Large-Scale Matrix Equtions
Large-Scale Algebraic Lyapunov and Riccati Equations

General form of algebraic Riccati equation (ARE) for
A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

Motivation

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Large-Scale Matrix Equtions
Large-Scale Algebraic Lyapunov and Riccati Equations

General form of algebraic Riccati equation (ARE) for
A,G = GT ,W = W T ∈ Rn×n given and X ∈ Rn×n unknown:

0 = R(X ) := ATX + XA− XGX + W .

G = 0 =⇒ Lyapunov equation:

0 = L(X ) := ATX + XA + W .

Typical situation in model reduction and optimal control problems for
semi-discretized PDEs:

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1S for FEM),

G ,W low-rank with G ,W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rp×n, p � n.

Standard (eigenproblem-based) O(n3) methods are not
applicable!



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

Motivation

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Large-Scale Matrix Equtions
Low-Rank Approximation

Consider spectrum of ARE solution (analogous for Lyapunov
equations).

Example:

Linear 1D heat equation with
point control,

Ω = [ 0, 1 ],

FEM discretization using linear
B-splines,

h = 1/100 =⇒ n = 101.

Idea: X = XT ≥ 0 =⇒

X = ZZT =
n∑

k=1

λkzkz
T
k ≈ Z (r)(Z (r))T =

r∑
k=1

λkzkz
T
k .

=⇒ Goal: compute Z (r) ∈ Rn×r directly w/o ever forming X !
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Motivation
Linear-quadratic Optimal Control

Numerical solution of linear-quadratic optimal control problem for
parabolic PDEs via Galerkin approach, spatial FEM discretization  

LQR Problem (finite-dimensional)

Min J (u) =
1

2

∞∫
0

(
yTQy + uTRu

)
dt for u ∈ L2(0,∞; Rm),

subject to Mẋ = −Sx + Bu, x(0) = x0, y = Cx ,
with stiffness S ∈ Rn×n, mass M ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

Solution of finite-dimensional LQR problem: feedback control

u∗(t) = −BTX∗x(t) =: −K∗x(t),

where X∗ = XT
∗ ≥ 0 is the unique stabilizing1 solution of the ARE

0 = R(X ) := CTC + ATX + XA− XBBTX ,

with A := −M−1S , B := M−1BR−
1
2 , C := CQ−

1
2 .

1X is stabilizing ⇔ Λ (A− BBT X ) ⊂ C−.
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Motivation
Model Reduction by Balanced Truncation

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) is a realization of Σ (nonunique).
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Motivation
Model Reduction by Balanced Truncation

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

(A,B,C ,D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Given P,Q ∈ Rn×n symmetric positive definite (spd), and a
contragredient transformation T : Rn → Rn,

TPTT = T−TQT−1 = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σn ≥ 0.

Balancing Σ w.r.t. P,Q:

Σ ≡ (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D) ≡ Σ.
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Model Reduction Based on Balancing

Given P,Q ∈ Rn×n symmetric positive definite (spd), and a
contragredient transformation T : Rn → Rn,

TPTT = T−TQT−1 = diag(σ1, . . . , σn), σ1 ≥ . . . ≥ σn ≥ 0.

Balancing Σ w.r.t. P,Q:

Σ ≡ (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D) ≡ Σ.

For Balanced Truncation: P/Q = controllability/observability
Gramian of Σ, i.e., for asymptotically stable systems, P,Q solve dual
Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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Motivation
Model Reduction by Balanced Truncation

Basic Model Reduction Procedure

1 Given Σ ≡ (A,B,C ,D) and balancing (w.r.t. given P,Q spd)
transformation T ∈ Rn×n nonsingular, compute

(A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2

]
,D

)
2 Truncation  reduced-order model:

(Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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Motivation
Model Reduction by Balanced Truncation

Implementation: SR Method

1 Given Cholesky (square) or (low-rank approximation to) full-rank
(maybe rectangular, “thin”) factors of P,Q

P = STS , Q = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RTV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced-order model is

(Â, B̂, Ĉ , D̂) := (W TAV ,W TB,CV ,D) (≡ (A11,B1,C1,D).)
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ADI Method for Lyapunov Equations
Background

Recall Peaceman Rachford ADI:
Consider Au = s where A ∈ Rn×n spd, s ∈ Rn. ADI Iteration Idea:
Decompose A = H + V with H,V ∈ Rn×n such that

(H + pI )v = r
(V + pI )w = t

can be solved easily/efficiently.

ADI Iteration

If H,V spd ⇒ ∃pk , k = 1, 2, . . . such that

u0 = 0
(H + pk I )uk− 1

2
= (pk I − V )uk−1 + s

(V + pk I )uk = (pk I − H)uk− 1
2

+ s

converges to u ∈ Rn solving Au = s.
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ADI Method for Lyapunov Equations
Motivation

The Lyapunov operator

L : P 7→ AX + XAT

can be decomposed into the linear operators

LH : X 7→ AX LV : X 7→ XAT .

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation [Wachspress 1988

P0 = 0
(A + pk I )Xk− 1

2
= −W − Pk−1(AT − pk I )

(A + pk I )XT
k = −W − XT

k− 1
2

(AT − pk I )



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

ADI for Lyapunov

LR-ADI

Factored
Galerkin-ADI
Iteration

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Low-Rank ADI for Lyapunov equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )Xk− 1
2

= −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − Xk− 1

2
(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X superlinear.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Low-Rank ADI for Lyapunov equations
Lyapunov equation 0 = AX + XAT + BBT .

Setting Xk = YkY
T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR k = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
Yk ←

ˆ
Yk−1 Vk

˜
Yk ← rrlq(Yk , τ) % column compression

At convergence, YkmaxY
T
kmax
≈ X , where (without column compression)

Ykmax =
[

V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps.
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Numerical Results
Optimal Cooling of Steel Profiles

Mathematical model: boundary control
for linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = 7, p = 6.

FEM Discretization, different models
for initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement ⇒
n = 1357, 5177, 20209, 79841.

2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Source: Physical model: courtesy of Mannesmann/Demag.

Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.
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Numerical Results
Computations by Jens Saak

Solve dual Lyapunov equations needed for balanced truncation, i.e.,

APMT + MPAT + BBT = 0, ATQM + MTQA + CTC = 0,

for 79, 841. Note: m = 7, p = 6.
25 shifts chosen by Penzl’s heuristic from 50/25 Ritz values of A of
largest/smallest magnitude, no column compression performed.
New version in MESS (Matrix Equations Sparse Solvers) requires no
factorization of mass matrix!
Computations done on Core2Duo at 2.8GHz with 3GB RAM and
32Bit-Matlab.

CPU times: 626 / 356 sec.
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Recent Numerical Results
Computations by Martin Köhler

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl’s heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.
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Recent Numerical Results
Computations by Martin Köhler

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl’s heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

CPU Times
n CMESS Lyapack MESS

100 0.023 0.124 0.158
625 0.042 0.104 0.227

2,500 0.159 0.702 0.989
10,000 0.965 6.22 5.644
40,000 11.09 71.48 34.55
90,000 34.67 418.5 90.49

160,000 109.3 out of memory 219.9
250,000 193.7 out of memory 403.8
562,500 930.1 out of memory 1216.7

1,000,000 2220.0 out of memory 2428.6
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Recent Numerical Results
Computations by Martin Köhler

A ∈ Rn×n ≡ FDM matrix for 2D heat equation on [0, 1]2 (Lyapack
benchmark demo l1, m = 1).

16 shifts chosen by Penzl’s heuristic from 50/25 Ritz values of A of
largest/smallest magnitude.

Computations using 2 dual core Intel Xeon 5160 with 16 GB RAM.

Note: for n=1,000,000, first sparse LU needs ∼ 1, 100 sec., using
UMFPACK this reduces to 30 sec. (result of June 15, 2009).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Saad ’90, Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Saad ’90, Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar ’08]:

Z = colspan
[

V1, . . . , Vr

]
.

Note:

1 ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
2 Similar approach: ADI-preconditioned global Arnoldi method

[Jbilou ’08].
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Factored Galerkin-ADI Iteration
Numerical examples

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.
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Factored Galerkin-ADI Iteration
Numerical examples

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.
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Factored Galerkin-ADI Iteration
Numerical examples: optimal cooling of rail profiles, n = 79, 841, m = 7, p = 6.

MESS w/ Galerkin projection and column compression

Rank of solution factors: 532 / 426

MESS with Galerkin projection and column compression

Rank of solution factors: 269 / 205
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Newton-ADI for AREs
Newton’s Method for AREs [Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,

B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(X ) = CTC + ATX + XA− XBBTX .

Frechét derivative of R(X ) at X :

R′X : Z → (A− BBTX )TZ + Z (A− BBTX ).

Newton-Kantorovich method:

Xj+1 = Xj −
(
R′Xj

)−1

R(Xj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBTXj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Xj).

3 Xj+1 ← Xj + tjNj .

END FOR j
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Newton’s Method for AREs [Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,

B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(X ) = CTC + ATX + XA− XBBTX .

Frechét derivative of R(X ) at X :
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Newton-Kantorovich method:
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2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Xj).

3 Xj+1 ← Xj + tjNj .

END FOR j



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

ADI for Lyapunov

Newton-ADI for
AREs

Low-Rank
Newton-ADI

Application to
LQR Problem

Numerical
Results

Quadratic ADI
for AREs

High-Rank W

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Newton-ADI for AREs
Newton’s Method for AREs [Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,

B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(X ) = CTC + ATX + XA− XBBTX .

Frechét derivative of R(X ) at X :

R′X : Z → (A− BBTX )TZ + Z (A− BBTX ).

Newton-Kantorovich method:

Xj+1 = Xj −
(
R′Xj

)−1

R(Xj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .

1 Aj ← A− BBTXj =: A− BKj .

2 Solve the Lyapunov equation AT
j Nj + NjAj = −R(Xj).

3 Xj+1 ← Xj + tjNj .

END FOR j
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Newton’s Method for AREs [Kleinman ’68, Mehrmann ’91, Lancaster/Rodman ’95,

B./Byers ’94/’98, B. ’97, Guo/Laub ’99]

Consider 0 = R(X ) = CTC + ATX + XA− XBBTX .

Frechét derivative of R(X ) at X :

R′X : Z → (A− BBTX )TZ + Z (A− BBTX ).

Newton-Kantorovich method:
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(
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)−1

R(Xj), j = 0, 1, 2, . . .

Newton’s method (with line search) for AREs

FOR j = 0, 1, . . .
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2 Solve the Lyapunov equation AT
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Factored Galerkin-ADI Iteration
Properties and Implementation

Convergence for K0 stabilizing:

Aj = A− BKj = A− BBTXj is stable ∀ j ≥ 0.
limj→∞ ‖R(Xj)‖F = 0 (monotonically).
limj→∞ Xj = X∗ ≥ 0 (locally quadratic).

Need large-scale Lyapunov solver; here, ADI iteration:
linear systems with dense, but “sparse+low rank” coefficient
matrix Aj :
Aj = A − B · Kj

= sparse − m ·

m� n =⇒ efficient “inversion” using
Sherman-Morrison-Woodbury formula:

(A−BKj +p
(j)
k I )−1 = (In +(A + p

(j)
k I )−1B(Im−Kj (A + p

(j)
k I )−1B)−1Kj )(A + p

(j)
k I )−1

.

BUT: X = XT ∈ Rn×n =⇒ n(n + 1)/2 unknowns!
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Low-Rank Newton-ADI for AREs

Re-write Newton’s method for AREs

AT
j Nj + NjAj = −R(Xj)

⇐⇒

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+ (Xj + Nj)︸ ︷︷ ︸
=Xj+1

Aj = −CTC − XjBBTXj︸ ︷︷ ︸
=:−WjW T

j

Set Xj = ZjZ
T
j for rank (Zj)� n =⇒

AT
j

(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj = −WjW

T
j

Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .
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Factored Newton Iteration [B./Li/Penzl 1999/2008]

Solve Lyapunov equations for Zj+1 directly by factored ADI iteration
and use ‘sparse + low-rank’ structure of Aj .
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Application to LQR Problem
Feedback Iteration

Optimal feedback
K∗ = BTX∗ = BTZ∗Z

T
∗

can be computed by direct feedback iteration:

jth Newton iteration:

Kj = BTZjZ
T
j =

kmax∑
k=1

(BTVj,k)V T
j,k

j→∞
−−−−→ K∗ = BTZ∗Z

T
∗

Kj can be updated in ADI iteration, no need to even form Zj ,
need only fixed workspace for Kj ∈ Rm×n!

Related to earlier work by [Banks/Ito 1991].
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Newton-ADI for AREs
Numerical Results

Linear 2D heat equation with homogeneous Dirichlet boundary
and point control/observation.
FD discretization on uniform 150× 150 grid.
n = 22.500, m = p = 1, 10 shifts for ADI iterations.
Convergence of large-scale matrix equation solvers:
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Newton-ADI for AREs
Performance of matrix equation solvers

Performance of Newton’s method for accuracy ∼ 1/n

grid unknowns
‖R(X )‖F
‖X‖F

it. (ADI it.) CPU (sec.)

8× 8 2,080 4.7e-7 2 (8) 0.47
16× 16 32,896 1.6e-6 2 (10) 0.49
32× 32 524,800 1.8e-5 2 (11) 0.91
64× 64 8,390,656 1.8e-5 3 (14) 7.98

128× 128 134,225,920 3.7e-6 3 (19) 79.46

Here,

Convection-diffusion equation,

m = 1 input and p = 2 outputs,

X = XT ∈ Rn×n ⇒ n(n+1)
2 unknowns.

Confirms mesh independence principle for Newton-Kleinman

[Burns/Sachs/Zietsman ’08].



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

ADI for Lyapunov

Newton-ADI for
AREs

Low-Rank
Newton-ADI

Application to
LQR Problem

Numerical
Results

Quadratic ADI
for AREs

High-Rank W

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References
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Performance of matrix equation solvers

Performance of Newton’s method for accuracy ∼ 1/n

grid unknowns
‖R(X )‖F
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8× 8 2,080 4.7e-7 2 (8) 0.47
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32× 32 524,800 1.8e-5 2 (11) 0.91
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128× 128 134,225,920 3.7e-6 3 (19) 79.46

Here,

Convection-diffusion equation,

m = 1 input and p = 2 outputs,

X = XT ∈ Rn×n ⇒ n(n+1)
2 unknowns.

Confirms mesh independence principle for Newton-Kleinman

[Burns/Sachs/Zietsman ’08].
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Recent Numerical Results
Computations by Jens Saak

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at
2.66GHz with 4 GB RAM and 64Bit-Matlab.
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Recent Numerical Results
Computations by Jens Saak

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at
2.66GHz with 4 GB RAM and 64Bit-Matlab.

Newton-ADI
NWT rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.41e+01 23
3 5.25e–01 6.37e+00 20
4 5.37e–01 1.52e+00 20
5 7.03e–01 2.64e–01 23
6 5.57e–01 1.56e–02 23
7 6.59e–02 6.30e–05 23
8 4.02e–04 9.68e–10 23
9 8.45e–09 1.09e–11 23

10 1.52e–14 1.09e–11 23

CPU time: 76.9 sec.
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Recent Numerical Results
Computations by Jens Saak

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at
2.66GHz with 4 GB RAM and 64Bit-Matlab.

Newton-ADI
NWT rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.41e+01 23
3 5.25e–01 6.37e+00 20
4 5.37e–01 1.52e+00 20
5 7.03e–01 2.64e–01 23
6 5.57e–01 1.56e–02 23
7 6.59e–02 6.30e–05 23
8 4.02e–04 9.68e–10 23
9 8.45e–09 1.09e–11 23

10 1.52e–14 1.09e–11 23

CPU time: 76.9 sec.

Newton-Galerkin-ADI
NWT rel. change rel. residual ADI

1 1 3.56e–04 20
2 5.25e–01 6.37e+00 10
3 5.37e–01 1.52e+00 6
4 7.03e–01 2.64e–01 10
5 5.57e–01 1.57e–02 10
6 6.59e–02 6.30e–05 10
7 4.03e–04 9.79e–10 10
8 8.45e–09 1.43e–15 10

CPU time: 38.0 sec.
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Recent Numerical Results
Computations by Jens Saak

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at
2.66GHz with 4 GB RAM and 64Bit-Matlab.
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Recent Numerical Results
Computations by Jens Saak

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at
2.66GHz with 4 GB RAM and 64Bit-Matlab.

Newton-ADI
NWT rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.56e+01 60
3 3.11e–01 3.72e+00 39
4 2.88e–01 9.62e–01 40
5 3.41e–01 1.68e–01 45
6 1.22e–01 5.25e–03 42
7 3.88e–03 2.96e–06 47
8 2.30e–06 6.09e–13 47

CPU time: 185.9 sec.
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Recent Numerical Results
Computations by Jens Saak

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at
2.66GHz with 4 GB RAM and 64Bit-Matlab.

Newton-ADI
NWT rel. change rel. residual ADI

1 1 9.99e–01 200
2 9.99e–01 3.56e+01 60
3 3.11e–01 3.72e+00 39
4 2.88e–01 9.62e–01 40
5 3.41e–01 1.68e–01 45
6 1.22e–01 5.25e–03 42
7 3.88e–03 2.96e–06 47
8 2.30e–06 6.09e–13 47

CPU time: 185.9 sec.

Newton-Galerkin-ADI
step rel. change rel. residual ADI it.

1 1 1.78e–02 35
2 3.11e–01 3.72e+00 15
3 2.88e–01 9.62e–01 20
4 3.41e–01 1.68e–01 15
5 1.22e–01 5.25e–03 20
6 3.89e–03 2.96e–06 15
7 2.30e–06 6.14e–13 20

CPU time: 75.7 sec.
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Recent Numerical Results
Computations by Jens Saak

FDM for 2D heat/convection-diffusion equations on [0, 1]2 (Lyapack
benchmarks, m = p = 1)  symmetric/nonsymmetric A ∈ Rn×n,
n = 10, 000.

15 shifts chosen by Penzl’s heuristic from 50/25 Ritz/harmonic Ritz
values of A.

Computations using Intel Core 2 Quad CPU of type Q9400 at
2.66GHz with 4 GB RAM and 64Bit-Matlab.
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Quadratic ADI for AREs
0 = R(X ) = AT X + XA− XBBT X + W

Basic QADI iteration [Wong/Balakrishnan et al. ’05–’08]

`
(A− BBTXk)T + pk I

´
Xk+ 1

2
= −W − Xk((A− pk I )“

(A− BBTXT
k+ 1

2
)T + pk I

”
Xk+1 = −W − XT

k+ 1
2
(A− pk I )

Derivation of complicated Cholesky factor version, but requires square and
invertible Cholesky factors.

Idea of low-rank Galerkin-QADI [B./Saak ’09]

V1 ←
p
−2Re (p1)(A− B(BTY0)Y T

0 + p1I )−TB, Y1 ← V1

FOR k = 2, 3, . . .

Vk ← Vk−1 − (pk + pk−1)(A− B(BTYk−1)Y T
k−1 + pk I )−TVk−1

Yk ←
h

Yk−1

q
Re (pk )

Re (pk−1)
Vk

i
Yk ← rrlq(Yk , τ) % column compression

If desired, project ARE onto range(Yk), solve and prolongate.
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Quadratic ADI for AREs
0 = R(X ) = AT X + XA− XBBT X + W

Basic QADI iteration [Wong/Balakrishnan et al. ’05–’08]

`
(A− BBTXk)T + pk I

´
Xk+ 1

2
= −W − Xk((A− pk I )“

(A− BBTXT
k+ 1

2
)T + pk I

”
Xk+1 = −W − XT

k+ 1
2
(A− pk I )

Derivation of complicated Cholesky factor version, but requires square and
invertible Cholesky factors.

Idea of low-rank Galerkin-QADI [B./Saak ’09]

V1 ←
p
−2Re (p1)(A− B(BTY0)Y T

0 + p1I )−TB, Y1 ← V1

FOR k = 2, 3, . . .

Vk ← Vk−1 − (pk + pk−1)(A− B(BTYk−1)Y T
k−1 + pk I )−TVk−1

Yk ←
h

Yk−1

q
Re (pk )

Re (pk−1)
Vk

i
Yk ← rrlq(Yk , τ) % column compression

If desired, project ARE onto range(Yk), solve and prolongate.
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AREs with High-Rank Constant Term

Consider ARE

0 = R(X ) = W + ATX + XA− XBBTX

with rank (W ) 6� n, e.g., stabilization of flow problems described by
Navier-Stokes eqns. requires solution of

0 = R(X ) = Mh − ST
h XMh −MhXSh −MhXBhB

T
h XMh,

where Mh = mass matrix of FE velocity test functions.

Example: von Kármán vortex street, Re= 500

uncontrolled:

controlled using ARE:

t = 1 t = 5

t = 8 t = 10
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AREs with High-Rank Constant Term
Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

One step of Newton-Kleinman iteration for ARE:

AT
j (Xj + Nj)︸ ︷︷ ︸

=Xj+1

+Xj+1Aj = −W − (XjB)︸ ︷︷ ︸
=KT

j

BTXj︸ ︷︷ ︸
=Kj

for j = 1, 2, . . .

Subtract two consecutive equations =⇒

AT
j Nj + NjAj = −NT

j−1BBTNj−1 for j = 1, 2, . . .

See [Banks/Ito ’91, B./Hernández/Pastor ’03, Morris/Navasca ’05] for

details and applications of this variant.

But: need BTN0 = K1 − K0!

Assuming K0 is known, need to compute K1.
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AREs with High-Rank Constant Term
Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Solution idea:

K1 = BTX1

= BT

Z ∞
0

e(A−BK0)T t(W + KT
0 K0)e(A−BK0)t dt

=

Z ∞
0

g(t) dt ≈
NX

`=0

γ`g(t`),

where g(t) = (
“
e(A−BK0)tB

”T

(W + KT
0 K0)

´
e(A−BK0)t .

[Borggaard/Stoyanov ’08]:

evaluate g(t`) using ODE solver applied to ẋ = (A−BK0)x + adjoint eqn.
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AREs with High-Rank Constant Term
Solution: remove W from r.h.s. of Lyapunov eqns. in Newton-ADI

Better solution idea:
(related to frequency domain POD [Willcox/Peraire ’02])

K1 = BTX1 (Notation: A0 := A− BK0)

= BT · 1

2π

Z ∞
−∞

(ωIn − A0)−H(W + KT
0 K0)(ωIn − A0)−1 dω

=

Z ∞
−∞

f (ω) dω ≈
NX

`=0

γ`f (ω`),

where f (ω) = ( −
`
(ωIn + A0)−1B

´T
(W + KT

0 K0)
´

(ωIn − A0)−1.

Evaluation of f (ω`) requires

1 sparse LU decmposition (complex!),

2m forward/backward solves,

m sparse and 2m low-rank matrix-vector products.

Use adaptive quadrature with high accuracy, e.g. Gauß-Kronrod (Matlab’s
quadgk).
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AREs with Indefinite Hessian

Now:

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0.
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AREs with Indefinite Hessian

Now:

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0.

Problems

For large-scale problems, resulting, e.g., from H∞ control,
standard methods based on Hamiltonian/even eigenvalue
problem can not be used due to O(n3) complexity/dense matrix
algebra.

Krylov subspace methods might be employed, but so far no
convergence results, and in case of convergence, no guarantee
that stabilizing solution is computed.

Newton/Newton-ADI method will in general diverge/converge to
a non-stabilizing solution.
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AREs with Indefinite Hessian

Now:

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0.

Problems

For large-scale problems, resulting, e.g., from H∞ control,
standard methods based on Hamiltonian/even eigenvalue
problem can not be used due to O(n3) complexity/dense matrix
algebra.

Krylov subspace methods might be employed, but so far no
convergence results, and in case of convergence, no guarantee
that stabilizing solution is computed.

Newton/Newton-ADI method will in general diverge/converge to
a non-stabilizing solution.
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AREs with Indefinite Hessian

Now:

R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )X = 0.

Problems

For large-scale problems, resulting, e.g., from H∞ control,
standard methods based on Hamiltonian/even eigenvalue
problem can not be used due to O(n3) complexity/dense matrix
algebra.

Krylov subspace methods might be employed, but so far no
convergence results, and in case of convergence, no guarantee
that stabilizing solution is computed.

Newton/Newton-ADI method will in general diverge/converge to
a non-stabilizing solution.
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Motivation: H∞-Control

Linear time-invariant systems

Σ :

 ẋ = Ax + B1w + B2u,
z = C1x + D11w + D12u,
y = C2x + D21w + D22u,

where A ∈ Rn×n, Bk ∈ Rn×mk , Cj ∈ Cpj×n, Djk ∈ Rpj×mk .

x – states of the system,
w – exogenous inputs
u – control inputs,
z – performance outputs
y – measured outputs
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H∞-Control
Transfer functions

Laplace transform =⇒ transfer function (in frequency domain)

G (s) =

[
G11(s) G12(s)

G21(s) G22(s)

]
≡

 A B1 B2

C1 D11 D12

C2 D21 D22

 .
where for x(0) = 0, Gij are the rational matrix functions

G11(s) = C1(sI − A)−1B1 + D11,
G12(s) = C1(sI − A)−1B2 + D12,
G21(s) = C2(sI − A)−1B1 + D21,
G22(s) = C2(sI − A)−1B2 + D22,

describing the transfer from inputs to outputs of Σ via

z(s) = G11(s)w(s) + G12(s)u(s),

y(s) = G21(s)w(s) + G22(s)u(s).
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H∞-Control
The H∞-Optimization Problem

Consider closed-loop system,
where K (s) is an internally
stabilizing controller, i.e., K
stabilizes G for w ≡ 0.

G (s)
-

�

-

K (s)

-

u

w z

y
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H∞-Control
The H∞-Optimization Problem

Consider closed-loop system,
where K (s) is an internally
stabilizing controller, i.e., K
stabilizes G for w ≡ 0.

G (s)
-

�

-

K (s)

-

u

w z

y

Goal:

find K that minimize error outputs

z =
(
G11 + G12K (I − G22K )−1G21

)
w =: F(G ,K )w ,

where F(G ,K ) is the linear fractional transformation of G , K .
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H∞-Control
The H∞-Optimization Problem

Consider closed-loop system,
where K (s) is an internally
stabilizing controller, i.e., K
stabilizes G for w ≡ 0.

G (s)
-

�

-

K (s)

-

u

w z

y

Goal:

find K that minimize error outputs

z =
(
G11 + G12K (I − G22K )−1G21

)
w =: F(G ,K )w ,

where F(G ,K ) is the linear fractional transformation of G , K .

H∞-optimal control problem:

min
K stabilizing

‖F(G ,K )‖H∞ .
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H∞-Control
The H∞-Optimization Problem

Consider closed-loop system,
where K (s) is an internally
stabilizing controller, i.e., K
stabilizes G for w ≡ 0.

G (s)
-

�

-

K (s)

-

u

w z

y

Goal:

find K that minimize error outputs

z =
(
G11 + G12K (I − G22K )−1G21

)
w =: F(G ,K )w ,

where F(G ,K ) is the linear fractional transformation of G , K .

H∞-suboptimal control problem:

For given constant γ > 0, find all internally stabilizing controllers
satisfying

‖F(G ,K )‖H∞ < γ.
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H∞-Control
Solution of the H∞-(Sub-)Optimal Control Problem

Simplifying assumptions

1 D11 = 0;

2 D22 = 0;

3 (A,B1) stabilizable, (C1,A) detectable;

4 (A,B2) stabilizable, (C2,A) detectable (=⇒ Σ internally
stabilizable);

5 DT
12 [ C1 D12 ] = [ 0 Im2 ];

6

[
B1

D21

]
DT

21 =

[
0
Ip2

]
.

Remark. 1.,2.,5.,6. only for notational convenience, 3. can be relaxed, but

derivations get even more complicated.
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H∞-Control
Solution of the H∞-(Sub-)Optimal Control Problem

Theorem [Doyle/Glover/Khargonekar/Francis ’89]

Given the Assumptions 1.–6., there exists an admissible controller K(s)
solving the H∞-suboptimal control problem ⇐⇒

(i) There exists a solution X∞ = XT
∞ ≥ 0 to the ARE

C1C
T
1 + ATX + XA + X (γ−2B1B

T
1 − B2B

T
2 )X = 0, (1)

such that AX is Hurwitz, where AX := A + (γ−2B1B
T
1 −B2B

T
2 )X∞.

(ii) There exists a solution Y∞ = Y T
∞ ≥ 0 to the ARE

B1B
T
1 + AY + YAT + Y (γ−2C1C

T
1 − C2C

T
2 )Y = 0, (2)

such that AY is Hurwitz where AY := A + Y∞(γ−2C1C
T
1 − C2C

T
2 ).

(iii) γ2 > ρ(X∞Y∞).

H∞-optimal control

Find minimal γ for which (i)–(iii) are satisfied  γ-iteration based on
solving AREs (1)–(2) repeatedly for different γ.



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

H∞-Control

Lyapunov Itera-
tions/Perturbed
Hessian
Approach

Riccati Iterations

Numerical
example

Software

Conclusions and
Open Problems

References

H∞-Control
Solution of the H∞-(Sub-)Optimal Control Problem
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T
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such that AY is Hurwitz where AY := A + Y∞(γ−2C1C
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T
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(iii) γ2 > ρ(X∞Y∞).
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Find minimal γ for which (i)–(iii) are satisfied  γ-iteration based on
solving AREs (1)–(2) repeatedly for different γ.
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H∞-Control
Solution of the H∞-(Sub-)Optimal Control Problem

H∞-(sub-)optimal controller

If (i)–(iii) hold, a suboptimal controller is given by

K̂ (s) =

[
Â B̂

Ĉ 0

]
= Ĉ (sIn − Â)−1B̂,

where for
Z∞ := (I − γ−2Y∞X∞)−1,

Â := A + (γ−2B1B
T
1 − B2B

T
2 )X∞ − Z∞Y∞CT

2 C2,

B̂ := Z∞Y∞CT
2 ,

Ĉ := −BT
2 X∞.

K̂ (s) is the central or minimum entropy controller.
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Numerical Solution of AREs with Indefinite Hessian
A quick-and-dirty solution [Damm 2002/04]

ARE with indefinite Hessian

0 = R(X ) := CTC + ATX + XA + X (B1B
T
1 − B2B

T
2 )

Consider X−1R(X )X−1 = 0

 standard ARE for X̃ ≡ X−1

R̃(X̃ ) := (B1B
T
1 − B2B

T
2 ) + X̃AT + AX̃ + X̃CTCX̃ = 0.

Newton’s method will converge to stabilizing solution, Newton-ADI
can be employed (with modification for indefinite constant term).

But: low-rank approximation of X̃ will not yield good approximation
of X ⇒ not feasible for large-scale problems!
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Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles 2005 (Proc. ACSE 2005)]

Idea

Perturb Hessian to enforce semi-definiteness: write

0 = ATX + XA + Q −XGX = ATX + XA + Q −XDX + X (D −G )X ,

where D = G + αI ≥ 0 with α ≥ min{0,−λmax(G )}.
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Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles 2005 (Proc. ACSE 2005)]

Idea

Perturb Hessian to enforce semi-definiteness: write

0 = ATX + XA + Q −XGX = ATX + XA + Q −XDX + X (D −G )X ,

where D = G + αI ≥ 0 with α ≥ min{0,−λmax(G )}.

Here: G = B2B
T
2 − B1B

T
1

⇒ use α = ‖B1‖2 for spectral/Frobenius norm or

α = ‖B1‖1 · ‖B1‖∞.

Remark

W ≥ −G can be used instead of αI , e.g., W = βB1B
T
1 with β ≥ 1.
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Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles 2005 (Proc. ACSE 2005)]

Idea

Perturb Hessian to enforce semi-definiteness: write

0 = ATX + XA + Q −XGX = ATX + XA + Q −XDX + X (D −G )X ,

where D = G + αI ≥ 0 with α ≥ min{0,−λmax(G )}.

Lyapunov iteration

Based on

(A− DX )TX + X (A− DX ) = −Q − XDX − αX 2,

iterate

FOR k = 0, 1, . . ., solve Lyapunov equation

(A− DXk)TXk+1 + Xk+1(A− DXk) = −Q − XkDXk − αX 2
k .



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

H∞-Control

Lyapunov Itera-
tions/Perturbed
Hessian
Approach

Riccati Iterations

Numerical
example

Software

Conclusions and
Open Problems

References

Lyapunov Iterations/Perturbed Hessian Approach
[Cherfi/Abou-Kandil/Bourles 2005 (Proc. ACSE 2005)]

Lyapunov iteration

FOR k = 0, 1, . . ., solve Lyapunov equation

(A− DXk)TXk+1 + Xk+1(A− DXk) = −Q − XkDXk − αX 2
k .

Easy to convert to low-rank iteration employing low-rank ADI for
Lyapunov equations, e.g. with W = B1B

T
1 instead of αI : the Lyapunov

equation becomes

(A− B2B
T
2 YkYk)TYk+1Y

T
k+1 + Yk+1Y

T
k+1(A− B2B

T
2 YkYk)

= −CCT − YkY
T
k B1B

T
1 YkY

T
k − YkY

T
k B2B

T
2 YkY

T
k

= −[ C , YkY
T
k B1, YkY

T
k B2 ]

 CT

BT
1 YkY

T
k

BT
2 YkY

T
k

 .
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Lyapunov Iterations/Perturbed Hessian Approach
Convergence

Theorem [Cherfi/Abou-Kandil/Bourles 2005]

If

∃ X̂ such that R(X̂ ) ≥ 0,

∃ X0 = XT
0 ≥ X̂ such that R(X0) ≤ 0 and A− DX0 is Hurwitz,

then

a) X0 ≥ . . . ≥ Xk ≥ Xk+1 ≥ . . . ≥ X̂ ,

b) R(Xk) ≤ 0 for all k = 0, 1, . . .,

c) A− DXk is Hurwitz for all k = 0, 1, . . .,

d) ∃ limk→∞ Xk =: X ≥ X̂ ,

e) X is semi-stabilizing.

Main problems

Conditions for initial guess make its computation difficult.

Observed convergence is linear.
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Theorem [Cherfi/Abou-Kandil/Bourles 2005]

If
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Lyapunov Iterations/Perturbed Hessian Approach
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Theorem [Cherfi/Abou-Kandil/Bourles 2005]

If

∃ X̂ such that R(X̂ ) ≥ 0,
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Idea

Consider

ATX + XA + CTC + X (B1B
T
1 − B2B

T
2 )X =: R(X ).

Then

R(X + Z ) = R(X ) + (A + (B1B
T
1 − B2B

T
2 )X︸ ︷︷ ︸

=:bA
)TZ + ZÂ

+Z (B1B
T
1 − B2B

T
2 )Z .

Furthermore, if X = XT , Z = ZT solve the standard ARE

0 = R(X ) + ÂTZ + ZÂ− ZB2B
T
2 Z ,

then

R(X + Z ) = ZB1B
T
1 Z ,

‖R(X )‖2 = ‖BT
1 Z‖2.
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Idea

Consider
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then
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Idea
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2 )X︸ ︷︷ ︸
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Furthermore, if X = XT , Z = ZT solve the standard ARE
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Riccati iteration

1 Set X0 = 0.

2 FOR k = 1, 2, . . .,

(i) Set Ak := A + B1(BT
1 Xk)− B2(BT

2 Xk).

(ii) Solve the ARE

R(Xk) + AT
k Zk + ZkAk − ZkB2B

T
2 Zk = 0.

(iii) Set Xk+1 := Xk + Zk .

(iv) IF ‖BT
1 Zk‖2 < tol THEN Stop.

Remark. ARE for k = 0 is the standard LQR/H2 ARE.
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Theorem [Lanzon/Feng/B.D.O. Anderson 2007]

If

(A,B2) stabilizable,

(A,C ) has no unobservable purely imaginary modes, and

∃ stabilizing solution X−,

then

a) (A + B1B
T
1 Xk ,B2) stabilizable for all k = 0, 1, . . .,

b) Zk ≥ 0 for all k = 0, 1, . . .,

c) A + B1B
T
1 Xk − B2B

T
2 Xk+1 is Hurwitz for all k = 0, 1, . . .,

d) R(Xk+1) = ZkB1B
T
1 Zk for all k = 0, 1, . . .,

e) X− ≥ . . . ≥ Xk+1 ≥ Xk ≥ . . . ≥ 0.

f) If ∃ limk→∞ Xk =: X , then X = X−, and

g) convergence is locally quadratic.
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Riccati Iterations
[Lanzon/Feng/B.D.O. Anderson 2007 (Proc. ECC 2007)]

Riccati iteration – low-rank version [B. 2008]

1 Solve the ARE

CTC + ATZ0 + Z0A− Z0B2B
T
2 Z0 = 0

using Newton-ADI, yielding Y0 with Z0 ≈ Y0Y
T
0 .

2 Set R1 := Y0. {% R1R
T
1 ≈ X1.}

3 FOR k = 1, 2, . . .,

(i) Set Ak := A + B1(BT
1 Rk)RT

k − B2(BT
2 Rk)RT

k .

(ii) Solve the ARE

Yk−1(Y T
k−1B1)(BT

1 Yk−1)Y T
k−1 + AT

k Zk + ZkAk − ZkB2B
T
2 Zk = 0

using Newton-ADI, yielding Yk with Zk ≈ YkY
T
k .

(iii) Set Rk+1 := rrqr ([ Rk , Yk ], τ). {% Rk+1R
T
k+1 ≈ Xk+1}

(iv) IF ‖(BT
1 Yk)Y T

k ‖2 < tol THEN Stop.
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AREs with Indefinite Hessian
Numerical example

Trivial example (n = 2) from [Cherfi/Abou-Kandil/Bourles 2005].
Compare convergence of Lyapunov and Riccati iterations.
Solution of standard AREs with Newton’s method.
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AREs with Indefinite Hessian
Numerical example
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Software

Lyapack [Penzl 2000]

Matlab toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.
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Software

Lyapack [Penzl 2000]

Matlab toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS – Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

Extended and revised version of Lyapack.

Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).

Many algorithmic improvements:

– new ADI parameter selection,
– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of the mass matrix.

C version CMESS under development (Martin Köhler).
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Lyapack [Penzl 2000]

Matlab toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

MESS – Matrix Equations Sparse Solvers [Saak/Mena/B. 2008]

Extended and revised version of Lyapack.

Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).

Many algorithmic improvements:

– new ADI parameter selection,
– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of the mass matrix.

C version CMESS under development (Martin Köhler).
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Includes solvers for large-scale differential Riccati equations (based on
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Many algorithmic improvements:

– new ADI parameter selection,
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Conclusions and Open Problems

Galerkin projection can significantly accelerate ADI iteration for
Lyapunov equations.

Low-rank Newton-ADI is a powerful and reliable method for solving
large-scale AREs with semidefinite Hessian.

Low-rank Galerkin-QADI may become a viable alternative to
Newton-ADI.

High-rank constant terms in ARE can be handled using quadrature
rules.

Software is available in Matlab toolbox Lyapack and its successor
MESS.

Low-rank Riccati iteration yields a reliable and efficient method for
large-scale AREs with indefinite Hessian, useful, e.g., for H∞
optimization of PDE control problems.

Low-rank Lyapunov iteration is an extremely simple variant for
large-scale problems, but exhibits slower convergence and requires
difficult-to-compute initial value.



ADI for Lyapunov
and Riccati

Peter Benner

Large-Scale
Matrix Equtions

ADI for Lyapunov

Newton-ADI for
AREs

AREs with
Indefinite Hessian

Software

Conclusions and
Open Problems

References

Conclusions and Open Problems

Galerkin projection can significantly accelerate ADI iteration for
Lyapunov equations.

Low-rank Newton-ADI is a powerful and reliable method for solving
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Low-rank Galerkin-QADI may become a viable alternative to
Newton-ADI.

High-rank constant terms in ARE can be handled using quadrature
rules.

Software is available in Matlab toolbox Lyapack and its successor
MESS.

Low-rank Riccati iteration yields a reliable and efficient method for
large-scale AREs with indefinite Hessian, useful, e.g., for H∞
optimization of PDE control problems.

Low-rank Lyapunov iteration is an extremely simple variant for
large-scale problems, but exhibits slower convergence and requires
difficult-to-compute initial value.
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Conclusions and Open Problems

To-Do list:
. . . for AREs with semidefinite Hessian:

– computation of stabilizing initial guess.
(If hierarchical grid structure is available, a multigrid approach is
possible, other approaches based on “cheaper” matrix equations
under development.)

– Implementation of coupled Riccati solvers for LQG controller
design and balancing-related model reduction.
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Conclusions and Open Problems

To-Do list:
. . . for AREs with semidefinite Hessian:

– computation of stabilizing initial guess.
(If hierarchical grid structure is available, a multigrid approach is
possible, other approaches based on “cheaper” matrix equations
under development.)

– Implementation of coupled Riccati solvers for LQG controller
design and balancing-related model reduction.

. . . for AREs with indefinite Hessian:

– Implement Riccati iteration in Lyapack/MESS style.
– More numerical tests.
– Re-write Riccati iteration as feedback iteration.
– Efficient computation of initial value for Lyapunov iterations?
– ∃ perturbed Hessian so that Lyapunov iteration quadratically

convergent?
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