SYSTEM-THEORETIC METHODS FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS: SIMULATION, CONTROL, AND INVERSE PROBLEMS

Peter Benner

Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz

TECHNISCHE UNIVERSITÄT CHEMNITZ

MATHMOD 2009 Vienna, February 11–13, 2009

Overview

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

1 Introduction

- Model Reduction
- Application Areas
- Goals

2 System-Theoretic Model Reduction

- Balancing Basics
- Balanced Truncation and Relatives
- Solving Large-Scale Matrix Equations

3 Numerical Examples

- Simulation
- Control

Model Reduction for Dynamical Systems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

$\Sigma : \begin{cases} E\dot{x}(t) = f(t, x(t), u(t)), & x(t_0) = x_0, \\ y(t) = g(t, x(t), u(t)) & (b) \end{cases}$

with

- (generalized) states $x(t) \in \mathbb{R}^n$ ($E \in \mathbb{R}^{n \times n}$),
- inputs $u(t) \in \mathbb{R}^m$,

Dynamical Systems

• outputs $y(t) \in \mathbb{R}^p$, (b) is called output equation.

E singular \Rightarrow (a) is system of differential-algebraic equations (DAEs) otherwise \Rightarrow (a) is system of ordinary differential equations (ODEs)

Model Reduction for Dynamical Systems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

	0			
Σ :	{	$E\dot{x}(t)$	=	f(t, x(t), u(t)),
		y(t)	=	g(t, x(t), u(t))

• states $x(t) \in \mathbb{R}^n$,

Original System

- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^{p}$.

<u>u</u> <u>y</u>

Reduced-Order System

$$\widehat{\Sigma}: \left\{ egin{array}{l} \hat{E}\dot{\hat{x}}(t) = \widehat{f}(t,\hat{x}(t),oldsymbol{u}(t)), \ \hat{y}(t) = \widehat{g}(t,\hat{x}(t),oldsymbol{u}(t)). \end{array}
ight.$$

states
$$\hat{x}(t) \in \mathbb{R}^r$$
, $r \ll n$

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs
$$\hat{y}(t) \in \mathbb{R}^{p}$$
.

Goal

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Model Reduction for Dynamical Systems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

Σ

Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

. J	$\int E\dot{x}(t)$	=	f(t, x(t), u(t)),
٠١	y(t)	=	g(t, x(t), u(t)).

states $x(t) \in \mathbb{R}^n$,

Original System

- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^{p}$.

<u>u</u> <u>y</u>

Reduced-Order System

$$\widehat{\Sigma}: \left\{ egin{array}{l} \hat{E}\dot{\hat{x}}(t) = \widehat{f}(t,\hat{x}(t),oldsymbol{u}(t)), \ \hat{y}(t) = \widehat{g}(t,\hat{x}(t),oldsymbol{u}(t)). \end{array}
ight.$$

states
$$\hat{x}(t) \in \mathbb{R}^r$$
, $r \ll n$

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs
$$\hat{y}(t) \in \mathbb{R}^{p}$$
.

Goal:

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Linear Systems

F

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Linear, Time-Invariant (LTI) / Descriptor Systems

$\dot{x}(t)$	=	Ax(t) + Bu(t),	$A, E \in \mathbb{R}^{n \times n},$	$B \in \mathbb{R}^{n \times m},$
y(t)	=	Cx(t) + Du(t),	$C \in \mathbb{R}^{p \times n},$	$D \in \mathbb{R}^{p \times m}$.

_aplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sEx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{C(sE - A)^{-1}B + D}_{=:G(s)}\right)u(s)$$

G is the transfer function of Σ .

Linear Systems

F

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Linear, Time-Invariant (LTI) / Descriptor Systems

$\dot{x}(t)$	=	Ax(t) + Bu(t),	$A, E \in \mathbb{R}^{n \times n},$	$B \in \mathbb{R}^{n \times m},$
y(t)	=	Cx(t) + Du(t),	$C \in \mathbb{R}^{p \times n},$	$D \in \mathbb{R}^{p \times m}$.

Laplace Transformation / Frequency Domain

Application of Laplace transformation $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sx(s))$ to linear system with x(0) = 0:

$$sEx(s) = Ax(s) + Bu(s), \quad y(s) = Bx(s) + Du(s),$$

yields I/O-relation in frequency domain:

$$y(s) = \left(\underbrace{C(sE - A)^{-1}B + D}_{=:G(s)}\right)u(s)$$

G is the transfer function of Σ .

Model Reduction for Linear Systems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Approximate the dynamical system

$$\begin{array}{rcl} E\dot{x} &=& Ax + Bu, & A, E \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y &=& Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}, \end{array}$$

by reduced-order system

Problem

$$\begin{array}{rcl} \hat{E}\dot{\hat{x}} &=& \hat{A}\hat{x} + \hat{B}u, \\ \hat{y} &=& \hat{C}\hat{x} + \hat{D}u, \end{array} \qquad \begin{array}{rcl} \hat{A}, \hat{E} \in \mathbb{R}^{r \times r}, & \hat{B} \in \mathbb{R}^{r \times m}, \\ \hat{C} \in \mathbb{R}^{p \times r}, & \hat{D} \in \mathbb{R}^{p \times m}, \end{array}$$

of order $r \ll n$, such that

 $\|y - \hat{y}\| = \|Gu - \hat{G}u\| \le \|G - \hat{G}\|\|u\| < \text{tolerance} \cdot \|u\|.$

 \implies Approximation problem: min_{order (\hat{G}) < $r \parallel G - \hat{G} \parallel$.}

Model Reduction for Linear Systems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Approximate the dynamical system

$$\begin{array}{rcl} E\dot{x} &=& Ax + Bu, & A, E \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y &=& Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}, \end{array}$$

by reduced-order system

Problem

$$\begin{array}{rcl} \hat{E}\dot{\hat{x}} &=& \hat{A}\hat{x} + \hat{B}u, \\ \hat{y} &=& \hat{C}\hat{x} + \hat{D}u, \end{array} \qquad \begin{array}{rcl} \hat{A}, \hat{E} \in \mathbb{R}^{r \times r}, & \hat{B} \in \mathbb{R}^{r \times m}, \\ \hat{C} \in \mathbb{R}^{p \times r}, & \hat{D} \in \mathbb{R}^{p \times m}, \end{array}$$

of order $r \ll n$, such that

$$\|y - \hat{y}\| = \|Gu - \hat{G}u\| \le \|G - \hat{G}\|\|u\| < \text{tolerance} \cdot \|u\|.$$

 \implies Approximation problem: $\min_{\text{order}(\hat{G}) \leq r} \|G - \hat{G}\|$.

Model Reduction of Large-Scale Systems

Peter Benne

Introduction Model Reductio Application Areas

Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Here:

■ linear systems,

- $\blacksquare n \gg m, p,$
- n so large, that A(, E) cannot be stored in main memory (RAM) as n × n array: n > 5000, say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, ...
- A(, E) sparse or data-sparse, i.e., A(, E) can be stored in O(n) or O(n log n) memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).

Model Reduction of Large-Scale Systems

Peter Benne

- Introduction Model Reductio Application Areas
- Goals
- System-Theoretic Model Reduction
- Numerical Examples
- Conclusions and Outlook

Here:

- linear systems,
- *n* ≫ *m*, *p*,
- n so large, that A(, E) cannot be stored in main memory (RAM) as n × n array: n > 5000, say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, ...
- A(, E) sparse or data-sparse, i.e., A(, E) can be stored in O(n) or O(n log n) memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).

Model Reduction of Large-Scale Systems

Peter Benne

- Introduction Model Reduction Application Areas
- System-Theoretic Model Reduction
- Numerical Examples
- Conclusions and Outlook

Here:

- linear systems,
- *n* ≫ *m*, *p*,
- *n* so large, that A(, E) cannot be stored in main memory (RAM) as $n \times n$ array: n > 5000, say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, ...
- A(, E) sparse or data-sparse, i.e., A(, E) can be stored in O(n) or O(n log n) memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).

Model Reduction of Large-Scale Systems

Peter Benne

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook Here:

- linear systems,
- *n* ≫ *m*, *p*,
- *n* so large, that A(, E) cannot be stored in main memory (RAM) as $n \times n$ array: n > 5000, say, e.g., from
 - semi-discretization of PDEs,
 - finite element modeling of MEMS,
 - VLSI design/circuit simulation, ...
- A(, E) sparse or data-sparse, i.e., A(, E) can be stored in O(n) or O(n log n) memory locations, but matrix manipulations like similarity transformations are too expensive (possible exception: permutations, sparse factorizations).

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Time-domain simulation

Evaluation of variation-of-constants formula

$$y(t) = C \exp(At) \left(x^0 + \int_0^t \exp(-A\tau) Bu(\tau) d\tau \right),$$

usually too expensive \rightsquigarrow numerical simulation, e.g., using backwards Euler

$$y_h(t_{k+1}) = C(E - h_k A)^{-1} (Ex_h(t_k) + h_k Bu(t_{k+1})) + Du(t_{k+1}),$$

Bottleneck: solution of $(E - h_k A)z = b$, computation time can be significantly reduced by using reduced-order model:

$$\hat{y}_h(t_{k+1}) = \hat{C}(\hat{E} - h_k\hat{A})^{-1} \left(\hat{E}x_h(t_k) + h_k\hat{B}u(t_{k+1})\right) + \hat{D}u(t_{k+1}).$$

Application Areas Simulation

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Frequency-domain simulation

Frequency response analysis, e.g., for Bode, Nyquist or Nichols plots, requires evaluation of transfer function

$$G(\iota\omega_k) = C(\iota\omega_k E - A)^{-1}B + D, \quad \omega_k \ge 0, \ k = 1, \dots, N_f.$$

Bottleneck: solution of $(\imath \omega_k E - A)z = b$.

Computation time can be significantly reduced by using reduced-order model:

$$\hat{G}(\imath\omega_k) = \hat{C}(\imath\omega_k\hat{E} - \hat{A})^{-1}\hat{B} + \hat{D}.$$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Frequency-domain simulation

Frequency response analysis, e.g., for Bode, Nyquist or Nichols plots, requires evaluation of transfer function

$$G(\imath\omega_k) = C(\imath\omega_k E - A)^{-1}B + D, \quad \omega_k \ge 0, \ k = 1, \dots, N_f.$$

Bottleneck: solution of $(\imath \omega_k E - A)z = b$.

Computation time can be significantly reduced by using reduced-order model:

$$\hat{G}(\imath\omega_k) = \hat{C}(\imath\omega_k\hat{E} - \hat{A})^{-1}\hat{B} + \hat{D}.$$

But: the cost for solving the linear systems in time/frequency domain simulation may not benefit from smaller order, if efficient sparse direct solver for full-size sparse system matrices is available.

Application Areas Simulation

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

An easy improvement

Significant reduction can be achieved by transforming (\hat{A}, \hat{E}) to Hessenberg-triangular form using QZ algorithm, i.e., compute orthogonal Q, Z such that

$$Q(\lambda \hat{E} - \hat{A})Z = \lambda \left[\swarrow \right] - \left[\swarrow \right] \equiv \left[\swarrow \right]$$

New reduced-order system: $(Q\hat{E}Z, Q\hat{A}Z, Q\hat{B}, \hat{C}Z)$, linear systems of equations

$$(\jmath\omega\hat{E}-\hat{A})x = b,$$

 $(\hat{E}-h_k\hat{A})x_{k+1} = \hat{E}x_k + \dots,$ etc

have Hessenberg form and can thus be solved using r - 1 Givens rotations only! (Needs Hessenberg solver inside simulator.)

For symmetric systems, further reduction can be achieved.

Application Areas (Optimal) Control

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$.

Practical controllers require small N ($N \sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.

 \implies reduce order of plant (*n*) and/or controller (*N*).

Application Areas (Optimal) Control

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$.

Practical controllers require small N ($N \sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.

 \implies reduce order of plant (*n*) and/or controller (*N*).

Application Areas (Optimal) Control

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Feedback Controllers

A feedback controller (dynamic compensator) is a linear system of order N, where

- input = output of plant,
- output = input of plant.

Modern (LQG- $/\mathcal{H}_2$ - $/\mathcal{H}_\infty$ -) control design: $N \ge n$.

Practical controllers require small N ($N \sim 10$, say) due to

- real-time constraints,
- increasing fragility for larger N.

 \implies reduce order of plant (*n*) and/or controller (*N*).

Application Areas Inverse Problems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook Assume m = p, $D \in \mathbb{R}^{m \times m}$ invertible (generalizations possible!), then $G^{-1}(s) = -D^{-1}C(sE - (A - BD^{-1}C))^{-1}BD^{-1} + D^{-1}.$

Some applications like

System inversion

- inverse-based control,
- identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given Y(s), the Laplace transform of y(t), compute $U(s) = G^{-1}(s)Y(s)$.

Application Areas Inverse Problems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook Assume m = p, $D \in \mathbb{R}^{m \times m}$ invertible (generalizations possible!), then $G^{-1}(s) = -D^{-1}C(sE - (A - BD^{-1}C))^{-1}BD^{-1} + D^{-1}.$

Some applications like

System inversion

- inverse-based control,
- identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given Y(s), the Laplace transform of y(t), compute $U(s) = G^{-1}(s)Y(s)$.

Goal: reduced-order transfer function $\hat{G}(s)$ such that

$$\hat{U}(s) = \hat{G}^{-1}(s)Y(s)$$

has small error

$$\|U - \hat{U}\| = \|G^{-1}Y - \hat{G}^{-1}Y\| \le \|G^{-1} - \hat{G}^{-1}\|\|Y\| \le \text{tolerance} \cdot \|Y\|.$$

Application Areas Inverse Problems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Assume m = p, $D \in \mathbb{R}^{m \times m}$ invertible (generalizations possible!), then $G^{-1}(s) = -D^{-1}C(sE - (A - BD^{-1}C))^{-1}BD^{-1} + D^{-1}.$

Some applications like

System inversion

- inverse-based control,
- identification of source terms,

reconstruct input function from reference trajectory/measured outputs: given Y(s), the Laplace transform of y(t), compute $U(s) = G^{-1}(s)Y(s)$.

Goal: reduced-order transfer function $\hat{G}(s)$ such that

$$\hat{U}(s) = \hat{G}^{-1}(s)Y(s)$$

has small error

$$\|U - \hat{U}\| = \|G^{-1}Y - \hat{G}^{-1}Y\| \le \|G^{-1} - \hat{G}^{-1}\|\|Y\| \le \text{tolerance} \cdot \|Y\|.$$

Model Reduction of Large-Scale Systems

Peter Benner

- Introduction Model Reduction Application Areas Goals
- System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Automatic generation of compact models.

 Satisfy desired error tolerance for all admissible input signals, i.e., want

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u|| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$

 \implies Need computable error bound/estimate!

- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy"),

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$

\implies Need computable error bound/estimate!

- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy"),

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$

- \implies Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy"),

Model Reduction of Large-Scale Systems

Peter Benner

Introduction Model Reduction Application Areas Goals

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \qquad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m).$

- \implies Need computable error bound/estimate!
- Preserve physical properties:
 - stability (poles of G in \mathbb{C}^-),
 - minimum phase (zeroes of G in \mathbb{C}^-),
 - passivity ("system does not generate energy"),

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook

$\Sigma: \begin{cases} \dot{x}(t) = Ax + Bu, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y(t) = Cx + Du, & C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \end{cases}$

(A, B, C, D) is a realization of Σ (nonunique).

Linear, Time-Invariant (LTI) Systems

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook $\Sigma: \begin{cases} \dot{x}(t) = Ax + Bu, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y(t) = Cx + Du, & C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \end{cases}$

(A, B, C, D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Linear, Time-Invariant (LTI) Systems

Given $P, Q \in \mathbb{R}^{n \times n}$ symmetric positive definite (spd), and a contragredient transformation $T : \mathbb{R}^n \to \mathbb{R}^n$,

$$TPT^{T} = T^{-T}QT^{-1} = \operatorname{diag}(\sigma_{1}, \ldots, \sigma_{n}), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0.$$

Balancing Σ w.r.t. P, Q:

$$\Sigma \equiv (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D) \equiv \Sigma.$$

Generalization to $P, Q \ge 0$ possible: if \hat{n} is McMillan degree of Σ , then $T(PQ)T^{-1} = \operatorname{diag}(\sigma_1, \dots, \sigma_{\hat{n}}, 0, \dots, 0).$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook $\Sigma: \begin{cases} \dot{x}(t) = Ax + Bu, & A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\ y(t) = Cx + Du, & C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \end{cases}$

(A, B, C, D) is a realization of Σ (nonunique).

Model Reduction Based on Balancing

Linear, Time-Invariant (LTI) Systems

Given $P, Q \in \mathbb{R}^{n \times n}$ symmetric positive definite (spd), and a contragredient transformation $T : \mathbb{R}^n \to \mathbb{R}^n$,

$$TPT^{T} = T^{-T}QT^{-1} = \operatorname{diag}(\sigma_{1}, \ldots, \sigma_{n}), \quad \sigma_{1} \geq \ldots \geq \sigma_{n} \geq 0.$$

Balancing Σ w.r.t. P, Q:

$$\Sigma \equiv (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D) \equiv \Sigma.$$

Generalization to $P, Q \ge 0$ possible: if \hat{n} is McMillan degree of Σ , then $T(PQ)T^{-1} = \operatorname{diag}(\sigma_1, \dots, \sigma_{\hat{n}}, 0, \dots, 0).$

Basic Model Reduction Procedure

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook **1** Given $\Sigma \equiv (A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$ nonsingular, compute

$$\begin{array}{rcl} (A,B,C,D) & \mapsto & (TAT^{-1},TB,CT^{-1},D) \\ & = & \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right) \end{array}$$

2 Truncation \rightsquigarrow reduced-order model:

 $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (A_{11}, B_1, C_1, D).$

Basic Model Reduction Procedure

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook **1** Given $\Sigma \equiv (A, B, C, D)$ and balancing (w.r.t. given P, Q spd) transformation $T \in \mathbb{R}^{n \times n}$ nonsingular, compute

$$\begin{array}{rcl} (A,B,C,D) & \mapsto & (TAT^{-1},TB,CT^{-1},D) \\ & = & \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right) \end{array}$$

2 Truncation \rightsquigarrow reduced-order model:

 $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) = (A_{11}, B_1, C_1, D).$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook

Implementation: SR Method

Compute Cholesky (square) or full-rank (maybe rectangular, "thin") factors of *P*, *Q*

$$P = S^T S, \quad Q = R^T R.$$

2 Compute SVD

$$SR^{T} = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^{T} \\ V_2^{T} \end{bmatrix}$$

3 Set

$$W = R^T V_1 \Sigma_1^{-1/2}, \qquad V = S^T U_1 \Sigma_1^{-1/2}$$

4 Reduced-order model is

 $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (W^T A V, W^T B, C V, D) \ (\equiv (A_{11}, B_1, C_1, D).)$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook

Implementation: SR Method

Compute Cholesky (square) or full-rank (maybe rectangular, "thin") factors of *P*, *Q*

$$P = S^T S, \quad Q = R^T R.$$

2 Compute SVD

$$SR^{T} = \begin{bmatrix} U_1, U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^{T} \\ V_2^{T} \end{bmatrix}$$

3 Set

$$W = R^T V_1 \Sigma_1^{-1/2}, \qquad V = S^T U_1 \Sigma_1^{-1/2}$$

4 Reduced-order model is

 $(\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (W^T A V, W^T B, C V, D) \ (\equiv (A_{11}, B_1, C_1, D).)$

Balancing for Simulation, Control Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \dots, \sigma_n) = \Sigma$, $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} \ge \dots = \sigma_n \ge 0$ at size r.

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical

Conclusions and Outlook

Classical Balanced Truncation (BT) MULLIS/ROBERTS '76, MOORE '81

• $P/Q = \text{controllability/observability Gramian of } \Sigma \equiv (A, B, C, D).$

• For asymptotically stable systems, P, Q solve dual Lyapunov equations $AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0.$

• $\{\sigma_1^{BT}, \ldots, \sigma_n^{BT}\}$ are the Hankel singular values (HSVs) of Σ .

- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [ZHOU/SALOMON/WU '99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:

$$\|G - \hat{G}^{\mathrm{BT}}\|_{\mathcal{H}_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{BT}},$$

allows adaptive choice of r!

Balancing for Simulation, Control Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \dots, \sigma_n) = \Sigma$, $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} \ge \dots = \sigma_n \ge 0$ at size r.

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

Classical Balanced Truncation (BT) Mullis/Roberts '76, Moore '81

• $P/Q = \text{controllability/observability Gramian of } \Sigma \equiv (A, B, C, D).$

• For asymptotically stable systems, P, Q solve dual Lyapunov equations $AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0.$

• $\{\sigma_1^{BT}, \ldots, \sigma_n^{BT}\}$ are the Hankel singular values (HSVs) of Σ .

- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [ZHOU/SALOMON/WU '99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:

$$\|G - \hat{G}^{\mathrm{BT}}\|_{\mathcal{H}_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{BT}},$$

allows adaptive choice of r!

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

Classical Balanced Truncation (BT) MULLIS/ROBERTS '76, MOORE '81

- $P/Q = \text{controllability/observability Gramian of } \Sigma \equiv (A, B, C, D).$
- For asymptotically stable systems, P, Q solve dual Lyapunov equations $AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0.$
- $\{\sigma_1^{BT}, \dots, \sigma_n^{BT}\}$ are the Hankel singular values (HSVs) of Σ .
- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [ZHOU/SALOMON/WU '99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:

$$\|G - \hat{G}^{\mathrm{BT}}\|_{\mathcal{H}_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{BT}},$$

allows adaptive choice of r!

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

Classical Balanced Truncation (BT) MULLIS/ROBERTS '76, MOORE '81

- $P/Q = \text{controllability/observability Gramian of } \Sigma \equiv (A, B, C, D).$
- For asymptotically stable systems, P, Q solve dual Lyapunov equations $AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0.$
- $\{\sigma_1^{BT}, \dots, \sigma_n^{BT}\}$ are the Hankel singular values (HSVs) of Σ .
- Preserves stability, extends to unstable systems w/o purely imaginary poles using frequency domain definition of the Gramians [ZHOU/SALOMON/WU '99].
- Preserves passivity for certain symmetric systems.
- Computable error bound comes for free:

$$\|\boldsymbol{G} - \hat{\boldsymbol{G}}^{\mathrm{BT}}\|_{\mathcal{H}_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{BT}},$$

allows adaptive choice of r!

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Equations

Numerical Examples

Conclusions and Outlook

Balancing for Simulation, Control Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \dots, \sigma_n) = \Sigma$, $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} \ge \dots \sigma_n \ge 0$ at size r.

Linear-Quadratic Gaussian Balanced Truncation (LQGBT) JONCKHEERE/SILVERMAN '83

■ *P*/*Q* = controllability/observability Gramian of closed-loop system based on LQG compensator.

■ *P*, *Q* solve dual algebraic Riccati equations (AREs)

$$0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$$

$$0 = A^{T}Q + QA - QBB^{T}Q + C^{T}C.$$

- Applies to unstable systems! (Only stabilizability & detectability are required.)
- Computable error bound comes for free: if $G = M^{-1}N$, $\hat{G} = \hat{M}^{-1}\hat{N}$ are left coprime factorizations with stable factors, then

 $\|\begin{bmatrix} N & M \end{bmatrix} - \begin{bmatrix} \hat{N} & \hat{M} \end{bmatrix}\|_{H_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{LQG}} \left(1 + (\sigma_{j}^{\mathrm{LQG}})^{2}\right)^{\frac{1}{2}},$

allows adaptive choice of r!

■ Yields reduced-order LQR/LQG controller for free!

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Equations

Numerical Examples

Conclusions and Outlook

Balancing for Simulation, Control Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \dots, \sigma_n) = \Sigma$, $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} \ge \dots \sigma_n \ge 0$ at size r.

Linear-Quadratic Gaussian Balanced Truncation (LQGBT) JONCKHEERE/SILVERMAN '83

 P/Q = controllability/observability Gramian of closed-loop system based on LQG compensator.

■ *P*, *Q* solve dual algebraic Riccati equations (AREs)

$$0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$$

$$0 = A^{T}Q + QA - QBB^{T}Q + C^{T}C.$$

Applies to unstable systems! (Only stabilizability & detectability are required.)

Computable error bound comes for free: if $G = M^{-1}N$, $\hat{G} = \hat{M}^{-1}\hat{N}$ are left coprime factorizations with stable factors, then

 $\|\begin{bmatrix} N & M \end{bmatrix} - \begin{bmatrix} \hat{N} & \hat{M} \end{bmatrix}\|_{H_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{LQG}} \left(1 + (\sigma_{j}^{\mathrm{LQG}})^{2}\right)^{\frac{1}{2}},$

allows adaptive choice of r!

■ Yields reduced-order LQR/LQG controller for free!

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical

Conclusions and Outlook

Balancing for Simulation, Control Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \dots, \sigma_n) = \Sigma$, $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} \ge \dots \sigma_n \ge 0$ at size r.

Linear-Quadratic Gaussian Balanced Truncation (LQGBT) JONCKHEERE/SILVERMAN '83

 P/Q = controllability/observability Gramian of closed-loop system based on LQG compensator.

■ *P*, *Q* solve dual algebraic Riccati equations (AREs)

 $0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$ $0 = A^{T}Q + QA - QBB^{T}Q + C^{T}C.$

- Applies to unstable systems! (Only stabilizability & detectability are required.)
- Computable error bound comes for free: if $G = M^{-1}N$, $\hat{G} = \hat{M}^{-1}\hat{N}$ are left coprime factorizations with stable factors, then

 $\|\begin{bmatrix} N & M \end{bmatrix} - \begin{bmatrix} \hat{N} & \hat{M} \end{bmatrix}\|_{H_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{LQG}} \left(1 + (\sigma_{j}^{\mathrm{LQG}})^{2}\right)^{\frac{1}{2}},$

allows adaptive choice of r!

■ Yields reduced-order LQR/LQG controller for free!

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

Balancing for Simulation, Control Truncate realization, balanced w.r.t. $P = Q = \text{diag}(\sigma_1, \dots, \sigma_n) = \Sigma$, $\sigma_1 \ge \dots \ge \sigma_r > \sigma_{r+1} \ge \dots \sigma_n \ge 0$ at size r.

Linear-Quadratic Gaussian Balanced Truncation (LQGBT) JONCKHEERE/SILVERMAN '83

 P/Q = controllability/observability Gramian of closed-loop system based on LQG compensator.

■ *P*, *Q* solve dual algebraic Riccati equations (AREs)

 $0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$ $0 = A^{T}Q + QA - QBB^{T}Q + C^{T}C.$

- Applies to unstable systems! (Only stabilizability & detectability are required.)
- Computable error bound comes for free: if $G = M^{-1}N$, $\hat{G} = \hat{M}^{-1}\hat{N}$ are left coprime factorizations with stable factors, then

$$\|\begin{bmatrix} N & M \end{bmatrix} - \begin{bmatrix} \hat{N} & \hat{M} \end{bmatrix}\|_{\mathcal{H}_{\infty}} \leq 2\sum_{j=r+1}^{n} \sigma_{j}^{\mathrm{LQG}} \left(1 + (\sigma_{j}^{\mathrm{LQG}})^{2}\right)^{\frac{1}{2}},$$

allows adaptive choice of r!

Yields reduced-order LQR/LQG controller for free!

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Equations Numerical

Examples

Conclusions and Outlook

Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.

• For m = p, P, Q solve dual AREs

Positive-Real Balanced Truncation (PRBT)

 $0 = \overline{A}P + P\overline{A}^{T} + PC^{T}\overline{R}^{-1}CP + B\overline{R}^{-1}B^{T},$ $0 = \overline{A}^{T}Q + Q\overline{A} + QB\overline{R}^{-1}B^{T}Q + C^{T}\overline{R}^{-1}C,$

where $\bar{R} = D + D^T$, $\bar{A} = A - B\bar{R}^{-1}C$.

Preserves stability, strict passivity; needs stability of \overline{A} .

Computable error bound [GUGERCIN/ANTOULAS '03,B. '05]:

 $\|G - \hat{G}^{\mathrm{PR}}\|_{H_{\infty}} \leq 2\|R\|^2 \|\hat{G}_D\|_{\infty} \|G_D\|_{\infty} \sum_{k=r+1}^n \sigma_k^{\mathrm{PR}}.$

$$(G_D(s) := G(s) + D^T, \ \hat{G}_D(s) := \hat{G}(s) + D^T.)$$

Green '88

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.

• For m = p, P, Q solve dual AREs

Positive-Real Balanced Truncation (PRBT)

 $0 = \overline{A}P + P\overline{A}^{T} + PC^{T}\overline{R}^{-1}CP + B\overline{R}^{-1}B^{T},$ $0 = \overline{A}^{T}Q + Q\overline{A} + QB\overline{R}^{-1}B^{T}Q + C^{T}\overline{R}^{-1}C,$

where $\bar{R} = D + D^T$, $\bar{A} = A - B\bar{R}^{-1}C$.

• Preserves stability, strict passivity; needs stability of \overline{A} .

Computable error bound [GUGERCIN/ANTOULAS '03,B. '05]:

$$\|G - \hat{G}^{\mathrm{PR}}\|_{H_{\infty}} \leq 2\|R\|^2 \|\hat{G}_D\|_{\infty} \|G_D\|_{\infty} \sum_{k=r+1}^n \sigma_k^{\mathrm{PR}}.$$

$$(G_D(s) := G(s) + D^T, \ \hat{G}_D(s) := \hat{G}(s) + D^T.)$$

Green '88

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.

• For m = p, P, Q solve dual AREs

Positive-Real Balanced Truncation (PRBT)

 $0 = \overline{A}P + P\overline{A}^{T} + PC^{T}\overline{R}^{-1}CP + B\overline{R}^{-1}B^{T},$ $0 = \overline{A}^{T}Q + Q\overline{A} + QB\overline{R}^{-1}B^{T}Q + C^{T}\overline{R}^{-1}C,$

where $\bar{R} = D + D^T$, $\bar{A} = A - B\bar{R}^{-1}C$.

- Preserves stability, strict passivity; needs stability of \overline{A} .
- **Computable error bound** [GUGERCIN/ANTOULAS '03,B. '05]:

$$\|G - \hat{G}^{\mathrm{PR}}\|_{H_{\infty}} \leq 2\|R\|^2 \|\hat{G}_D\|_{\infty} \|G_D\|_{\infty} \sum_{k=r+1}^n \sigma_k^{\mathrm{PR}}.$$

$$(G_D(s) := G(s) + D^T, \ \hat{G}_D(s) := \hat{G}(s) + D^T.)$$

Green '88

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical

Conclusions and Outlook

Balanced Stochastic Truncation (BST)

Desai/Pal '84, Green '88

- $P = \text{controllability Gramian of } \Sigma \equiv (A, B, C, D), \text{ i.e., solution of Lyapunov equation } AP + PA^T + BB^T = 0.$
- Q = observability Gramian of right spectral factor of power spectrum of Σ , i.e., solution of ARE

 $A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,$

where $A_W := A - B_W (DD^T)^{-1} C$, $B_W := BD^T + PC^T$.

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

- $P = \text{controllability Gramian of } \Sigma \equiv (A, B, C, D), \text{ i.e., solution of Lyapunov equation } AP + PA^T + BB^T = 0.$
- Q = observability Gramian of right spectral factor of power spectrum of Σ, i.e., solution of ARE

DESAI/PAL '84, GREEN '88

 $A_{W}^{T}Q + QA_{W} + QB_{W}(DD^{T})^{-1}B_{W}^{T}Q + C^{T}(DD^{T})^{-1}C = 0,$

where $A_W := A - B_W (DD^T)^{-1}C$, $B_W := BD^T + PC^T$.

Preserves stability; needs stability of A_W.

Balanced Stochastic Truncation (BST)

■ Computable relative error bound [GREEN '88]:

$$\|\Delta^{\mathrm{BST}}\|_{\mathcal{H}_{\infty}} = \|G^{-1}(G-\widehat{G}^{\mathrm{BST}})\|_{\mathcal{H}_{\infty}} \leq \prod_{j=r+1}^n rac{1+\sigma_j^{\mathrm{BST}}}{1-\sigma_j^{\mathrm{BST}}} - 1,$$

 \rightsquigarrow uniform approximation quality over full frequency range. Note: $|\sigma_j^{\rm BST}| \leq 1.$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

Balanced Stochastic Truncation (BST)

Desai/Pal '84, Green '88

- $P = \text{controllability Gramian of } \Sigma \equiv (A, B, C, D), \text{ i.e., solution of Lyapunov equation } AP + PA^T + BB^T = 0.$
- Q = observability Gramian of right spectral factor of power spectrum of Σ , i.e., solution of ARE

 $A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,$

where
$$A_W := A - B_W (DD^T)^{-1}C$$
, $B_W := BD^T + PC^T$.

- Preserves stability; needs stability of A_W .
- Computable relative error bound [GREEN '88]:

$$\|\Delta^{\mathrm{BST}}\|_{\mathcal{H}_{\infty}} = \|G^{-1}(G - \hat{G}^{\mathrm{BST}})\|_{\mathcal{H}_{\infty}} \leq \prod_{j=r+1}^{n} \frac{1 + \sigma_{j}^{\mathrm{BST}}}{1 - \sigma_{j}^{\mathrm{BST}}} - 1,$$

 \rightsquigarrow uniform approximation quality over full frequency range. Note: $|\sigma_j^{\rm BST}| \leq 1.$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

- $P = \text{controllability Gramian of } \Sigma \equiv (A, B, C, D), \text{ i.e., solution of Lyapunov equation } AP + PA^T + BB^T = 0.$
- Q = observability Gramian of right spectral factor of power spectrum of Σ, i.e., solution of ARE

 $A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,$

Desai/Pal '84, Green '88

where $A_W := A - B_W (DD^T)^{-1} C$, $B_W := BD^T + PC^T$.

■ Zeros of G(s) are preserved in $\hat{G}(s)$. \implies G(s) minimum-phase $\implies \hat{G}(s)$ minimum-phase.

Balanced Stochastic Truncation (BST)

 Error bound for inverse system [B. '03]
 If G(s) is square, minimal, stable, minimum-phase, nonsingular on gR then

$$\|G^{-1} - \hat{G}^{-1}\|_{H_{\infty}} \le \left(\prod_{j=r+1}^{n} \frac{1 + \sigma_{j}^{\mathrm{BST}}}{1 - \sigma_{j}^{\mathrm{BST}}} - 1\right) \|\hat{G}^{-1}\|_{H_{\infty}}.$$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix

Numerical Examples

Conclusions and Outlook

- $P = \text{controllability Gramian of } \Sigma \equiv (A, B, C, D), \text{ i.e., solution of Lyapunov equation } AP + PA^T + BB^T = 0.$
- Q = observability Gramian of right spectral factor of power spectrum of Σ, i.e., solution of ARE

DESAI/PAL '84, GREEN '88

 $A_W^T Q + QA_W + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,$

where $A_W := A - B_W (DD^T)^{-1}C$, $B_W := BD^T + PC^T$.

■ Zeros of G(s) are preserved in $\hat{G}(s)$. \implies G(s) minimum-phase \implies $\hat{G}(s)$ minimum-phase.

Balanced Stochastic Truncation (BST)

Error bound for inverse system [B. '03] If G(s) is square, minimal, stable, minimum-phase, nonsingular on $j\mathbb{R}$, then

$$\|\boldsymbol{G}^{-1} - \hat{\boldsymbol{G}}^{-1}\|_{\boldsymbol{H}_{\infty}} \leq \left(\prod_{j=r+1}^{n} \frac{1 + \sigma_{j}^{\mathrm{BST}}}{1 - \sigma_{j}^{\mathrm{BST}}} - 1\right) \|\hat{\boldsymbol{G}}^{-1}\|_{\boldsymbol{H}_{\infty}}$$

Balanced Truncation and Relatives

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook

Basic Principle of Balanced Truncation

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

 $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) based on bounded real lemma [OPDENACKER/JONCKHEERE '88];
- H_{∞} balanced truncation (HinfBT) closed-loop balancing based on H_{∞} compensator [MUSTAFA/GLOVER '91].

Both approaches require solution of dual AREs.

Frequency-weighted versions of the above approaches.

Balanced Truncation and Relatives

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook

Basic Principle of Balanced Truncation

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

 $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

All balancing-related methods have nice theoretical properties that make them appealing for applications in simulation, control, optimization, inverse problems.

Balanced Truncation and Relatives

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Balancing

Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook

Basic Principle of Balanced Truncation

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

 $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \ldots \ge \sigma_n \ge 0,$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

All balancing-related methods have nice theoretical properties that make them appealing for applications in simulation, control, optimization, inverse problems.

But: computationally demanding w.r.t. to memory and CPU time; need efficient solvers for linear (Lyapunov) and nonlinear (Riccati) matrix equations!

Solving Large-Scale Matrix Equations

Algebraic Lyapunov and Riccati Equations

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoret Model Reductio Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{L}(Q) := A^T Q + QA + W,$$

$$0 = \mathcal{R}(Q) := A^T Q + QA - QGQ + W.$$

In large scale applications from semi-discretized control problems for PDEs,

- $n = 10^3 10^6 \implies 10^6 10^{12} \text{ unknowns!}$),
- A has sparse representation $(A = -M^{-1}K \text{ for FEM})$,
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}, m \ll n, C \in \mathbb{R}^{p \times n}, p \ll n$.
- Standard (eigenproblem-based) O(n³) methods are not applicable!

Solving Large-Scale Matrix Equations

Algebraic Lyapunov and Riccati Equations

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoret Model Reductio Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook General form for $A, G = G^T, W = W^T \in \mathbb{R}^{n \times n}$ given and $P \in \mathbb{R}^{n \times n}$ unknown:

$$0 = \mathcal{L}(Q) := A^T Q + QA + W,$$

$$0 = \mathcal{R}(Q) := A^T Q + QA - QGQ + W.$$

In large scale applications from semi-discretized control problems for PDEs,

■
$$n = 10^3 - 10^6$$
 ($\implies 10^6 - 10^{12}$ unknowns!),

- A has sparse representation ($A = -M^{-1}K$ for FEM),
- G, W low-rank with $G, W \in \{BB^T, C^T C\}$, where $B \in \mathbb{R}^{n \times m}$, $m \ll n$, $C \in \mathbb{R}^{p \times n}$, $p \ll n$.
- Standard (eigenproblem-based) O(n³) methods are not applicable!

Low-Rank Approximation ARE $0 = A^T Q + QA - QBB^T Q + CC^T$

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoreti Model Reductior Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega = [0, 1],$
- FEM discretization using linear B-splines,

$$h = 1/100 \implies n = 101.$$

Idea: $Q = Q^T \ge 0 \implies$

$$Q = ZZ^{T} = \sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)} (Z^{(r)})^{T} = \sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}$$

Low-Rank Approximation ARE $0 = A^T Q + QA - QBB^T Q + CC^T$

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoreti Model Reduction Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook Consider spectrum of ARE solution (analogous for Lyapunov equations).

Example:

- Linear 1D heat equation with point control,
- $\Omega = [0, 1],$
- FEM discretization using linear B-splines,

$$h = 1/100 \implies n = 101.$$

$$\mathsf{Idea:} \ Q = Q^T \ge \mathsf{0} \implies$$

$$Q = ZZ^{T} = \sum_{k=1}^{n} \lambda_{k} z_{k} z_{k}^{T} \approx Z^{(r)} (Z^{(r)})^{T} = \sum_{k=1}^{r} \lambda_{k} z_{k} z_{k}^{T}$$

Solving Large-Scale Matrix Equations ADI Method for Lyapunov Equations

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reductior Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}$ ($w \ll n$), consider Lyapunov equation

$$AX + XA^T = -BB^T.$$

ADI Iteration:

[Wachspress 1988]

$$(A + p_k I) \frac{X_{(j-1)/2}}{(A + \overline{p_k} I) \frac{X_k}{X_k}} = -BB^T - \frac{X_{k-1}(A^T - p_k I)}{(A + \overline{p_k} I) \frac{X_k}{X_k}}$$

with parameters $p_k \in \mathbb{C}^-$ and $p_{k+1} = \overline{p_k}$ if $p_k \notin \mathbb{R}$.

For $X_0 = 0$ and proper choice of p_k : $\lim_{k \to \infty} X_k = X$ superlinear.

Re-formulation using $X_k = Y_k Y_k^T$ yields iteration for $Y_k...$

Solving Large-Scale Matrix Equations

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reductior Balancing Balanced Truncation and Relatives Matrix

Matrix Equations

Numerical Examples

Conclusions and Outlook For $A \in \mathbb{R}^{n \times n}$ stable, $B \in \mathbb{R}^{n \times m}$ ($w \ll n$), consider Lyapunov equation

$$AX + XA^T = -BB^T.$$

ADI Iteration:

[Wachspress 1988]

$$(A + p_k I) \frac{X_{(j-1)/2}}{(A + \overline{p_k} I) X_k^T} = -BB^T - \frac{X_{k-1}(A^T - p_k I)}{(A + \overline{p_k} I) X_k^T}$$

with parameters $p_k \in \mathbb{C}^-$ and $p_{k+1} = \overline{p_k}$ if $p_k \notin \mathbb{R}$.

- For $X_0 = 0$ and proper choice of p_k : $\lim_{k \to \infty} X_k = X$ superlinear.
- Re-formulation using $X_k = Y_k Y_k^T$ yields iteration for $Y_k...$

Factored ADI Iteration Lyapunov equation $0 = AX + XA^{T} + BB^{T}$.

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reductior Balancing Balanced Truncation and Relatives Matrix

Equations

Conclusions

Conclusions and Outlook

Algorithm [PENZL '97/'00, LI/WHITE '99/'02, B. 04, B./LI/PENZL '99/'0

$$V_1 \leftarrow \sqrt{-2\operatorname{Re}(p_1)}(A + p_1I)^{-1}B, \quad Y_1 \leftarrow V_1$$

FOR $j = 2, 3, ...$
 $V_k \leftarrow \sqrt{\frac{\operatorname{Re}(p_k)}{\operatorname{Re}(p_{k-1})}} (V_{k-1} - (p_k + \overline{p_{k-1}})(A + p_kI)^{-1}V_{k-1})$
 $Y_k \leftarrow [Y_{k-1} V_k]$
 $Y_k \leftarrow \operatorname{rrlq}(Y_k, \tau)$ % column compression

Setting $X_k = Y_k Y_k^T$, some algebraic manipulations \Longrightarrow

At convergence, $Y_{k_{\max}} Y_{k_{\max}}^T \approx X$, where

$$Y_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \mathbb{C}^{n \times m} \end{bmatrix}.$$

Note: Implementation in real arithmetic possible by combining two steps.

Factored ADI Iteration Lyapunov equation $0 = AX + XA^{T} + BB^{T}$.

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reductior Balancing Balanced Truncation and Relatives Matrix

Equations

Examples

Conclusions and Outlook $V_{1} \leftarrow \sqrt{-2\operatorname{Re}(p_{1})}(A + p_{1}I)^{-1}B, \quad Y_{1} \leftarrow V_{1}$ FOR j = 2, 3, ... $V_{k} \leftarrow \sqrt{\frac{\operatorname{Re}(p_{k})}{\operatorname{Re}(p_{k-1})}} \left(V_{k-1} - (p_{k} + \overline{p_{k-1}})(A + p_{k}I)^{-1}V_{k-1}\right)$ $Y_{k} \leftarrow \left[Y_{k-1} \quad V_{k}\right]$ $Y_{k} \leftarrow \operatorname{rrlq}(Y_{k}, \tau) \qquad \% \text{ column compression}$

Algorithm [PENZL '97/'00, LI/WHITE '99/'02, B. 04, B./LI/PENZL '99/'08]

Setting $X_k = Y_k Y_k^T$, some algebraic manipulations \Longrightarrow

At convergence, $Y_{k_{\max}} Y_{k_{\max}}^T \approx X$, where

$$Y_{k_{\max}} = \begin{bmatrix} V_1 & \dots & V_{k_{\max}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \in \mathbb{C}^{n \times m}. \end{bmatrix}$$

Note: Implementation in real arithmetic possible by combining two steps.

Factored Galerkin-ADI Iteration Lyapunov equation $0 = AX + XA^{T} + BB^{T}$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reduction Balancing Balanced Truncation and Relatives Matrix

Equations Numerical Examples

Conclusions and Outlook Projection-based methods for Lyapunov equations with $A + A^T < 0$:

1 Compute orthonormal basis range (*Z*), $Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^n \dim \mathcal{Z} - r$

Set
$$\hat{A} := Z^T A Z$$
. $\hat{B} := Z^T B$.

3 Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0.$

4 Use
$$X \approx Z \hat{X} Z^T$$
.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

■ K-PIK [Simoncini '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

Factored Galerkin-ADI Iteration Lyapunov equation $0 = AX + XA^{T} + BB^{T}$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reduction Balancing Balanced Truncation and Relatives Matrix

Equations Numerical Examples

Conclusions and Outlook Projection-based methods for Lyapunov equations with $A + A^T < 0$:

- **1** Compute orthonormal basis range (*Z*), $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, dim Z = r.
- 2 Set $\hat{A} := Z^T A Z$, $\hat{B} := Z^T B$.
- 3 Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0.$
- 4 Use $X \approx Z \hat{X} Z^T$.

Examples:

• Krylov subspace methods, i.e., for m = 1:

$$\mathcal{Z} = \mathcal{K}(A, B, r) = \operatorname{span}\{B, AB, A^2B, \dots, A^{r-1}B\}$$

[JAIMOUKHA/KASENALLY '94, JBILOU '02-'08].

■ K-PIK [SIMONCINI '07],

$$\mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).$$

Factored Galerkin-ADI Iteration Lyapunov equation $0 = AX + XA^{T} + BB^{T}$

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reduction Balancing Balanced Truncation and Relatives Matrix

Equations Numerical Examples

Conclusions and Outlook Projection-based methods for Lyapunov equations with $A + A^T < 0$:

1 Compute orthonormal basis range (*Z*), $Z \in \mathbb{R}^{n \times r}$, for subspace

$$\mathcal{Z} \subset \mathbb{R}^n$$
, dim $\mathcal{Z} = r$.

- 2 Set $\hat{A} := Z^T A Z$, $\hat{B} := Z^T B$.
- **3** Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^{T} + \hat{B}\hat{B}^{T} = 0$.

4 Use
$$X \approx Z \hat{X} Z^T$$
.

Examples:

$$\mathcal{Z} = \operatorname{colspan} \left[\begin{array}{cc} V_1, & \dots, & V_r \end{array} \right].$$

Note: ADI subspace is rational Krylov subspace [J.-R. LI/WHITE '02].

Factored Galerkin-ADI Iteration

Numerical example

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction Balancing Balanced Truncation and Relatives Matrix

Equations Numerical

Conclusions an

FEM semi-discretized control problem for parabolic PDE:

■ optimal cooling of rail profiles (~→ later),

$$n = 20,209, m = 7, p = 6.$$

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.

Factored Galerkin-ADI Iteration

Numerical example

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction Balancing Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook FEM semi-discretized control problem for parabolic PDE:

■ optimal cooling of rail profiles (~→ later),

$$n = 20,209, m = 7, p = 6.$$

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction Balancing Balanced Truncation and Relatives Matrix

Equations

Numerical Examples

Conclusions and Outlook • Consider $0 = \mathcal{R}(Q) = C^T C + A^T Q + QA - QBB^T Q.$

• Frechét derivative of $\mathcal{R}(Q)$ at Q:

 $\mathcal{R}'_Q: Z \to (A - BB^T Q)^T Z + Z(A - BB^T Q).$

Newton-Kantorovich method:

$$Q_{j+1} = Q_j - \left(\mathcal{R}_{Q_j}^{'}\right)^{-1} \mathcal{R}(Q_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ...

$$\blacksquare A_j \leftarrow A - BB^T Q_j =: A - BK_j.$$

Solve the Lyapunov equation $A_i^T N_j + N_j A_j = -\mathcal{R}(Q_j).$

END FOR j

Newton's Method for AREs [Kleinman '68, Mehrmann '91, Lancaster/Rodman '95, B./Byers '94/'98, B. '97, Guo/Laub '99]

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction Balancing Balanced Truncation and Relatives Matrix

Equations

Numerical Examples

Conclusions and Outlook • Consider $0 = \mathcal{R}(Q) = C^T C + A^T Q + QA - QBB^T Q.$

• Frechét derivative of $\mathcal{R}(Q)$ at Q:

$$\mathcal{R}_Q': Z \to (A - BB^T Q)^T Z + Z(A - BB^T Q).$$

Newton-Kantorovich method:

$$Q_{j+1} = Q_j - \left({\mathcal R}_{Q_j}^{'}
ight)^{-1} {\mathcal R}(Q_j), \quad j = 0, 1, 2, \dots$$

Newton's method (with line search) for AREs

FOR j = 0, 1, ... **1** $A_j \leftarrow A - BB^T Q_j =: A - BK_j$. **2** Solve the Lyapunov equation $A_j^T N_j + N_j A_j = -\mathcal{R}(Q_j)$. **3** $Q_{j+1} \leftarrow Q_j + t_j N_j$. END FOR j

Low-Rank Newton-ADI for AREs

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook Re-write Newton's method for AREs

$$A_j^T N_j + N_j A_j = -\mathcal{R}(Q_j)$$

$$A_j^T \underbrace{(Q_j + N_j)}_{=Q_{j+1}} + \underbrace{(Q_j + N_j)}_{=Q_{j+1}} A_j = \underbrace{-C^T C - Q_j B B^T Q_j}_{=:-W_j W_j^T}$$

Set $Q_j = Z_j Z_j^T$ for rank $(Z_j) \ll n \Longrightarrow$ $A_i^T (Z_{i+1} Z_{i+1}^T) + (Z_{i+1} Z_{i+1}^T) A_j = -W_j W_j^T$

Factored Newton Iteration [B./LI/PENZL '99/'08]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_i .

Low-Rank Newton-ADI for AREs

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook Re-write Newton's method for AREs

$$A_j^T N_j + N_j A_j = -\mathcal{R}(Q_j)$$

$$A_j^T \underbrace{(Q_j + N_j)}_{=Q_{j+1}} + \underbrace{(Q_j + N_j)}_{=Q_{j+1}} A_j = \underbrace{-C^T C - Q_j B B^T Q_j}_{=:-W_j W_j^T}$$

Set $Q_j = Z_j Z_j^T$ for rank $(Z_j) \ll n \Longrightarrow$

$A_{j}^{T}(Z_{j+1}Z_{j+1}^{T}) + (Z_{j+1}Z_{j+1}^{T})A_{j} = -W_{j}W_{j}^{T}$

Factored Newton Iteration [B./LI/PENZL '99/'08]

Solve Lyapunov equations for Z_{j+1} directly by factored ADI iteration and use 'sparse + low-rank' structure of A_i .

Solving Large-Scale Matrix Equations Performance of Matrix Equation Solvers

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoreti Model Reductior Balancing Balanced Truncation and Relatives

Matrix Equations

Numerical Examples

Conclusions and Outlook

- Linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- FD discretization on uniform 150×150 grid.
- n = 22.500, m = p = 1, 10 shifts for ADI iterations.
- Convergence of large-scale matrix equation solvers:

Solving Large-Scale Matrix Equations

Performance of matrix equation solvers

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction Balancing Balanced Truncation and Relatives Matrix Equations

Numerical Examples

Conclusions and Outlook

Performance of Newton's method for accuracy $\sim 1/n$

grid	unknowns	$\frac{\ \mathcal{R}(P)\ _{F}}{\ P\ _{F}}$	it. (ADI it.)	CPU (sec.)
8 × 8	2,080	4.7e-7	2 (8)	0.47
16 imes 16	32,896	1.6e-6	2 (10)	0.49
32×32	524,800	1.8e-5	2 (11)	0.91
64×64	8,390,656	1.8e-5	3 (14)	7.98
128 imes 128	134,225,920	3.7e-6	3 (19)	79.46

Here,

- Convection-diffusion equation,
- m = 1 input and p = 2 outputs,
- $P = P^T \in \mathbb{R}^{n \times n} \Rightarrow \frac{n(n+1)}{2}$ unknowns.

Confirms mesh independence principle for Newton-Kleinman [Burns/Sachs/Zietsmann 2006].

Numerical Examples: Simulation Microthruster (MEMS)

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

Conclusions and Outlook

- Co-integration of solid fuel with silicon micro-machined system.
- Goal: Ignition of solid fuel cells by electric impulse.
- Application: nano satellites.
- Thermo-dynamical model, ignition via heating an electric resistance by applying voltage source.
- Design problem: reach ignition temperature of fuel cell w/o firing neighboring cells.
- Spatial FEM discretization of thermo-dynamical model ~→ linear system, *m* = 1, *p* = 7.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark Courtesy of C. Rossi, LAAS-CNRS/EU project "Micropyros".

Numerical Examples: Simulation Microthruster (MEMS)

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

- axial-symmetric 2D model
- FEM discretization using linear (quadratic) elements $\rightarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED, modal truncation using ARPACK, and Z. Bai's PVL implementation.

Numerical Examples: Simulation Microthruster (MEMS)

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

Conclusions and Outlook

- FEM discretization using linear (quadratic) elements $\rightarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED, modal truncation using ARPACK, and Z. Bai's PVL implementation.

Relative error n = 4,257

Numerical Examples: Simulation Microthruster (MEMS)

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

- FEM discretization using linear (quadratic) elements $\rightarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED, modal truncation using ARPACK, and Z. Bai's PVL implementation.

Numerical Examples: Simulation Microthruster (MEMS)

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

- FEM discretization using linear (quadratic) elements $\rightarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED, modal truncation using ARPACK, and Z. Bai's PVL implementation.

Numerical Examples: Simulation Microthruster (MEMS)

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

- FEM discretization using linear (quadratic) elements $\rightarrow n = 4,257$ (11,445) m = 1, p = 7.
- Reduced model computed using SPARED, modal truncation using ARPACK, and Z. Bai's PVL implementation.

Numerical Examples: Simulation Spiral Inductor (Micro Electronics)

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

Conclusions and Outlook Passive device used for RF filters etc.

■
$$n = 1,434, m = 1, p = 1.$$

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Numerical Examples: Simulation

Model Reduction of Large-Scale Systems

Peter Benne

Introduction

System-Theoretic Model Reduction

Numerical Examples

Simulation Control

Conclusions and Outlook Passive device used for RF filters etc.

- n = 1,434, m = 1, p = 1.
- Numerical rank of Gramians is 34/41.
- r = 20 passive model computed by PRBT (MorLab).

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark

Numerical Examples: Control Optimal Cooling of Steel Profiles

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples Simulation Control

Conclusions and Outlook Mathematical model: boundary control for linearized 2D heat equation.

$$c \cdot \rho \frac{\partial}{\partial t} x = \lambda \Delta x, \quad \xi \in \Omega$$

$$\lambda \frac{\partial}{\partial n} x = \kappa (u_k - x), \quad \xi \in \Gamma_k, \ 1 \le k \le 7,$$

$$\frac{\partial}{\partial n} x = 0, \qquad \xi \in \Gamma_7.$$

 $\implies m = 7, p = 6.$

■ FEM Discretization, different models for initial mesh (n = 371), 1, 2, 3, 4 steps of mesh refinement \Rightarrow n = 1357, 5177, 20209, 79841.

Source: Physical model: courtesy of Mannesmann/Demag. Math. model: TRÖLTZSCH/UNGER '99/'01, PENZL '99, SAAK '03.

Numerical Examples: Control Optimal Cooling of Steel Profiles

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

- System-Theoretic Model Reduction
- Numerical Examples Simulation Control
- Conclusions and Outlook

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

n = 79841, Absolute error

- BT model computed using SpaRed,
- computation time: 8 min.

Mil

Numerical Examples: Control

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples Simulation Control

Conclusions and Outlook

- FD discretized linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- n = 22.500, m = p = 1.
- Computed reduced-order model (BT): r = 6, BT error bound $\delta = 1.7 \cdot 10^{-3}$.
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.

Transfer function approximation

Numerical Examples: Control

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples Simulation Control

- FD discretized linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- n = 22.500, m = p = 1.
- Computed reduced-order model (BT): r = 6, BT error bound $\delta = 1.7 \cdot 10^{-3}$.
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.

Numerical Examples: Control

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples Simulation Control

- FD discretized linear 2D heat equation with homogeneous Dirichlet boundary and point control/observation.
- n = 22.500, m = p = 1.
- Computed reduced-order model (BT): r = 6, BT error bound $\delta = 1.7 \cdot 10^{-3}$.
- Solve LQR problem: quadratic cost functional, solution is linear state feedback.

Numerical Examples: Control BT vs. LQG BT

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples Simulation Control

Conclusions and Outlook

- FDM \rightsquigarrow n = 4496, m = 2; 4 sensor locations $\rightsquigarrow p = 4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: r = 10.

Hankel singular values

Source: COMPl_eib v1.1, www.compleib.de.

Numerical Examples: Control BT V5. LQG BT

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples Simulation Control

Conclusions and Outlook

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM \rightsquigarrow n = 4496, m = 2; 4 sensor locations $\rightsquigarrow p = 4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: r = 10.

Source: COMPleib v1.1, www.compleib.de.

Numerical Examples: Control BT vs. LQG BT

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples Simulation Control

Conclusions and Outlook

- Boundary control problem for 2D heat flow in copper on rectangular domain; control acts on two sides via Robins BC.
- FDM \rightsquigarrow n = 4496, m = 2; 4 sensor locations $\rightsquigarrow p = 4$.
- Numerical ranks of BT Gramians are 68 and 124, respectively, for LQG BT both have rank 210.
- Computed reduced-order model: r = 10.

Source: COMPleib v1.1, www.compleib.de.

Conclusions and Outlook

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook Main message:

Balanced truncation and family are applicable to large-scale systems. (If efficient numerical algorithms are employed.)

- Applications: nanoelectronics, microsystems technology, optimal control, machine tool design, systems biology, ...
- Efficiency of numerical algorithms can be further enhanced, several details require deeper investigation.
- Algorithms for data-sparse systems using formatted arithmetic for *H*-matrices [B_{AUR}/B. '06/'08].
- Application to 2nd order systems ~→ talk of Jens Saak.
- Extension to descriptor systems possible. [Stykel since '02, B. 03/'08, Freitas/Martins/Rommes '08, Heinkenschloss/Sorensen/Sun '06/'08].
- Combination of BT with sparse grid interpolation for parametric model reduction [BAUR/B. '08/'09].

Conclusions and Outlook

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

Main message:

Balanced truncation and family are applicable to large-scale systems. (If efficient numerical algorithms are employed.)

- Applications: nanoelectronics, microsystems technology, optimal control, machine tool design, systems biology, ...
- Efficiency of numerical algorithms can be further enhanced, several details require deeper investigation.
- Extension to nonlinear systems employing Carleman bilinearization and tensor product structure of Krylov subspaces in combination with balanced truncation for bilinear systems [*B./Damm '09*] quite promising, in particular for polynomial nonlinearities as often encountered in biological systems.
- Theory and numerical algorithm for application to stochastic systems: [B./Damm '09]; need algorithmic enhancements for really large-scale problems.

Support

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

BMBF research network SyreNe

System Reduction for Nanoscale IC Design TU Berlin (*T. Stykel, A. Steinbrecher*)
TU Braunschweig (*H. Faßbender, J. Amorocho, M. Bollhöfer, A. Eppler*)
TU Chemnitz (*P. Benner, A. Schneider, T. Mach*)
U Hamburg (*M. Hinze, M. Vierling, M. Kunkel*)
FhG-ITWM Kaiserslautern (*P. Lang, O. Schmidt*)
Infineon Technologies AG (*P. Rotter*)
NEC Europe Ltd. (*A. Basermann, C. Neff*)
Qimonda AG (*G. Denk*)

	ITWM
hofer	Institut Techno- und Wirtschaftsmathem

Fraun

Support

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

O-MOORE-NICE!

Operational model order reduction for nanoscale IC electronics

EU support via Marie Curie Host Fellowships for the Transfer of Knowledge (ToK) Industry-Academia Partnership Scheme.

TU Chemnitz (*P. Benner, M. Striebel*) TU Eindhoven (*W. Schilders, D. Harutyunyan*) U Antwerpen (*T. Dhaene, L. Di Tommasi*) NXP Semiconductors (*J. ter Maten, J. Rommes*)

Support

Model Reduction of Large-Scale Systems

Peter Benner

Introduction

System-Theoretic Model Reduction

Numerical Examples

Conclusions and Outlook

DFG Projects

- Automatic, Parameter-Preserving Model Reduction for Applications in Microsystems Technology. Jointly with Jan Gerrit Korvink (IMTEK/U Freiburg and FRIAS).
- Integrated Simulation of the System "Machine Tool Drive System – Stock Removal Process" Using Reduced-Order Structural FE Models.

Jointly with *Michael Zäh* (iwb/TU München) and *Heike Faßbender* (ICM/TU Braunschweig).