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Introduction to Model Order Reduction

Dynamical Systems

Σ(p) :


0 = f (t, x(t), ∂tx(t), ∂ttx(t), u(t), p), x(t0) = x0, (a)

y(t) = g(t, x(t), ∂tx(t), u(t), p) (b)

with

(generalized) states x(t) ≡ x(t; p) ∈ X ,

inputs u(t) ∈ U ,

outputs y(t) ≡ y(t; p) ∈ Y, (b) is called output equation,

p ∈ Rd is a parameter vector.
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(a) may represent

system of ordinary differential equations (ODEs);

system of differential-algebraic equations (DAEs);

system of partial differential equations (PDEs);

system of integro-differential equations,

a mixture thereof.
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Introduction to Model Order Reduction
Basic Ideas

Main idea

Replace differential equation by low-order one while preserving
input-output behavior as well as important system invariants and
physical properties!

Original System

Σ(p) :


E(x , p)ẋ = f (t, x , u, p),

y = g(t, x , u, p).

states x(t; p) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq,

parameters p ∈ Rd .

Reduced-Order System

bΣ(p) :


Ê(x̂ , p) ˙̂x = bf (t, x̂ , u, p),

ŷ = bg(t, x̂ , u, p).

states x̂(t; p) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t; p) ∈ Rq,

parameters p ∈ Rd .
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Large-Scale Linear Systems

Linear, time-invariant (LTI) systems

Σ :


ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.

(A,B,C ,D) is a realization of Σ (nonunique).
Laplace transform: state-space → frequency domain yields transfer
function of Σ:

Y (s) = (C(sIn − A)−1B + D)| {z }
=:G(s)

U(s).

Goal: find Â ∈ Rr×r , B̂ ∈ Rr×q, Ĉ ∈ Rq×r ,D ∈ Rq×m such that

‖G − Ĝ‖ = ‖(C(sIn − A)−1B + D)− (Ĉ(sIr − Â)−1B̂ + D̂)‖ < tol

⇒ ‖y − ŷ‖ ≤ tol‖u‖.
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Large-Scale Linear Systems

Linear, time-invariant (LTI) systems

Σ :


ẋ(t) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y(t) = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.

(A,B,C ,D) is a realization of Σ (nonunique).

Model order reduction by projection

Galerkin or Petrov-Galerkin-type projection of state-space onto
low-dimensional subspace V along W: assume x ≈ VW T x =: x̃ , where

range (V ) = V, range (W ) =W, W TV = Ir .

Then, with x̂ = W T x , we obtain x ≈ V x̂ and

Â = W TAV , B̂ = W TB, Ĉ = CV , D̂ = D.

where VcW
T
c projects onto Vc , the complement of V.
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Balanced Truncation
Short Introduction

Idea (for simplicity, E = In)

A system Σ, realized by (A,B,C ,D), is called balanced, if
solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

„»
A11 A12

A21 A22

–
,

»
B1

B2

–
,
ˆ

C1 C2

˜
,D

«
Truncation  (Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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Balanced Truncation
Short Introduction

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.
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Short Introduction

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j
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Balanced Truncation
Short Introduction

Motivation:

HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j

=⇒ Truncate states corresponding to “small” HSVs
=⇒ analogy to best approximation via SVD, therefore

balancing-related methods are sometimes called SVD methods.
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Balanced Truncation
Short Introduction

Implementation: SR Method

1 Compute (Cholesky) factors of the solutions of the Lyapunov
equations,

P = STS , Q = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RTV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ,D).
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Balanced Truncation
Short Introduction

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2.

General misconception:
complexity O(n3) – true for several implementations (e.g.,
Matlab, SLICOT, MorLAB).

But: recent developments in Numerical Linear Algebra yield
matrix equation solvers with sparse linear systems complexity!
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Solving Large-Scale Lyapunov Equations

General form for A,W = W T ∈ Rn×n given and P ∈ Rn×n unknown:

0 = L(Q) := ATQ + QA + W .

In large scale applications from semi-discretized control problems for
PDEs,

n = 103 – 106 (=⇒ 106 – 1012 unknowns!),

A has sparse representation (A = −M−1K for FEM),

W low-rank with W ∈ {BBT ,CTC}, where
B ∈ Rn×m, m� n, C ∈ Rq×n, p � n.

Standard (Schur decomposition-based) O(n3) methods are not
applicable!
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Solving Large-Scale Lyapunov Equations
ADI Method for Lyapunov Equations

For A ∈ Rn×n stable, B ∈ Rn×m (w � n), consider Lyapunov
equation

AX + XAT = −BBT .

ADI Iteration: [Wachspress 1988]

(A + pk I )X(k−1)/2 = −BBT − Xk−1(AT − pk I )

(A + pk I )Xk
T = −BBT − X(k−1)/2(AT − pk I )

with parameters pk ∈ C− and pk+1 = pk if pk 6∈ R.

For X0 = 0 and proper choice of pk : lim
k→∞

Xk = X (super)linearly.

Re-formulation using Xk = YkY
T
k yields iteration for Yk ...
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Factored ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT .

Setting Xk = YkY
T
k , some algebraic manipulations =⇒

Algorithm [Penzl ’97/’00, Li/White ’99/’02, B. 04, B./Li/Penzl ’99/’08]

V1 ←
p
−2Re (p1)(A + p1I )−1B, Y1 ← V1

FOR j = 2, 3, . . .

Vk ←
q

Re (pk )
Re (pk−1)

`
Vk−1 − (pk + pk−1)(A + pk I )−1Vk−1

´
Yk ←

ˆ
Yk−1 Vk

˜
Yk ← rrlq(Yk , τ) % column compression

At convergence, YkmaxY
T
kmax
≈ X , where

Ykmax =
[

V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic possible by combining two steps.

9/30
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].

K-PIK [Simoncini ’07],

Z = K(A,B, r) ∪ K(A−1,B, r).

10/30
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Jaimoukha/Kasenally ’94, Jbilou ’02–’08].
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Factored Galerkin-ADI Iteration
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1 Compute orthonormal basis range (Z), Z ∈ Rn×r , for subspace
Z ⊂ Rn, dimZ = r .

2 Set Â := ZTAZ , B̂ := ZTB.
3 Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4 Use X ≈ ZX̂ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar ’08]:

Z = colspan
[

V1, . . . , Vr

]
.

Note: ADI subspace is rational Krylov subspace [J.-R. Li/White ’02].
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Good ADI shifts

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.11/30
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Factored Galerkin-ADI Iteration
Numerical example

FEM semi-discretized control problem for parabolic PDE:

optimal cooling of rail profiles,

n = 20, 209, m = 7, p = 6.

Bad ADI shifts

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.11/30
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Balanced Truncation
Sample applications: VLSI design

Application in Microelectronics: VLSI Design

Balanced Truncation was implemented in circuit simulator TITAN
(Qimonda AG, Infineon Technologies).

TITAN simulation results for industrial circuit:
14,677 resistors, 15,404 capacitors, 14 voltage sources, 4,800 MOSFETs.
14 linear subcircuits of varying order extracted and reduced.
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Simulation of a very big circuit

TITAN run without reduction
BTSR-reduction with C

[Günzel, Diplomarbeit ’08; B. ’08]

Supported by BMBF network SyreNe (includes Qimonda, Infineon, NEC), EU Marie Curie grant

O-Moore-Nice! (includes NXP), industry grants.12/30
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Balanced Truncation
Sample applications: electro-thermic simulation of integrated circuit (IC)
[Source: Evgenii Rudnyi, CADFEM GmbH]

Test circuit in Simplorer R© with 2 transistors.

Conservative thermic sub-system in Simplorer:
voltage  heat, current  heat flux.

Original model: n = 270.593, m = p = 2 ⇒
Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

– Solution of Lyapunov equations: ≈ 22min.
(420/356 columns in solution factors),

– Computation of ROMs: 44sec. (r = 20) — 49sec. (r = 70).
– Bode diagram (Matlab on Intel Core i7, 2,67GHz, 12GB):

using original system 7.5h, with reduced system < 1min.

13/30
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Balanced Truncation
Sample applications: electro-thermic simulation of integrated circuit (IC)
[Source: Evgenii Rudnyi, CADFEM GmbH]

Original model: n = 270.593, m = p = 2 ⇒
Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

– Solution of Lyapunov equations: ≈ 22min.
(420/356 columns in solution factors),

– Computation of ROMs: 44sec. (r = 20) — 49sec. (r = 70).
– Bode diagram (Matlab on Intel Core i7, 2,67GHz, 12GB):

using original system 7.5h, with reduced system < 1min.
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Balanced Truncation
Sample applications: electro-thermic simulation of integrated circuit (IC)
[Source: Evgenii Rudnyi, CADFEM GmbH]

Original model: n = 270.593, m = p = 2 ⇒
Computing times (CMESS on Intel Xeon dualcore 3GHz, 1 Thread):

– Solution of Lyapunov equations: ≈ 22min.
(420/356 columns in solution factors),

– Computation of ROMs: 44sec. (r = 20) — 49sec. (r = 70).
– Bode diagram (Matlab on Intel Core i7, 2,67GHz, 12GB):

using original system 7.5h, with reduced system < 1min.
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Moving Frontiers: Bilinear Model Order Reduction
Balanced Truncation for Bilinear Systems
[Gray/Mesko ’98, Condon/Ivanov ’05, B./Damm ’09]

Bilinear control system of the form

ẋ = Ax +
k∑

j=1

Njxuj + Bu, y = Cx ,

arise, e.g., in

control of PDEs with mixed boundary conditions,

approximation of nonlinear systems using Carleman bilinearization.

14/30
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Moving Frontiers: Bilinear Model Order Reduction
Balanced Truncation for Bilinear Systems
[Gray/Mesko ’98, Condon/Ivanov ’05, B./Damm ’09]

Bilinear control system of the form

ẋ = Ax +
k∑

j=1

Njxuj + Bu, y = Cx ,

arise, e.g., in

control of PDEs with mixed boundary conditions,

approximation of nonlinear systems using Carleman bilinearization.

The solutions of the generalized Lyapunov equations

AP + PAT +
kX

j=1

NjPNT
j = −BBT , ATQ + QA +

kX
j=1

NT
j QNj = −CTC

possess certain properties of the reachability and observability Grami-
ans of linear systems, generalized Hankel singular values can be defined,
and model reduction analogous to Balanced Truncation can be based
upon them [Al-Baiyat/Bettaye ’93].14/30
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Moving Frontiers: Bilinear Model Order Reduction
Balanced Truncation for Bilinear Systems
[Gray/Mesko ’98, Condon/Ivanov ’05, B./Damm ’09]

Energy functionals [Gray/Mesko, IFAC 1998]

Ec(x0) = min
u∈L2(−∞,0)

x(−∞,u)=0,x(0,u)=x0

‖u‖2
L2

?
≥ xT

0 P−1x0

Eo(x0) = max
u∈L2(0,∞),‖u‖L2≤1

‖y(·, x0, u)‖2
L2

?
≤ xT

0 Qx0

14/30
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Moving Frontiers: Bilinear Model Order Reduction
Balanced Truncation for Bilinear Systems
[Gray/Mesko ’98, Condon/Ivanov ’05, B./Damm ’09]

Energy functionals [Gray/Mesko, IFAC 1998]

Ec(x0) = min
u∈L2(−∞,0)

x(−∞,u)=0,x(0,u)=x0

‖u‖2
L2

?
≥ xT

0 P−1x0

Eo(x0) = max
u∈L2(0,∞),‖u‖L2≤1

‖y(·, x0, u)‖2
L2

?
≤ xT

0 Qx0

xT
0 Px0

xT
0 Qx0

}
small

?⇒ state x0 hard

{
to reach
to observe

14/30



Moving Frontiers
in Model

Reduction

Peter Benner

Introduction to
MOR

Balanced
Truncation

Short
Introduction

Lyapunov
Equations

Bilinear MOR

Interpolatory
Model Reduction

Conclusions and
Outlook

Moving Frontiers: Bilinear Model Order Reduction
Exact unreachability

Theorem (k = 1 for simplicity)

Let AP + PAT + NPNT + BBT = 0.

If P ≥ 0 then im P is invariant w.r.t. ẋ = Ax + Nxu + Bu.

In particular: ker P is unreachable from 0.

Analogously for (un)observability.

15/30
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Moving Frontiers: Bilinear Model Order Reduction
Exact unreachability

Theorem (k = 1 for simplicity)

Let AP + PAT + NPNT + BBT = 0.

If P ≥ 0 then im P is invariant w.r.t. ẋ = Ax + Nxu + Bu.

In particular: ker P is unreachable from 0.

Proof: Let v ∈ ker P. Then 0 = vT
“
NPNT + BBT

”
v

⇒ BT v = 0 and PNT v = 0

⇒ NT ker P ⊂ ker P ⊂ ker BT

⇒ PAT v = 0, i.e. AT ker P ⊂ ker P.

If x(t) ∈ im P = (ker P)⊥ for some t, then

ẋ(t)T v = x(t)T AT v|{z}
∈ker P

+u(t)x(t)T NT v|{z}
∈ker P

+u(t)T BT v|{z}
=0

= 0

Hence ẋ(t) ∈ im P, implying invariance.15/30
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Moving Frontiers: Bilinear Model Order Reduction
Exact unreachability

Theorem (k = 1 for simplicity)

Let AP + PAT + NPNT + BBT = 0.

If P ≥ 0 then im P is invariant w.r.t. ẋ = Ax + Nxu + Bu.

In particular: ker P is unreachable from 0.

Consequence:

If ‖Px1‖ is small, then x1 should be almost unreachable.

How can this be quantified?

15/30
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Moving Frontiers: Bilinear Model Order Reduction
Balanced realization

Given factorizations P = LLT , LTQL = UΣ2UT ,
the transformation T = LUΣ−1/2 is balancing: the equivalent system

eA = T−1AT , eNj = T−1NjT , eB = T−1B , eC = CT .

satisfies eP = eQ = diag (σ1, . . . , σn).
If the small Hankel singular values σr+1, . . . , σn vanish: state negligible!(?)

Projection on Rr , (r
!
� n).

Partition: T = [T1,T2], T−1 =

»
S1

S2

–
.

Truncation: eA(r) = S1AT1
eN(r)

j = S1NjT1eB(r) = S1B eC (r) = CT1

Reduced model:

˙̃xr = eA(r)x̃r +
mX

j=1

eN(r)
j x̃ruj + eB(r)u ỹ = eC (r)x̃r .

16/30
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Moving Frontiers: Bilinear Model Order Reduction
applied to Nonlinear Systems using Carleman Bilinearization

Nonlinear control system (SISO):

v̇(t) = f (v(t)) + g (v(t)) u(t),

y(t) = cT v(t), v(0) = 0, f (0) = 0

where f , g : RN → RN are nonlinear and analytic in v .

f (v) ≈ A1v +
1

2
A2v ⊗ v , g(v) ≈ B0 + B1v

with B0 ∈ RN , A1,B1 ∈ RN×N , A2 ∈ RN×N2

,

x =

[
v

v ⊗ v

]
, A =

[
A1

1
2A2

0 A1 ⊗ I + I ⊗ A1

]
,

N =

[
B1 0

B0 ⊗ I + I ⊗ B0 0

]
, B =

[
B0

0

]
, C =

[
cT 0

]
.

17/30
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Moving Frontiers: Bilinear Model Order Reduction
Numerical examples

Nonlinear RC circuit [Chen/White ’00, Bai/Skoogh ’06].

Carleman bilinearization  bilinear system with n = 2, 550,
k = 1.

Compare bilinear Balanced Truncation with Krylov subspace
method taken from [Bai/Skoogh ’06].

420 Z. Bai, D. Skoogh / Linear Algebra and its Applications 415 (2006) 406–425

Node nNode n-1Node 2Node 1

i=u(t)

g g g g

C C C C Cg

Fig. 4. A nonlinear RC circuit [3].

f(v) = [fk(v)] =





−g(v1) − g(v1 − v2)

g(v1 − v2) − g(v2 − v3)
...

g(vk−1 − vk) − g(vk − vk+1)
...

g(vNo−1 − vNo)





, b = c :=





1
0
...

0




.

The output signal y(t) is the voltage between node 1 and ground. The current through
each resistor will have the following voltage dependence:

g(v) = exp(40v) + v − 1. (27)

With the second-order approximation of g(v), the first component of f (v) can be
written as

f1(v) = −82v1 + 41v2 − 1600v2
1 + 800v1v2 + 800v2v1 − 800v2

2 + · · · .
(28)

The second component of f (v) is

f2(v) = 41v1 − 82v2 + 41v3 + 800v2
1 − 800v1v2

− 800v2v1 + 800v2v3 + 800v3v2 − 800v2
3 + · · · . (29)

In general, the kth component of f(v) can be written as

fk(v) = 41vk−1 − 82vk + 41vk+1 + 800v2
k−1 − 800vk−1vk

− 800vkvk−1 + 800vkvk+1 + 800vk+1vk − 800v2
k+1 + · · · . (30)

g(v) = exp(40v) + v − 1, u(t) = cos(t)

18/30



Moving Frontiers
in Model

Reduction

Peter Benner

Introduction to
MOR

Balanced
Truncation

Short
Introduction

Lyapunov
Equations

Bilinear MOR

Interpolatory
Model Reduction

Conclusions and
Outlook

Moving Frontiers: Bilinear Model Order Reduction
Numerical examples

Nonlinear RC circuit [Chen/White ’00, Bai/Skoogh ’06].

Carleman bilinearization  bilinear system with n = 2, 550,
k = 1.

Compare bilinear Balanced Truncation with Krylov subspace
method taken from [Bai/Skoogh ’06].

u(t) = e−t u(t) = (cos 2πt
10

+ 1)/2

[B./Damm ’09]
18/30
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Numerical Solution of Bilinear Lyapunov Equations

Bilinear balanced truncation both require solutions of

Bilinear Lyapunov Equation

AXET + EXAT + NXNT + BBT = 0.

Naive attempt based on fixed-point iteration

Xj+1 = −N−1
“
AXET + EXAT + BBT

”
N−T

not applicable as N often singular.

Current best available method: ADI-preconditioned Krylov subspace
methods [Damm ’08], using

L−1
s

“
L(X ) + P(X ) + BBT

”
= 0,

where

– L : X → AXET + EXAT is the associated Lyapunov operator,

– P : X → NXNT is a positive operator,

– L−1
s is a preconditioner, obtained by running a fixed (low) number s

of ADI steps on the Lyapunov part.

Problem: equations beyond n = 1, 000 hardly solvable as no version

computing low-rank approximations to X is known yet!19/30
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Interpolatory Model Reduction
Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with
transfer function G(s) = C(sE − A)−1B, a reduced-order model is
obtained using projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .

20/30
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Interpolatory Model Reduction
Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Eẋ = Ax + Bu, y = Cx with
transfer function G(s) = C(sE − A)−1B, a reduced-order model is
obtained using projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector) by computing

Ê = W TEV , Â = W TAV , B̂ = W TB, Ĉ = CV .

Petrov-Galerkin-type (two-sided) projection: W 6= V ,

Galerkin-type (one-sided) projection: W = V .

Rational Interpolation/Moment-Matching

Choose V ,W such that

G(sj) = Ĝ(sj), j = 1, . . . , k,

and
d i

ds i
G(sj) =

d i

ds i
Ĝ(sj), i = 1, . . . ,Kj , j = 1, . . . , k.
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

computation of V ,W from rational Krylov subspaces, e.g.,

– dual rational Arnoldi/Lanczos [Grimme ’97],

– Iterative Rational Krylov-Algo. [Antoulas/Beattie/Gugercin ’07].
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

using Galerkin/one-sided projection yields G(sj) = Ĝ(sj), but in general

d

ds
G(sj) 6=

d

ds
Ĝ(sj).
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Interpolatory Model Reduction
Short Introduction

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1E − A)−1B, . . . , (skE − A)−1B
}
⊂ Ran(V ),

span
{

(s1E − A)−TCT , . . . , (skE − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remarks:

k = 1, standard Krylov subspace(s) of dimension K  moment-matching
methods/Padé approximation,

d i

ds i
G(s1) =

d i

ds i
Ĝ(s1), i = 0, . . . ,K − 1(+K).
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Moving Frontiers: Moment Matching for Bilinear Systems
Input-output characterization of bilinear systems

Recall: bilinear system

ẋ = Ax + Nxu + Bu, y = Cx ,

For I/O-behavior, generalize concepts for linear systems by Volterra
series

y(t) =
∞∑

k=1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

h(t1, t2, . . . , tk)u(t − t1 − · · · − tk)

· · · u(t − tk)dtk . . . dt1

h(t1, t2, . . . , tk) = cT eAtk N · · · eAt2NeAt1b

→ degree-k kernel

m multivariable Laplace transform

H(s1, s2, . . . , sk) = cT (sk I − A)−1N · · · (s2I − A)−1N(s1I − A)−1b

→ k-th transfer function21/30
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Moving Frontiers: Moment Matching for Bilinear Systems
High frequency multimoments

si = ξ−1
i :

H(s1, . . . , sk) = cT (sk I − A)−1N · · · (s2I − A)−1N(s1I − A)−1b

= cT (ξ−1
k I − A)−1N · · · (ξ−1

2 I − A)−1N(ξ−1
1 I − A)−1b

= cT ξk(I − ξkA)−1N · · · ξ2(I − ξ2A)−1Nξ1(I − ξ1A)−1b

for ξi → 0 (si →∞) use Neumann expansion:

(I − ξiA)−1 =
∞∑

li =0

ξli
i Ali

H(s1, . . . , sk) =
∞∑

lk =1

. . .

∞∑
l1=1

m(l1, . . . , lk)s−l1
1 · · · s−lk

k

m(l1, . . . , lk) = cTAlk−1N · · ·Al2−1NAl1−1b

→ high frequency multimoments22/30
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Moving Frontiers: Moment Matching for Bilinear Systems
High frequency multimoments

si = ξ−1
i :

H(s1, . . . , sk) = cT (sk I − A)−1N · · · (s2I − A)−1N(s1I − A)−1b

= cT (ξ−1
k I − A)−1N · · · (ξ−1

2 I − A)−1N(ξ−1
1 I − A)−1b

= cT ξk(I − ξkA)−1N · · · ξ2(I − ξ2A)−1Nξ1(I − ξ1A)−1b

for ξi → 0 (si →∞) use Neumann expansion:

(I − ξiA)−1 =
∞∑

li =0

ξli
i Ali

m(l1) = cTAl1−1b Markov parameters

m(l1, l2) = cTAl2−1NAl1−1b

m(l1, l2, l3) = cTAl3−1NAl2−1NAl1−1b

...22/30
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Moving Frontiers: Moment Matching for Bilinear Systems
Arbitrary expansion points

Similar for si → σi ∈ C :

H(s1, . . . , sk) =
∞∑

lk =1

. . .

∞∑
l1=1

m(l1, . . . , lk)s l1−1
1 · · · s lk−1

k

m(l1, . . . , lk) = (−1)kcT (A− σk I )−lk N · · · (A− σ2I )−l2N(A− σ1I )−l1b

special case σi = 0 :

m(l1, . . . , lk) = (−1)kcTA−lk N · · ·A−l2NA−l1b

→ low frequency multimoments
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Moving Frontiers: Moment Matching for Bilinear Systems
Model reduction Ingredients

Matching multi-moments:

multimoments locally characterize input-output behaviour

construct reduced system Σ that matches qk multimoments of the
first r subsystems of the original system

m(l1, . . . , lk)
!

= m̂(l1, . . . , lk), k = 1, . . . , r , lj = 1, . . . , q

Construct reduced system by Petrov-Galerkin projection:

Σ̂ :

8>>><>>>:
˙̂x(t) = W TAV| {z }

Â

x̂(t) + W TNV| {z }
N̂

x̂(t)u(t) + W Tb| {z }
b̂

u(t),

ŷ(t) = cTV|{z}
ĉT

x̂(t), x(t) ≈ V x̂(t)

with V ,W ∈ Rn×k , W TV = I .

Use sequence of nested Krylov subspaces

Kq(A, b) = span
n

b,Ab, . . . ,Aq−1b
o
, A ∈ Rn×n, b ∈ Rn

24/30
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Moving Frontiers: Moment Matching for Bilinear Systems
One-sided methods: high frequency multimoments

Theorem

Let a bilinear SISO system Σ be given.

span{V (1)} = Kq(A, b),

span{V (k)} = Kq(A,NV (k−1)), k = 2, . . . , r

span{V } = span
{⋃r

k=1 span{V (k)}
}

W arbitrary left inverse of V

→ m(l1, . . . , lk) = m̂(l1, . . . , lk), k = 1, . . . , r , lj = 1, . . . , q

Example:

V (1) = K10(A, b), V (2) = K4(A,NV
(1)
[4] )

cTAl1−1b = ĉT Âl1−1 b̂, l1 = 1, . . . , 10

cTAl2−1NAl1−1b = ĉT Âl2−1 N̂Âl1−1 b̂, l1, l2 = 1, . . . , 4
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Moving Frontiers: Moment Matching for Bilinear Systems
One-sided methods: arbitrary multimoments

Multimoment-matching for different expansion points to cover broader fre-
quency range:

Theorem

Let a bilinear SISO system Σ be given.

span{V (1)} = Kq((A− σ1I )−1, (A− σ1I )−1b),

span{V (k)} = Kq((A− σk I )−1, (A− σk I )−1NV (k−1)),

span{V } = span
nSr

k=1 span{V (k)}
o

W arbitrary left inverse of V

→ m(l1, . . . , lk) = m̂(l1, . . . , lk), k = 1, . . . , r , lj = 1, . . . , q

Special cases:

V T V = I , W T = V T

→ orthogonal projection

→ first approach, proposed by [Phillips ’03], see also [B./Feng ’07]
for multi-moment matching proof.
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Moving Frontiers: Moment Matching for Bilinear Systems
One-sided methods: arbitrary multimoments

Multimoment-matching for different expansion points to cover broader fre-
quency range:

Theorem

Let a bilinear SISO system Σ be given.

span{V (1)} = Kq((A− σ1I )−1, (A− σ1I )−1b),

span{V (k)} = Kq((A− σk I )−1, (A− σk I )−1NV (k−1)),

span{V } = span
nSr

k=1 span{V (k)}
o

W arbitrary left inverse of V

→ m(l1, . . . , lk) = m̂(l1, . . . , lk), k = 1, . . . , r , lj = 1, . . . , q

Special cases:

V T V = I , W T = (V T A−1V )−1V T A−1

→ multiply state equation by A−1, proposed by [Skoogh/Bai ’06]

→ seems to yield better results for bilinearized systems.
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Moving Frontiers: Moment Matching for Bilinear Systems
Two-sided methods

Better choices for projection matrix W ?

span{W (1)} = Kq(AT , c),

span{W (k)} = Kq(AT ,NTW (k−1)), k = 2, . . . , r

span{W } = span
{⋃r

k=1 span{W (k)}
}

V (1) = K6(A, b), W (1) = K6(AT , c)

m(l1) = m̂(l1), l1 = 1, . . . , 12, m(l1, l2) = m̂(l1, l2), l1, l2 = 1, . . . , 6

→ significantly more multimoments are preserved.

→ Number of matched subsystems automatically doubles.
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Moving Frontiers: Moment Matching for Bilinear Systems
Numerical examples: nonlinear RC circuit

420 Z. Bai, D. Skoogh / Linear Algebra and its Applications 415 (2006) 406–425

Node nNode n-1Node 2Node 1

i=u(t)

g g g g

C C C C Cg

Fig. 4. A nonlinear RC circuit [3].

f(v) = [fk(v)] =





−g(v1) − g(v1 − v2)

g(v1 − v2) − g(v2 − v3)
...

g(vk−1 − vk) − g(vk − vk+1)
...

g(vNo−1 − vNo)





, b = c :=





1
0
...

0




.

The output signal y(t) is the voltage between node 1 and ground. The current through
each resistor will have the following voltage dependence:

g(v) = exp(40v) + v − 1. (27)

With the second-order approximation of g(v), the first component of f (v) can be
written as

f1(v) = −82v1 + 41v2 − 1600v2
1 + 800v1v2 + 800v2v1 − 800v2

2 + · · · .
(28)

The second component of f (v) is

f2(v) = 41v1 − 82v2 + 41v3 + 800v2
1 − 800v1v2

− 800v2v1 + 800v2v3 + 800v3v2 − 800v2
3 + · · · . (29)

In general, the kth component of f(v) can be written as

fk(v) = 41vk−1 − 82vk + 41vk+1 + 800v2
k−1 − 800vk−1vk

− 800vkvk−1 + 800vkvk+1 + 800vk+1vk − 800v2
k+1 + · · · . (30)

v(t) : node voltages v1(t), . . . , vN(t), N = 50→ dim Σ = 2550

u(t) : independent current source, C = 1, g(v) = exp(40v) + v − 1

y(t) : voltage between node 1 and ground
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Moving Frontiers: Moment Matching for Bilinear Systems
Numerical examples: nonlinear RC circuit

Projection subspaces:

– High frequency multimoments (∞):
V (1) = K19(A, b),

V (2) = K4(A,NV
(1)
[4] )

V = V (1) ∪ V (2), V TV = I

– Low frequency multimoments (σj = 0):
V (1) = K19(A−1,A−1b),

V (2) = K4(A−1,A−1NV
(1)
[4] )

V = V (1) ∪ V (2), V TV = I

– Multiple interpolation points (σj = 0, 1, 10, 100,∞):
e.g. σj = 10:
V (1) = Kq1 ((A− 10 · I )−1, (A− 10 · I )−1b)

V (2) = Kq2 ((A− 10 · I )−1, (A− 10 · I )−1NV
(1)
[p] )

→ First and second order multimoments are preserved.
28/30
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Numerical examples: nonlinear RC circuit

Simulation results:
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Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Many nonlinear dynamics can be modeled by quadratic bilinear
differential algebraic equations (QBDAEs), i.e.

Eẋ = A1x + A2x ⊗ x + Nxu + bu,

y = cx ,

where E ,A1,N ∈ Rn×n,A2 ∈ Rn×n2

, b, cT ∈ Rn.

Combination of quadratic and bilinear control systems.

Variational analysis allows characterization of input-output
behavior via generalized transfer functions, e.g.

H1(s) = c (sE − A1)−1b| {z }
G(s)

,

H2(s1, s2) =
1

2
c ((s1 + s2) E − A1)−1 [A2(G(s1)⊗ G(s2) + G(s2)⊗ G(s1))

+N (G(s1) + G(s2))]
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Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Which systems can be transformed?

Theorem [Gu ’09]

Assume that the state equation of a nonlinear system Σ is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + bu,

where gi (x) : Rn → Rn are compositions of rational, exponential,
logarithmic, trigonometric or root functions, respectively.
Then Σ can be transformed into a quadratic bilinear differential
algebraic equation of dimension N > n.

transformation is not unique

original system has to be increased before reduction is possible

minimal dimension N?
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Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Example

Consider the following two dimensional nonlinear control system:

ẋ1 = exp(−x2) ·
q

x2
1 + 1,

ẋ2 = sin x2 + u.

Introduce useful new state variables, e.g.

x3 := exp(−x2), x4 :=
q

x2
1 + 1, x5 := sin x2, x6 := cos x2.

System can be replaced by a QBDAE of dimension 6:

ẋ1 = x3 · x4, ẋ2 = x5 + u,

ẋ3 = −x3 · (x5 + u), ẋ4 =
2 · x1 · x3 · x4

2 · x4
,

ẋ5 = x6 · (x5 + u), ẋ6 = −x5 · (x5 + u).
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Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Multi-moment-Matching for QBDAEs

Construct reduced order model by projection:

Ê = ZTEZ , Â1 = ZTA1Z , N̂ = ZTNZ ,

Â2 = ZTA2Z ⊗ Z , b̂ = ZTb, ĉ = cZ

Approximate values and derivatives (”multi-moments”) of transfer
functions around an expansion point σ using Krylov spaces, e.g.

span{V } = K6 (AσE ,Aσb)

span{W1} = K3 (A2σE ,A2σ(A2V1 ⊗ V1 − N1V1))

span{W2} = K2 (A2σE ,A2σ(A2(V2 ⊗ V1 + V1 ⊗ V2)− N1V2))

span{W3} = K1 (A2σE ,A2σ(A2(V2 ⊗ V2 + V2 ⊗ V2)))

span{W4} = K1 (A2σE ,A2σ(A2(V3 ⊗ V1 + V1 ⊗ V3)− N1V3)) ,

with Aσ = (A1 − σE)−1 and Vi denoting the i-th column of V
→ derivatives match up to order 5 (H1) and 2 (H2), respectively.

29/30



Moving Frontiers
in Model

Reduction

Peter Benner

Introduction to
MOR

Balanced
Truncation

Interpolatory
Model Reduction

Introduction

Bilinear MOR

Nonlinear MOR

Conclusions and
Outlook

Moving Frontiers: Moment Matching for
Quadratic-Bilinear Approximations

Numerical Example

FitzHugh-Nagumo system: simple model for neuron (de-)activation.

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t)

parameter g handled as an additional input

original state dimension n = 2 · 400, QBDAE dimension N = 3 · 400,
reduced QBDAE dimension r = 26, chosen expansion point σ = 1

[B./Breiten 2010]
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Numerical Example

2d Phase Space

[B./Breiten 2010]
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Numerical Example

3d Phase Space

[B./Breiten 2010]
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Conclusions and Outlook

Model reduction for nonlinear systems based on

Carleman bilinearization and bilinear Balanced Truncation,

QBDAE transformation and multi-moment matching

has high potential for many classes of nonlinear dynamical systems.

Current work:

– High dimensions can be dealt with using tensor product structures of
coefficient matrices — already done for bilinear Krylov subspaces [Con-

don/Ivanov ’07], for Gramian computation in progress [B./Damm].

– QBDAE is exact for many nonlinearities, e.g.

+ reaction-diffusion systems and population balances;
+ various PDEs with nonlinear convective terms x.∇x:

Burgers, Euler, Navier-Stokes, Kuramoto-Sivashinsky eqns;

hence, reduced-order model will have the same nonlinear structure.

– Enhance efficiency of QBDAE approach using tensor decomposition,
low-rank and sparse approximations.
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Conclusions and Outlook

Model reduction for nonlinear systems based on

Carleman bilinearization and bilinear Balanced Truncation,

QBDAE transformation and multi-moment matching

has high potential for many classes of nonlinear dynamical systems.

Thank you for your attention!
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