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. f(t,X(t),atX(t),attX(t),u(t),p), X(tO) = X0, (a)
(p) : { y(t) = g(t,x(t),9:x(t), u(t), p) (b)
with
o (generalized) states x(t) = x(t; p) € X,
@ inputs u(t) €U,
@ outputs y(t) = y(t; p) € Y, (b) is called output equation,

@ p € RY is a parameter vector.
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) 0 = f(t,x(t),0ex(t), Oux(t),u(t), p), x(to)= xo, (a)
z(”)'{y(r) = gt x(2), Bex{t), u(®), p) (b)

(a) may represent
@ system of ordinary differential equations (ODEs);
@ system of differential-algebraic equations (DAEs);
@ system of partial differential equations (PDEs);
@ system of integro-differential equations,

@ a mixture thereof.
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Basic Ideas

Main idea

Replace differential equation by low-order one while preserving

input-output behavior as well as important system invariants and

physical properties!

Original System Reduced-Order System

¥(p) : {E(X,p))'( = f(t,x,u,p),

y = g(t,X,U,p).

o states x(t; p) € R”,
@ inputs u(t) € R™,
@ outputs y(t; p) € R,

@ parameters p € RY.

S E(x,p)% = F(t,%,u,p)
Z ) N . ) ,\7 b b
(p) { y = 8(t, %, u,p).

@ states X(t;p) € R, r < n
@ inputs u(t) € R,
@ outputs y(t; p) € RY,

@ parameters p € R9.

ﬂ y




Large-Scale Linear Systems

Moving Frontiers

liJiocc] Linear, time-invariant (LTI) systems
Peter Benner z . X(t) = AX _|_ BU, A c IRan7 B c R"Xlrl’
' y(t) = Cx+ Du, C e RI%", D e RI*™,

(A, B, C,D) is a realization of X (nonunique).
e . Laplace transform: state-space — frequency domain yields transfer
function of X:
Y(s) = (C(sl, — A)"'B + D) U(s).

=:G(s)
Goal: find A€ R™*", B € R™*9, € € R9*", D € R9*" such that

IG=G|| = |(C(slh— A B+ D)—(C(sl, — A)"'B + D)|| < tol
= |y =9Il < tolljul|.
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liJiocc] Linear, time-invariant (LTI) systems
Peter Benner z . X(t) = AX _|_ BU, A c IRan7 B c R"Xlrl’
' y(t) = Cx+ Du, C e RI%", D e RI*™,

(A, B, C,D) is a realization of X (nonunique).
Large-Scale
Linear Systems

Model order reduction by projection

Galerkin or Petrov-Galerkin-type projection of state-space onto
low-dimensional subspace V along W: assume x ~ VW " x =: X, where

range (V) =V, range(W)=W, W'V =1,

Then, with 8 = W7 x, we obtain x ~ V& and

A=wTAv, B=w'B, C=cv, D=nD.

where V.W. projects onto V., the complement of V.
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solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+CTC = 0,
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satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
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Short Introduction

Idea (for simplicity, E = /)

@ A system X, realized by (A, B, C, D), is called balanced, if
solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 >0 > ... > 0, > 0.
@ {01,...,0n} are the Hankel singular values (HSVs) of X.
@ Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)
_ Aun A By
- ([Am Azz]’{Bz]’[Cl C2]7D>

N

@ Truncation ~ (/A4, B,C, D) = (A1, B1, Gi, D).
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Short Introduction

Moving Frontiers NPT
in Model Motivation:

S HSV are system invariants: they are preserved under 7 and determine
the energy transfer given by the Hankel map

Peter Benner

H : Ly(—00,0) — L3(0,00) : u_ +— y,.

Short .
Tl In balanced coordinates . ..energy transfer from u_ to y,:

Ty Ty (1) dt
E:= sup O Za

seta( " |X0||2

« f(t

= Truncate states corresponding to “small” HSVs
—> analogy to best approximation via SVD, therefore
balancing-related methods are sometimes called SVD methods.

v
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Balanced Truncation

Short Introduction

Movine Porties Il Implementation: SR Method

Reduction

berer Benne @ Compute (Cholesky) factors of the solutions of the Lyapunov
equations,
P=S"S, Q=R'R.

vy
vy

w=RTW3 2  v=sTusx; '
@ Reduced model is (WTAV, WTB, CV, D).

@ Compute SVD
Short
Introduction

SRT = [ Uy, Us] -

© Set
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i @ Reduced-order model is stable with HSVs o4, ..., 0,.

Peter Benner

@ Adaptive choice of r via computable error bound:

n
ly =92 < (2327 ok) lulle:

@ General misconception:
complexity O(n®) — true for several implementations (e.g.,
MATLAB, SLICOT, MorLAB).
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But: recent developments in Numerical Linear Algebra yield
matrix equation solvers with sparse linear systems complexity!
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General form for A, W = WT € R"™ " given and P € R"*" unknown:

0 = L(Q:=ATQ+ QA+ W.

In large scale applications from semi-discretized control problems for
Lyapunov
E?qupations PDES,

@ n=10%-10° (= 10° — 10'2 unknowns!),

@ A has sparse representation (A= —M~1K for FEM),

@ W low-rank with W € {BBT,CT C}, where
BeR™™ m« n CeRI*" p<n.

@ Standard (Schur decomposition-based) O(n*) methods are not
applicable!
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ADI Method for Lyapunov Equations
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R @ For A € R"™ " stable, B € R"™™ (w < n), consider Lyapunov
equation

AX + XAT = —BB'.

@ ADI lIteration: [WACHSPRESS 1988]
G . .
(A+p) X1y = —BB" = Xi—1(A" — pil)
(A+pc)X" = —=BBT — Xy_1)2(AT = Pxl)

with parameters py € C™ and pyi1 = pr if px € R.

@ For Xy = 0 and proper choice of py: klim Xk = X (super)linearly.
— 00
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@ For A € R"™ " stable, B € R"™™ (w < n), consider Lyapunov
equation
AX + XAT = —BBT.

@ ADI lIteration: [WACHSPRESS 1988]
G . .
(A+p) X1y = —BB" = Xi—1(A" — pil)
(A+pc)X" = —=BBT — Xy_1)2(AT = Pxl)

with parameters py € C™ and pyi1 = pr if px € R.

@ For Xy = 0 and proper choice of py: klim Xk = X (super)linearly.
— 00

@ Re-formulation using X, = Yk YkT yields iteration for Yk...



Factored ADI lteration

Lyapunov equation 0 = AX + XAT + BBT.
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Reduction Setting X =

Peter Benner

Yk YkT, some algebraic manipulations —>

Algorithm [PenzL *97/°00, Li/WHITE '99/°02, B. 04, B./L1/PENZL
Vi« +/—2Re(p1)(A+pil)7'B, Yi — Wi
FOR j =2,3,...
Lyapunov
Equations Vk — = p:’k)l (Vk = (Pk + Pk— 1)(A + Pkl) Vk*l)
\ 7 <—[ Y1 Vi ]
Yi < rrlq( Yk, 7) % column compression

At convergence, Y

max

Ykzax ~ X, where

Ykmax = [ V1 e Vkmax } , Vk — H c Cnxm.

Note: Implementation in real arithmetic possible by combining two steps.



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

BRI Projection-based methods for Lyapunov equations with A+ AT < 0:
Reduction @ Compute orthonormal basis range (Z), Z € R"*", for subspace
Feter Benner ZCR", dmZ=r.

Q@ Set A:=27TAZ, B:=7"B.

© Solve small-size Lyapunov equation AX + XAT + BBT = 0.

Q Use X ~ ZXZT.

Liyapunov Examples:

Equations

@ Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].
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Lyapunov equation 0 = AX + XAT + BBT

BRI Projection-based methods for Lyapunov equations with A+ AT < 0:
Reduction @ Compute orthonormal basis range (Z), Z € R"*", for subspace
Feter Benner ZCR", dmZ=r.

Q@ Set A:=27TAZ, B:=7"B.

© Solve small-size Lyapunov equation AX + XAT + BBT = 0.

Q Use X ~ ZXZT.

Liyapunov Examples:

Equations

@ Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].

o K-PIK [Smvoncint 707],

Z=K(A B,r)UK(A™}, B,r).



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

BRI Projection-based methods for Lyapunov equations with A+ AT < 0:
Reduction @ Compute orthonormal basis range (Z), Z € R"*", for subspace
Feter Benner ZCR", dmZ=r.

Q@ Set A:=27TAZ, B:=7"B.

© Solve small-size Lyapunov equation AX + XAT + BBT = 0.

Q Use X ~ ZXZT.

Liyapunov Examples:

Equations

@ ADI subspace [B./R.-C. Li/TRUHAR ’08]:
Z:colspan[ Vi, ..., V, ]

Note: ADI subspace is rational Krylov subspace [J.-R. Li/WHITE ’02].



Factored Galerkin-ADI lteration

Numerical example

Moving Frontiers FEM semi-discretized control problem for parabolic PDE:
in Model
Reduction

@ optimal cooling of rail profiles,
e n=20,209, m=7, p=6.

Peter Benner

Good | shifts
Iteration history for controllability gramian g Iteration history for observability gramian
10
—no projection —no projection
Lya punov o —every step —every step
Equations = 10 ——every 5 steps T 107 —every 5 steps
= =
5 5
3 10°
3 g 10t
N N
5 10" 5
£ £
2, 210°
8 8
10 10
0 10 20 30 40 o] 10 20 30 40

iteration number iteration number

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.
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Numerical example

Moving Frontiers FEM semi-discretized control problem for parabolic PDE:
in Model

Reduction @ optimal cooling of rail profiles,
Peter Benner
o n=20,209, m=7, p=6.

Bad ADI shifts

Iteration history for controllability gramian g Iteration history for observability gramian
10

—no projection
—every step
—every 5 steps

Lyapunov
Equations

—no projection
—every step
—every 5 steps

normalized residual

0 50 100 150 200 250 o] 50 100 150 200 250
iteration number iteration number

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.



Balanced Truncation
Sample applications: VLSI design

Moving Frontiers

liJiocc] Application in Microelectronics: VLSI Design

Peter Benne Balanced Truncation was implemented in circuit simulator TITAN
(Qimonda AG, Infineon Technologies).

TITAN simulation results for industrial circuit:
14,677 resistors, 15,404 capacitors, 14 voltage sources, 4,800 MOSFETs.
14 linear subcircuits of varying order extracted and reduced.

‘Simulation of a very big circuit

Lyapunov
Equations

Vollage in V.
°
T

o 108 2008 3608 4008 50-08  6e-08  7e-08  Be-08  9e08  1e-07

[GUNZzEL, Diplomarbeit '08; B. '08]
”

Supported by BMBF network SyrelNe (includes Qimonda, Infineon, NEC), EU Marie Curie grant
O-Moore-Nice! (includes NXP), industry grants.



Balanced Truncation

Sample applications: electro-thermic simulation of integrated circuit (1C)

[Source: Evgenii Rudnyi, CADFEM GmbH]

Moving Frontiers

in Model @ Test circuit in Simplorer® with 2 transistors.

Reduction

@ Conservative thermic sub-system in Simplorer:

Peter Benner
: voltage ~+ heat, current ~~ heat flux.

@ Original model: n =270.593, m=p=2 =
Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

— Solution of Lyapunov equations: = 22min.
(420/356 columns in solution factors),
A — Computation of ROMs: 44sec. (r = 20) — 49sec. (r = 70).
— Bode diagram (MATLAB on Intel Core i7, 2,67GHz, 12GB):
using original system 7.5h, with reduced system < 1min.




Balanced Truncation

Sample applications: electro-thermic simulation of integrated circuit (1C)

[Source: Evgenii Rudnyi, CADFEM GmbH]

Moving Frontiers

e @ Original model: n =270.593, m=p=2 =
Reduction Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

P e — Solution of Lyapunov equations: ~ 22min.
(420/356 columns in solution factors),
— Computation of ROMs: 44sec. (r = 20) — 49sec. (r = 70).
— Bode diagram (MATLAB on Intel Core i7, 2,67GHz, 12GB):
using original system 7.5h, with reduced system < 1min.

Lyapunov
Equations

Bode Diagram (Amplitude) Hankel Singular Values

, Transfer functions of original and reduced systems

Computed Hankel singular values

6, ax(Gli))
magnitude

o |[—original 107

10 10 10° 10° 50 100 150 200 250 300 350
index




Balanced Truncation

Sample applications: electro-thermic simulation of integrated circuit (1C)

[Source: Evgenii Rudnyi, CADFEM GmbH]

Moving Frontiers

e @ Original model: n =270.593, m=p=2 =
Reduction Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

Peter Benner

— Solution of Lyapunov equations: =~ 22min.
(420/356 columns in solution factors),
— Computation of ROMs: 44sec. (r = 20) — 49sec. (r = 70).
— Bode diagram (MATLAB on Intel Core i7, 2,67GHz, 12GB):
using original system 7.5h, with reduced system < 1min.

Lyapunov
Equations

Absolute Error Relative Error

absolute model reduction error == relative model reduction error — o
—— ron) —— rowan|
—roudo —— w0
. nou s Rowso
0 _\~ nous Rowso
o , —— row|
B _f 107
_ 10 3X’_ 5 _¥’_
5 =
S =
i —— g/ T
£ Fot————— |
S
S 10 3
§ S
L g
o 10
]
10
. x .
10 10
10° 10° 10° 10* 107 10° 10° 10°
© ©




Moving Frontiers: Bilinear Model Order Reduction

Balanced Truncation for Bilinear Systems

[GRAY/MESKO 98, CONDON/IVANOV ’05, B./DAMM ’09]

Moving Frontiers

in Model Bilinear control system of the form

Reduction

Peter Benner k

X:AX+ZNJ'XUJ'+BU, y = Cx,
j=1
arise, e.g., in
@ control of PDEs with mixed boundary conditions,

Bilinear MOR
@ approximation of nonlinear systems using Carleman bilinearization.



Moving Frontiers: Bilinear Model Order Reduction

Balanced Truncation for Bilinear Systems

[GrRAY/MESKO ’98, CONDON/IVANOV 05, B./DAMM ’09]

Moving Frontiers

in Model Bilinear control system of the form

Reduction
Peter Benner k
X =Ax+ E Nixuj + Bu, y = Cx,

Jj=1

arise, e.g., in
@ control of PDEs with mixed boundary conditions,
Bilinear MOR
@ approximation of nonlinear systems using Carleman bilinearization.

The solutions of the generalized Lyapunov equations

k k
AP+ PAT +> N,PN] = -BBT, ATQ+QA+> N/QN;=-CTC

j=1 j=1

possess certain properties of the reachability and observability Grami-
ans of linear systems, generalized Hankel singular values can be defined,
and model reduction analogous to Balanced Truncation can be based
upon them [Al-Baiyat/Bettaye '93].



Moving Frontiers: Bilinear Model Order Reduction

Balanced Truncation for Bilinear Systems

[GRAY/MESKO 98, CONDON/IVANOV ’05, B./DAMM ’09]

Moving Frontiers

in Model Energy functionals [Gray/Mesko, IFAC 1998]

Reduction ?
Elo) =  min [l R
ueL?(—o00,0)
x(—o00,u)=0,x(0,u)=xq
, !
Eo(x0) = lyCoxo, )l = X Qo

max
u€L?(0,00),[Jul| 2 <1

Bilinear MOR



Moving Frontiers: Bilinear Model Order Reduction

Balanced Truncation for Bilinear Systems

[GRAY/MESKO 98, CONDON/IVANOV ’05, B./DAMM ’09]

Moving Frontiers

in Modl Energy functionals [Gray/Mesko, IFAC 1998] ;
E.(x) = min  [ul? > X Plx
uELz(foo,O)
x(—o00,u)=0,x(0,u)=xq
2 ! T
E.(xo = max Sxo, W2 < oxg @xo
o(x0) L ly( %0, u)llz < X
Bilinear MOR xT Px ? to reach
9 0 L small = state xp hard
X9 Qxo to observe



Moving Frontiers: Bilinear Model Order Reduction

Exact unreachability

Moving Frontiers
in Model

Fesiiaia Theorem (k = 1 for simplicity)
Let AP + PAT + NPNT + BBT = 0.

If P> 0 then im P is invariant w.r.t. x = Ax + Nxu + Bu.
In particular: ker P is unreachable from 0.

Analogously for (un)observability.

Bilinear MOR ’




Moving Frontiers: Bilinear Model Order Reduction

Exact unreachability

Moving Frontiers
in Model

Fesiiaia Theorem (k = 1 for simplicity)
B Let AP+ PAT + NPNT + BBT =0.

If P> 0 then im P is invariant w.r.t. x = Ax + Nxu + Bu.
In particular: ker P is unreachable from 0.

Proof: Let v € ker P. Then 0= v’ (NPNT n BBT) v

Bilinear MOR

= BTv=0and PNTv=0
= NTkerP C ker P C ker BT
= PATv=0,ie AT ker P C ker P.
If x(t) € im P = (ker P)* for some t, then

x(t)'v = x(t)T ATv u(t)x(t)" NTv +u(t)"BTv =0
Eker P Eker P =0

Hence x(t) € im P, implying invariance.



Moving Frontiers: Bilinear Model Order Reduction

Exact unreachability

Moving Frontiers
in Model

Fesiiaia Theorem (k = 1 for simplicity)
B Let AP+ PAT + NPNT + BBT =0.

If P> 0 then im P is invariant w.r.t. x = Ax + Nxu + Bu.
In particular: ker P is unreachable from 0.

Bilinear MOR
Consequence:

If ||Px1|| is small, then x; should be almost unreachable.

How can this be quantified?



Moving Frontiers: Bilinear Model Order Reduction

Balanced realization

Moving Frontiers

in Model Given factorizations P =LLT, LTQL= UX?UT,

Reduction . — . . .
: the transformation T = LUL Y2 is balancing: the equivalent system

Peter Benner

A=T AT, N=T'NT, B=T'B, C=CT.

satisfies P = Q = diag (o1y.-.,0n).
If the small Hankel singular values o+11, ..., 0, vanish: state negligible!(?)

Bilinear MOR



Moving Frontiers: Bilinear Model Order Reduction

Balanced realization

Moving Frontiers

in Modl Given factorizations P =LL", LTQL=UX?U",
eduction . _ X . .
e e the transformation T = LUE /2 is balancing: the equivalent system

A=T AT, N=T'NT, B=T'B, C=CT.

satisfies P = Q = diag (o1y.-.,0n).

If the small Hankel singular values o+11, ..., 0, vanish: state negligible!(?)
!
Projection on R", (r < n).
Bilinear MOR 51
Partition: T = [Ty, To], T™! = { ]
S
Truncation: A" = S$1AT: IE” = SINT,
B" = sB c = CTy

Reduced model:

m
% = A% 43 N%u+ By y=C%.

j=1




Moving Frontiers: Bilinear Model Order Reduction

applied to Nonlinear Systems using Carleman Bilinearization

Moving Frontiers
in Model H .
n Model Nonlinear control system (SISO):

Peter Benner

v(t) = f(v(t)) + g (v(t)) u(t),
y(t)=cTv(t), v(0)=0, f(0)=0

where f,g : RV — RN are nonlinear and analytic in v.
Bilinear MOR

1
f(v) = Av + §A2v® v, g(v)= By+ Biv

with By € RV, Ay, By € RVXN | A, ¢ RVXV
_| Vv _ A 1A,
X_[v®v}’A_{O A1®I—|—/®AJ’

_ B 0 _ |Bo T
N_[Bo®l+l®Bo 0]’5_[0]’C_[C 0]



Moving Frontiers: Bilinear Model Order Reduction

Numerical examples

Moving Frontiers @ Nonlinear RC circuit [CuEN/WHITE 00, BAI/SKOOGH '06].
in Model

Reduction @ Carleman bilinearization ~ bilinear system with n = 2,550,
Peter Benner
k=1

Node 1 Node 2 Noden-1  Node n
Bilinear MOR

@ o]

T
Ay
]

o
o
o
o
o

g(v) = exp(40v) + v — 1, u(t) = cos(t)



Moving Frontiers: Bilinear Model Order Reduction

Numerical examples

Moving Frontiers @ Nonlinear RC circuit [CuEN/WHITE 00, BAI/SKOOGH '06].
in Model

Reduction @ Carleman bilinearization ~ bilinear system with n = 2,550,
Peter Benner
k=1.

@ Compare bilinear Balanced Truncation with Krylov subspace
method taken from [Bai/Skoocu ’06].

Reduction of 2550-dimensional system, relative errors. Reduction of 2550-dimensional system, relative errors

Bilinear MOR 10° 10°

o) r=21 BT, y=0.1 100l r=21 BT, y=0.1
107t |.....r=21 Krylov SISO, q,=20,q,=1, p,=1 —....1=21 Krylov SISO, q =20, q,=1, p,=1
r=21 Krylov & BT, q,=40, q,=6, p,=6, y=0.1 ) --....1=21 Krylov & BT, q,=40, q,=6, p,=6, y=0.1
1) 1
10
%% 05 1 15 2 0 2 4 6 8 10
— ot 2t
u(t)y=-e u(t) = (cos 2t o +1)/2

[B./Damm '09]



Numerical Solution of Bilinear Lyapunov Equations

Moving Frontiers Bilinear balanced truncation both require solutions of

Reduction

Bilinear Lyapunov Equation

AXET + EXAT + NXNT + BBT = 0.

Peter Benner

Bilinear MOR



Numerical Solution of Bilinear Lyapunov Equations

Moving Frontiers Bilinear balanced truncation both require solutions of

Reduction

Bilinear Lyapunov Equation

AXET + EXAT + NXNT + BBT = 0.

Peter Benner

Naive attempt based on fixed-point iteration
Xip1 = —N"1 (AXET +EXAT + BBT) N-T
not applicable as N often singular.

Bilinear MOR



Numerical Solution of Bilinear Lyapunov Equations

Moving Frontiers Bilinear balanced truncation both require solutions of
Reduction

Bilinear Lyapunov Equation

Peter Benner

AXET + EXAT + NXNT + BBT = 0.

Naive attempt based on fixed-point iteration
Xip1 = —N"1 (AXET +EXAT + BBT) N-T
not applicable as N often singular.
Current best available method: ADI-preconditioned Krylov subspace

methods [DaMM ’08], using

£t (£0)+P(X) +BBT) =0,

Bilinear MOR

where
— L£:X — AXET + EXAT is the associated Lyapunov operator,
— P: X — NXNT is a positive operator,
— L' is a preconditioner, obtained by running a fixed (low) number s
of ADI steps on the Lyapunov part.



Numerical Solution of Bilinear Lyapunov Equations

Moving Frontiers Bilinear balanced truncation both require solutions of

Reduction

Bilinear Lyapunov Equation

AXET + EXAT + NXNT + BBT = 0.

Peter Benner

Naive attempt based on fixed-point iteration
Xip1 = —N"1 (AXET +EXAT + BBT) N-T
not applicable as N often singular.

Bilinear MOR Current best available method: ADI-preconditioned Krylov subspace
methods [DaMM ’08], using

£t (£0)+P(X) +BBT) =0,

where
— L£:X — AXET + EXAT is the associated Lyapunov operator,
— P: X — NXNT is a positive operator,
— L' is a preconditioner, obtained by running a fixed (low) number s
of ADI steps on the Lyapunov part.
Problem: equations beyond n = 1,000 hardly solvable as no version
computing low-rank approximations to X is known yet!



Interpolatory Model Reduction

Short Introduction

Moving Frontiers

in Model Computation of reduced-order model by projection

Reduction

Peter Benner Given a linear (descriptor) system EX = Ax + Bu, y = Cx  with
transfer function ~ G(s) = C(sE — A)™'B, a reduced-order model is
obtained using projection matrices V, W € R"™*" with W™V = |,

(~ (VWT)? = VWT is projector) by computing

E=WTEV, A=wWTAv, B=W"B, €=CV.
Introduction

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.




Interpolatory Model Reduction

Short Introduction

Moving Frontiers

in Model Computation of reduced-order model by projection

Reduction

Peter Benner Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with
transfer function  G(s) = C(sE — A)"'B, a reduced-order model is
obtained using projection matrices V, W € R"™*" with W™V = |,

(~ (VWT)? = VWT is projector) by computing

E=WTEV, A=wWTAv, B=W"B, €=CV.
Introduction

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching
Choose V/, W such that
G(s)=G(s), j=1,...,k

and

d’ d . . .
EG(SI):EG(SJ% I:]-v“'?/(ja J:]-v"'ak'




Interpolatory Model Reduction

Short Introduction

Moving Frontiers X P § Q Q
in Model Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

Reduction

Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction then

R d d . .
G(s)) = G(s)), —G(s) = EG(SJ'), forj=1,...,k.

ds




Interpolatory Model Reduction

Short Introduction

Moving Frontiers

in Model Theorem (simplified) [GRIMME ’ /ILLEMAGNE/S

Reduction

Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction then

R d d . .
G(s)) = G(s)), —G(s) = EG(SJ)’ forj=1,...,k.

ds

Remarks:
computation of V| W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME ’97],

— lIterative Rational Krylov-Algo. [ANTOULAS/BEATTIE/GUGERCIN "07].



Interpolatory Model Reduction

Short Introduction

Moving Frontiers X P § Q Q
in Model Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

Reduction

Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction then

G(s) = G(s)).

d d » .
gG(SJ) = EG(SJ'), fOr_j = 1,...,/(.

Remarks:

using Galerkin /one-sided projection yields G(s;) = G(s;), but in general

d d -
EG(SJ) # EG(SJ')'



Interpolatory Model Reduction

Short Introduction

Moving Frontiers X P § Q Q
in Model Theorem (simplified) [GRIMME ’ VILLEMAGNE/SKELTON ’87]

Reduction

Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction then

. d d » )
G(sj) = G(s), gG(sj) = EG(SJ)’ forj=1,..., k.

Remarks:

k = 1, standard Krylov subspace(s) of dimension K ~» moment-matching
methods/Padé approximation,

d’ d . .
EG(sl) = EG(Sl), i=0,...,K—1(+K).



Moving Frontiers: Moment Matching for Bilinear Systems

Input-output characterization of bilinear systems

Moving Frontier: - HH
WG Recall: bilinear system

Reduction
Peter Benner X = Ax+ Nxu+ Bu, y=Cx,
For |1/O-behavior, generalize concepts for linear systems by Volterra
series
> t t1 the—1
y(t):Z// / h(ty, tay . b u(t —ty — - — ty)
—1’0 Jo 0
Bilinear MOR o U(t _ tk)dtk N dtl

h(ty, to, ... t,) = cT e N ... e NeAl p

— degree-k kernel
{§ multivariable Laplace transform

H(si,5,...,50) = ¢ (sk] — A)IN--- (s — A7 N(sp ] — A)~1b

— k-th transfer function



Moving Frontiers: Moment Matching for Bilinear Systems

High frequency multimoments

Moving Frontiers s = é._l .
in Model !
Reduction

H(st,...,sc) =c (sl —A)7IN-- (s — A" IN(s;/ — A7 Lb
=cT (&M = A)TIN- (G = A)TIN(ETH = A) b
= TG (I = &A)TIN - & — LA TING (I — 6 A)

for & — 0 (s; — o0) use Neumann expansion:

Bilinear MOR

(I - &A™ ZfA’

=0

oo oo
H(sl,...,sk):Z...Zm(ll,...,/k)sfll--~sk_/k

=1 h=1
m(h,... . ) =cTATIN... AL=INAL=Tp

— high frequency multimoments



Moving Frontiers: Moment Matching for Bilinear Systems
High frequency multimoments

Moving Frontiers
in Model
Reduction

cT(skl = A)IN-- (521 — A)IN(s1 1 — A) 7l
(&M —A)TIN (& = AN — A) b
=cT& (I = EA)TIN - &(1 — EA)TINEG (I — A b

for & — 0 (s; — o0) use Neumann expansion:

Bilinear MOR 0o
(I=&A) =) &A
;=0
m(h) = cT A= 1p Markov parameters

m(h, k) = cTAR=INAR—1p
m(h, h, k) = cT AB~INAR-INAL—1p



Moving Frontiers: Moment Matching for Bilinear Systems
Arbitrary expansion points

Moving Frontiers
in Model
Reduction

Peter Benner

Similar for s; — o; € C:
oo oo
h—1 f—1
H(s1,...,s¢) = E ...Zm(/l,...,/k)sl1 S5
k=1 h=1

Bilinear MOR
m(h,..., ) = (=) c"(A=o ) "N (A= a2 ) TEN(A—o11) b
special case 0; =0 :

m(h, ..., ) =(~1)KcTAN ... A"ENATHD

— low frequency multimoments



Moving Frontiers: Moment Matching for Bilinear Systems

Model reduction Ingredients

Moving Frontiers Matching multi-moments:
in Model

FREd”:t“’" @ multimoments locally characterize input-output behaviour
@ construct reduced system ¥ that matches g% multimoments of the

first r subsystems of the original system

m(h, ... h)=m(h,....k), k=1,...r, l=1,....q

Bilinear MOR




Moving Frontiers: Moment Matching for Bilinear Systems

Model reduction Ingredients

Moving Frontiers Matching multi-moments:
in Model

FREd”:t“’" @ multimoments locally characterize input-output behaviour
@ construct reduced system ¥ that matches g% multimoments of the

first r subsystems of the original system
m(h, ... h)=m(h,....k), k=1,...r, l=1,....q

Construct reduced system by Petrov-Galerkin projection:

Bilincar MOR £(t) = WTAV (1) + WT NV 2(t)u(t) + W bu(t),
—— N—— ——
s A N b
. ~ T a A
=cV =~V
y(t)=¢c V(t), x(t)~ V(1)
eT

with V, W e R™& WTV = .




Moving Frontiers: Moment Matching for Bilinear Systems

Model reduction Ingredients

Moving Frontiers Matching multi-moments:
in Model

FREd”:t“’" @ multimoments locally characterize input-output behaviour
@ construct reduced system ¥ that matches g% multimoments of the

first r subsystems of the original system
m(h, ... h)=m(h,....k), k=1,...r, l=1,....q

Construct reduced system by Petrov-Galerkin projection:

Bilincar MOR £(t) = WTAV (1) + WT NV 2(t)u(t) + W bu(t),
—— N—— ——
s A N b
. ~ T a A
=cV =~V
y(t)=¢c V(t), x(t)~ V(1)
eT

with V, W e R™& WTV = .
Use sequence of nested Krylov subspaces

Kq(A, b) = span {b, Ab, ... ,Aq—lb} . AER™" beR"




Moving Frontiers: Moment Matching for Bilinear Systems
One-sided methods: high frequency multimoments

Moving Frontiers
in Model
S Let a bilinear SISO system ¥ be given.
o span{V()} = K (A, b),
o span{V(} = C (A, NV k=2 .. r
e span{V} = span{J;_, span{VK}}
Bilinear MOR @ W arbitrary left inverse of V

—m(h,....k)=m(h,.... k), k=1,...,r, [=1,...,q




Moving Frontiers: Moment Matching for Bilinear Systems
One-sided methods: high frequency multimoments

Moving Frontiers
in Model

Reduction Theorem

Peter Benner

Let a bilinear SISO system X be given.
o span{V()} = K (A, b),
o span{V(} = C (A, NV k=2 .. r
e span{V} = span{J;_, span{VK}}
Bilincar MOR @ W arbitrary left inverse of V
—m(h,....k)=m(h,.... k), k=1,...,r, [=1,...,q

Example:

V) = Kyp(A ), VO = K4(A NVD)

CTAllflb:é\TAhle’ /1 :17710
CTAI2_1NA/1_1b — 6TA/2—1 NA/z—lB’ /1, /2 = 1, .. ’4




Moving Frontiers: Moment Matching for Bilinear Systems

One-sided methods: arbitrary multimoments

Moving Frontiers Multimoment-matching for different expansion points to cover broader fre-
in Model
Reduction quency range:

Peter Benner

Let a bilinear SISO system X be given.
@ span{VW} = Ko((A—01l)7L, (A= o01l)71b),
@ span{ V¥ = IC,((A — aul) 7L, (A — o l) TNV,
Bilinear MOR @ span{V} = span {UZ:I span{ V(k)}}
@ W arbitrary left inverse of V
—m(h,....k)=m(h,.... k), k=1,....r, [=1,...,q

Special cases:
e Viv=l Wl=vT
— orthogonal projection

— first approach, proposed by [PHILLIPS ’03], see also [B./FENG '07]
for multi-moment matching proof.



Moving Frontiers: Moment Matching for Bilinear Systems

One-sided methods: arbitrary multimoments

Moving Frontiers Multimoment-matching for different expansion points to cover broader fre-
in Model
Reduction quency range:

Peter Benner

Let a bilinear SISO system X be given.
@ span{VW} = Ko((A—01l)7L, (A= o01l)71b),
@ span{ V¥ = IC,((A — aul) 7L, (A — o l) TNV,
Bilinear MOR @ span{V} = span {UZ:I span{ V(k)}}
@ W arbitrary left inverse of V
—m(h,....k)=m(h,.... k), k=1,....r, [=1,...,q

Special cases:
o Viv=1I W' =(VTA"lv)"lvTa-1
— multiply state equation by A~1, proposed by [SkoOoGH/BAI '06]

— seems to yield better results for bilinearized systems.



Moving Frontiers: Moment Matching for Bilinear Systems
Two-sided methods

Moving Frontiers
in Model
Reduction

Peter Benner
Better choices for projection matrix W?

o span{WW} = IC4(AT, c),
o span{WK} = C (AT, NTWK=) k=2 ... r
o span{W} = span {|J;_, span{W()}}

Bilinear MOR
V) = KCs(A, b), WO =K6(AT,¢)
m(ll) = ﬁ)(/l), /1 = 1, ceey 12, m(/l, /2) = ﬁ](/l, 12), Il, /2 = 1, e ,6

— significantly more multimoments are preserved.

— Number of matched subsystems automatically doubles.



Moving Frontiers: Moment Matching for Bilinear Systems
Numerical examples: nonlinear RC circuit

Moving Frontiers
in Model
Reduction

Node n-1  Node n

Peter Benner - —
g g g g

@ ]

N
4
-
a
@]
a
(@]

Bilinear MOR

v(t) : node voltages vi(t),...,vn(t), N =50— dim X = 2550
u(t) : independent current source, C =1, g(v) = exp(40v) + v — 1

y(t) : voltage between node 1 and ground



Moving Frontiers: Moment Matching for Bilinear Systems

Numerical examples: nonlinear RC circuit

Moving Frontiers

in Model Projection subspaces:

Reduction
Peter Benner
— High frequency multimoments (o0):
V(l) = ICIQ(Av b)a
VO = K4(A NV
Vv=vOuyuv@d vTv=|
— Low frequency multimoments (o; = 0):
V) = K19(A7L, A71b),
VO = K (AL ATINVY)
v=vOyv@, vTvy =]
— Multiple interpolation points (o = 0, 1, 10, 100, co):
e.g. o; = 10:
V) =K ((A—10- )71, (A—10-1)"1b)
VO = Kg,(A—10- 1), (A—10- 1)INVY))

— First and second order multimoments are preserved.

Bilinear MOR




Moving Frontiers: Moment Matching for Bilinear Systems
Numerical examples: nonlinear RC circuit

Moving Frontiers

in Model Simulation results:

Reduction

Transient responses, N = 50, n = 2550, u(t) = e*

vl Nonlinear Model

0016 vearized Model

0014
50012
2 oot
®

$0.008
S 0.006|
-~ 0004
Bilinear MOR
0002

% o0z o4 os o8 1

14 16 18 2

08 1 12
Time t (second)

4g°  Transient responses, N = 50, n = 2550, u() = sin(200t)
8 T T T T T T T T .
'—Original Nonlinear Model

o —Linearized Model

— Bilinearized Model

Voltage at Node 1

07 08 08 1

% oi 02 03 04 05 06
Time  (second)



Moving Frontiers: Moment Matching for Bilinear Systems

Numerical examples: nonlinear RC circuit

Moving Frontiers

in Model Simulation results:

Reduction

Relative errors, n = 2550, u

Transient responses, N = 50, n = 2550, u(t) = & 10°

jinal Nonlinear Model

g
0016 Linearized Model
inearized Model

0014
0012,
2 oot

Relative errors

$0.008
g

S 0.006}
Bilinear MOR 0.004)
0002 4

08 1 12
Time (second)

0 02 o4 o6 14 16 18 2

08 1 12
Time t (second)

Relative errors, n = 2550, u(t)=sin(2004)

3 Transient responses, N = 50, n = 2550, u(t) = sin(2004)

10 o
10
riginal Nonlinear Model
6l incarized Model ]
ear Model
_a §10°
22 %
s 210
g0 |
2
2|
10°] i
igh frequency MM,
4
o 0.1 02 03 04 05 06 07 08 09 1
P I Time (second)

04 05 06 07 08 09 1
Time t (second)




Moving Frontiers: Moment Matching for Bilinear Systems

Numerical examples: nonlinear RC circuit

Moving Frontiers

in Model Simulation results:

Reduction

Transient responses, N = 50, n = 2550, u(t) = e*

0016

o014
Soo12
Z 001

5
,0.008

Relative errors

S 0.006|
0004

Bilinear MOR

0.002) i ~=-High frequency MM, r = 30]
T A ~--Low frequency MM, r = 35
02 04 06 08 1 12 14 16 18 2 Vo 02 o4 o8 o8 1 12 14 16 18 2
Time t (second) Time (second)
g1o® Tansentrespones, N =50, = 2650, () = sn(2c01) Relative errors, n = 2550, u(t)=sin(200)

'—Original Nonlinear Model
o —Linearized Model
— Bilinearized Model

4
3 ¢
z, 5
w 2
M H
%ol k|
£ &
Z2
4 High frequency MM, r = 30
Low frequency MM, r = 35
oot o2 o3 o4 o5 o6 o7 o8 o8 1
01 02 03 04 05 06 07 08 08 1
Time t (second) Time (second)



Moving Frontiers: Moment Matching for Bilinear Systems

Numerical examples: nonlinear RC circuit

Moving Frontiers

in Model Simulation results:

Reduction

Transient responses, N = 50, n = 2550, u(t) = e*

Relative errors, n = 2550, u(ty=e*

107 !
0016
0014 107
50012
g ¢
2 oot g
- 5
0008 g
E

S 0.006|

0.004

Bilinear MOR High frequency MM,

0.002] Low frequency MM, r = 35
q . . . . . . . . . Multiple frequency MM, r = 34
02 04 06 08 1 12 14 16 18 2 04 06 08 1 12 14 16 18 2
Time t (second) Time (second)
guto®_ Traniontresponses, N =0, = 2550, ut) = sn2001) Relative eors, n = 2550, u(t)=sin(200)

'—Original Nonlinear Model
o —Linearized Model
— Bilinearized Model

-4
3 2
z, £
w 2
o £
&0 k1
£ &
2
2
igh frequency MM, r = 30
4 ow frequency MM,

Multiple frequency MM,

05 06 07 08 08 1

02 03 04
Time (second)




Moving Frontiers: Moment Matching for

Quadratic-Bilinear Approximations

M @ Many nonlinear dynamics can be modeled by quadratic bilinear
in Model

I e differential algebraic equations (QBDAEs), i.e.

Peter Benner
Ex = Aix 4+ Axx ® x + Nxu + bu,
y =X,

where E, A;, N € R"™" Ay € R™" b, cT € R".
@ Combination of quadratic and bilinear control systems.

@ Variational analysis allows characterization of input-output
behavior via generalized transfer functions, e.g.

Nonlinear MOR

Hi(s) = c(sE — A1)~ 'b,
N—————

G(s)
Ha(s1, %) = %C((Sl +9)E— A1) [A(G(51) © G(s2) + G(s2) ® G(s1))

+N(G(s1) + G(=2))]



Mjl Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Moving Frontiers Which systems can be transformed?
in Model
Reduction

Theorem [Gu '09]

Peter Benner

Assume that the state equation of a nonlinear system ¥ is given by
X = aox + a181(x) + ... + akgk(x) + bu,

where gi(x) : R" — R" are compositions of rational, exponential,
logarithmic, trigonometric or root functions, respectively.

Then X can be transformed into a quadratic bilinear differential
algebraic equation of dimension N > n.

Nonlinear MOR

@ transformation is not unique
@ original system has to be increased before reduction is possible
@ minimal dimension N?



Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Moving Frontiers
in Model
Reduction Exam ple

Feter Senner @ Consider the following two dimensional nonlinear control system:

s = exp(—x2) - \/x2 + 1,

X2 = sin x> + u.

@ Introduce useful new state variables, e.g.

x3 1= exp(—x2), xa := /xZ + 1, x5 := sinxz, X6 := COS Xz.

@ System can be replaced by a QBDAE of dimension 6:

Nonlinear MOR

X1 = X3 - Xa, X2 = X5 + U,

. . 2.X1° X3 X4

x3=—x3- (x5 + u), X —————
2~X4

X5 :X6-(X5+u), Xo = —X5~(X5—|-u).




Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Moving Frontiers

in Model Multi-moment-Matching for QBDAEs

Reduction

Feter Beancr @ Construct reduced order model by projection:
E=Z"Ez, AA=Z"AZ, N=Z"NZ,
A=2"AZ®Z b=2Z"b t=cZ

@ Approximate values and derivatives (" multi-moments”) of transfer

functions around an expansion point o using Krylov spaces, e.g.
Nonlinear MOR

span{V} = Ks (A-E, Asb)
span{Wi} = K3 (A E, Ao (A2V1 @ Vi — N1 V1))
span{Wa} = Kz (Azo E, Aso(A2(Va @ Vi + Vi @ Vi) — Ny V5))
span{Ws} = K1 (Ao E, Aso (A2(Va @ Vo + Vo @ V2)))
span{Wa} = K1 (Ao E, Ao (A2(Va @ Vi + Vi ® V3) — N1 V3)),

with A, = (A1 — ¢E)~! and V; denoting the i-th column of V
— derivatives match up to order 5 (Hi) and 2 (H>), respectively.




Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Moving Frontiers

in Model Numerical Example
Reduction

Peter Benner

@ FitzHugh-Nagumo system: simple model for neuron (de-)activation.

eve(x, t) = €vi(x, t) + F(v(x, t)) — w(x, t) + g,
we(x, t) = hv(x, t) — yw(x, t) + g,

with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions
Nonlinear MOR v(x,0) =0, w(x,0) =0, x € [0,1]
v«(0, t) = —io(2), vx(1,t) =0, t >0,

where ¢ = 0.015, h = 0.5,7 = 2, g = 0.05, ip(t) = 50000t exp(—15t)
@ parameter g handled as an additional input

@ original state dimension n = 2 - 400, QBDAE dimension N = 3 - 400,
reduced QBDAE dimension r = 26, chosen expansion point 0 = 1

[B./BREITEN 2010]
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Moving Frontiers
in Model
Reduction

Numerical Example

Peter Benner

Nonlinear MOR

2d Phase Space

[B./BREITEN 2010]
v




Mjl Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Moving Frontiers
in Model
Reduction

Numerical Example

Peter Benner

Nonlinear MOR

3d Phase Space
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Conclusions and Outlook

Moving Frontiers Model reduction for nonlinear systems based on
in Model
Reduction

@ Carleman bilinearization and bilinear Balanced Truncation,
Peter Benner
@ QBDAE transformation and multi-moment matching

has high potential for many classes of nonlinear dynamical systems.

Current work:

e, — High dimensions can be dealt with using tensor product structures of
Outlook coefficient matrices — already done for bilinear Krylov subspaces [CoN-
poN/IvaNov ’07], for Gramian computation in progress [B./Damm].

— QBDAE is exact for many nonlinearities, e.g.

+ reaction-diffusion systems and population balances;
+ various PDEs with nonlinear convective terms x.Vx:
Burgers, Euler, Navier-Stokes, Kuramoto-Sivashinsky eqns;

hence, reduced-order model will have the same nonlinear structure.

— Enhance efficiency of QBDAE approach using tensor decomposition,
low-rank and sparse approximations.



Conclusions and Outlook

Moving Frontiers Model reduction for nonlinear systems based on
in Model
Reduction

@ Carleman bilinearization and bilinear Balanced Truncation,
Peter Benner
@ QBDAE transformation and multi-moment matching

has high potential for many classes of nonlinear dynamical systems.

Conclusions and
Outlook

Thank you for your attention!
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