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Model Reduction

Dynamical Systems

J E(p)x(t:ip) = f(t,x(t:p),u(t),p), x(to)=x0, (a)
z(")'{ y(tip) = g(t.x(t:p), u(t), p) (b)

Peter Benner

Model Reduction

with
o (generalized) states x(t; p) € R" (E € R"*"),
@ inputs u(t) € R™,
@ outputs y(t; p) € R, (b) is called output equation,
e p € R? is a parameter vector.

E singular = (a) is system of differential-algebraic equations (DAEs)
otherwise = (a) is system of ordinary differential equations (ODEs)




Mjl Model Reduction for Dynamical Systems

Parametric

vt M Original System Reduced-Order System

[ E(p)x = f(t,x,u,p), o\ [ E(p)) = f(t,%,u,p),
Z(p) . { Yy = g(t7X7 u,p). (p): { v = g(t,%x,u,p).

Model Reduction

@ states x(t; p) € R, @ states X(t;p) € R, r < n
@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t; p) € RY, @ outputs y(t; p) € RY,

@ parameters p € RY. @ parameters p € RY.




Mjl Model Reduction for Dynamical Systems

Parametric

vt M Original System Reduced-Order System

(p) { E(p)x = f(t,x,u,p), $(p) - { E(p);( z f(t,%, u,p),

Model Reduction y = g(t.x, u, p). g(t, X, u, p).
@ states x(t; p) € R, @ states X(t;p) € R, r < n
@ inputs u(t) € R™, @ inputs u(t) € R™,
@ outputs y(t; p) € RY, @ outputs y(t; p) € RY,
@ parameters p € RY. @ parameters p € RY.

|ly — 7|l < tolerance - ||u|| for all admissible input signals and relevant
parameter settings.




Motivation
Applications in Microsystems/MEMS Design

Parametric
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Peter Benner Compact models for electro-thermic simulation

@ Goal: controlling the thermic behavior in ICs and MEMS.

plotiieticn @ Joule effect: electric current flowing through a conductor induces
heat.

@ For ICs: dissipate heat.
For MEMS: employ Joule effect for designing MEMS with switching
behavior (“hotplate”).

@ Spatial discretization of heat equation using FEM leads to large-scale
system; generate compact models for MST model library, essential
parameters for heat exchange need to be preserved symbolically:

— film coefficients (convection boundary conditions),
— heat conductivity/exchange coefficients.

Source: The Oberwolfach Benchmark Collection nttp://wuw. intek.de/simulation/benchnark
v



http://www.imtek.de/simulation/benchmark
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Compact models for electro-thermic simulation

Example: 3 film coefficients
(top, bottom, side) =

Motivation

Ex(t) = (Ao+Y_ piA)x(t)+ bu(t)

i=1

y(£) = c'x(t)

® n=4,257,
@ Ao = discrete Laplacian,
@ A, i=1,2,3, diagonal.

Source: The Oberwolfach Benchmark Collection nttp: //www. intek.de/simulation/benchnark
.



http://www.imtek.de/simulation/benchmark
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Electro-chemical scanning electron microscope (SEM)

Peter Benner
@ Used for high resolution measurements of chemical reactivity and

topography of surfaces, in particular for biological systems and
nano-structures.

Motivation

@ Based on measuring current through a micro-electrode which is
moved through electrolyte along surface.

@ Measurements lead to cyclic voltammogram, plotting the current vs.
applied potential.

@ Mathematical model: Multi-species diffusion equations with mixed
boundary conditions, defined by Butler-Volmer equation.

Film coefficient depending on the applied potential is to be preserved.
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oot Bemnes Electro-chemical scanning electron microscope (SEM)

Example: 2 film coefficients =

Motivation Ex(t) = (Ao + prA1 + p2A2)x(t) + Bu(t), y(t) = c"x(2).
FEM model: n = 16,912, m = 3 inputs, A1, A, diagonal.

——fullsimulation, n=16912
— =~ reduced order 26

current, nA

Axis of symmetry

05 0 05
voltage uft), alpha=0.5

Figure: Schematic diagram of experimental set-up and corresponding
voltammogram
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Flow sensor (anemometer)

@ Sensor measuring flow rates of fluids or gas.
Motivation @ Based on one heater with thermo-sensors on both sides.

@ Design process requires compact model, in which flow velocity and,
possibly, material parameters (viscosity, density) appear as symbolic
quantities.

@ Mathematical model: Linear convection-diffusion equation.

FlowProfile

SenL Heater SenR

Figure: Anemometer model generated using ANSYS
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Peter Benner Flow sensor (anemometer)

Parameter study based on reduced-order model:

Motivation @ Full model: n = 29,008.

@ Reduced-order Model: r = 75
12 parameter interpolation points,
BT (tol =107%) = 2<r; <09,
max |R(jw, p)| < 6.5-10~*
w,p
(R:=G - G).

@ Visualize frequency-response for

p € [0,1] (100 frequencies, 1000
parameter values).

@ Generation of movie:

> 11 days with full model;
93 sec. with reduced-order model! [BAUR/BENNER, AT 2009
v




Model Reduction Basics

Parametric . .
Model Reduction Simulation-Free Methods

S @ Modal Truncation
@ Guyan-Reduction/Substructuring

Basics © Padé-Approximation, Moment-Matching, and Krylov Subspace
Methods (~ interpolatory methods)

© Balanced Truncation (~ system-theoretic methods)

© many more. ..




Model Reduction Basics
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Model Reduction

Simulation-Free Methods

© Modal Truncation
@ Guyan-Reduction/Substructuring

Peter Benner

Basics © Padé-Approximation, Moment-Matching, and Krylov Subspace
Methods (~ interpolatory methods)

© Balanced Truncation (~ system-theoretic methods)

© many more. ..

Joint feature of many methods: Galerkin or Petrov-Galerkin-type
projection of state-space onto low-dimensional subspace V along W:
assume x ~ VW T x =: X, where

range (V) =V, range(W)=W, W'V =1,.
Then, with & = W7 x, we obtain x =~ V& and

[Ix = X[ = lx = V&I



Linear Parametric Systems
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Sy B Linear, time-invariant systems depending on parameters

E(p)x(t:ip) = A(p)x(t;p) + B(p)u(t), A(p),E(p) € R™",
y(tip) = C(p)x(tip), B(p) € R™™, C(p) € R?".

Basics



Linear Parametric Systems
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Linear, time-invariant systems depending on parameters

E(p)x(t:ip) = A(p)x(t;p) + B(p)u(t), A(p),E(p) € R™",
y(tip) = C(p)x(tip), B(p) € R™™, C(p) € R?".

Basics

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) — x(s; p),
X(t; p) — sx(s; p)) to linear system with x(0) = 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:

y(s:p) = ( C(P)(E(p) — A(p))~*B(p) ) u(s)

=:G(s;p)
G(s: p) is the parameter-dependent transfer function of X(p).




Mjl Model Reduction for Linear Parametric Systems

Parametric
Model Reduction

Peter Benner Problem

Approximate the dynamical system

E(p)x A(p)x + B(p)u,  A(p), E(p) € R™*",
y = Clo)x, B(p) € R™", C(p) € RO*",

by reduced-order system

E(pk = A(p)x+B(p)u, A(p),E(p) e R™",
y C(p)x, B(p) € R™™, C(p) € RY*",

of order r < n, such that

ly =9l = l6u = Gul| < |G — &]ll|ull < tolerance - |u].




Mjl Model Reduction for Linear Parametric Systems
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Peter Benner Problem

Approximate the dynamical system

E(p)x A(p)x + B(p)u,  A(p), E(p) € R™*",
y = Clo)x, B(p) € R™", C(p) € RO*",

by reduced-order system

E(pk = A(p)x+B(p)u, A(p),E(p) e R™",
y C(p)x, B(p) € R™™, C(p) € RY*",

of order r < n, such that
ly = 9l = |Gu — Gul| < |G — G|||Jul| < tolerance - ||u]].

= Approximation problem: min, ;.. &), G — G|




rw Model Reduction for Linear Parametric Systems

Parametric System
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[ E(p)x(t: p) A(p)x(t; p) + B(p)u(t),
(p) { y(tip) = C(p)x(t;p).
i Appropriate representation:
E(p) = Eo+61(P)El+~-~+eqs(P)EqEv
A(p) = A+ al(p)Al +.o+ atIA(p)AQA7
B(p) = Bo+ bi(p)B1+ ...+ bgy(p)Bgss
C(p) = C0+Cl(P)C1+'~'+ch(P)chv

allows easy parameter preservation for projection based model reduc-
tion.



Model Reduction for Linear Parametric Systems

Parametric

Model Reduction Il Parametric System

[ E()x(t:p) = Ap)x(t:p) + B(p)u(t),
):(p).{ y(tip) = C(p)x(t; p).

Basics

Applications:

@ Repeated simulation for varying material or geometry
parameters, boundary conditions,

@ Optimization and design.



Mjl Model Reduction for Linear Parametric Systems
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Peter Benner

A(p)x(t; p) + B(p)u(t),
y(t;p) = C(p)x(t;p).

Basics

Applications:

@ Repeated simulation for varying material or geometry
parameters, boundary conditions,

@ Optimization and design.

Additional model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

sy [ E(*(tp) = A(p)k(t:p) + B(p)u(t),
z(p)'{ y(tip) = C(Px(t:p)

with states %(t; p) € R".




Interpolatory Model Reduction

Short Introduction

Parametric
Model Reduction Computation of reduced-order model by projection

e Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with
transfer function ~ G(s) = C(sE — A)™'B, a reduced-order model is
obtained using projection matrices V, W € R"™*" with W™V = |,
Introduction (~ (VWT)? = VWT is projector) by computing

E=WTEV, A=wWTAv, B=W"B, €=CV.
Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.




Interpolatory Model Reduction

Short Introduction

Parametric

Model Reduction Computation of reduced-order model by projection

S Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with
transfer function  G(s) = C(sE — A)"'B, a reduced-order model is
obtained using projection matrices V, W € R"™*" with W™V = |,
Introduction (~ (VWT)? = VWT is projector) by computing

E=WTEV, A=wWTAv, B=W"B, €=CV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching
Choose V/, W such that
G(s)=G(s), j=1,...,k

and

d’ d . . .
EG(SI):EG(SJ% I:]-v“'?/(ja J:]-v"'ak'




Interpolatory Model Reduction

Short Introduction

Parametric
Model Reduction Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction

then

R d d . .
G(s)) = G(s)), —G(s) = EG(SJ'), forj=1,...,k.

ds




Interpolatory Model Reduction

Short Introduction

Parametric
Model Reduction Il Theorem (simplified) [GRIMME ’ /ILLEMAGNE/S

Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction

then

R d d . .
G(s)) = G(s)), —G(s) = EG(SJ)’ forj=1,...,k.

ds

Remarks:
computation of V| W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME ’97],

— lIterative Rational Krylov-Algo. [ANTOULAS/BEATTIE/GUGERCIN "07].



Interpolatory Model Reduction

Short Introduction

Parametric
Model Reduction Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]

Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction

then

G(s) = G(s)).

d d » .
gG(SJ) = EG(SJ'), fOr_j = 1,...,/(.

Remarks:

using Galerkin /one-sided projection yields G(s;) = G(s;), but in general

d d -
EG(SJ) # EG(SJ')'



Interpolatory Model Reduction

Short Introduction

Parametric

Model Reduction Theorem (simplified) [GRIMME ’97, VILLEMAGNE/SKELTON ’87]
Peter Benner

span {(s:E — A)7'B,...,(skE —A)"'B} C Ran(V),
span {(siE —A)"TCT,....(skE—-A)""C"} < Ran(W),

Introduction

then

. d d » )
G(sj) = G(s), gG(sj) = EG(SJ)’ forj=1,..., k.

Remarks:

k = 1, standard Krylov subspace(s) of dimension K ~» moment-matching
methods/Padé approximation,

d’ d . .
EG(sl) = EG(Sl), i=0,...,K—1(+K).



Interpolatory Model Reduction

Notation

Parametric Systems

(p) - { A(p)x(t; p) + B(p)u(1)).

y(ty p) = C(p)x(t;p).

Assume
E(p) = Eo+e(p)Er+...+ eq(p)Eq,
Ap) = Ao+ ai(p)Ar+ ...+ ag,(p)Ags,
B(p) = Bo+bi(p)Bi+ ...+ bgs(p)Bys,
C(p) G+ alP)G+ ...+ ce(p)Coc-



Interpolatory Model Reduction

Structure-Preservation

Parametric
Model Reduction

e Petrov-Galerkin-type projection
For given projection matrices V, W € R"™*" with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

Introduction

E(p) = WEV+ea(W EV+... +e(p)WE,V,
Alp) = WAV +a(p)W AV +... +a,(p)W AV,
B(p) = WTBO +b1(p)WTBl +"'+bqs(p)WTB¢757

Clp) = GV+  al)GV+...+  ce(p)CcV,




Interpolatory Model Reduction

Structure-Preservation

Parametric
Model Reduction

Peter Benner

Petrov-Galerkin-type projection

For given projection matrices V, W € R"™*" with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

Introduction

E(p) =

= B+ea(p)b+...+ew(p)Ee,
Alp) =

= Ao+ a(p)Ar+ .. + ag,(p) A,
B(p) =

= Bo+bi(p)Bi+ ... + bey (P)Bis,
Cp) =

= G+alP)G+...+coc(p)Coc-




Parametric Model Reduction based on

Multi-Moment Matching

Mogaremetric, Idea: choose appropriate frequency parameter $ and parameter vector

R B P, expand into multivariate power series about (3, p) and compute
reduced-order model, so that

G(s,p) = G(s,p) + O (Is — 8" + llp — Bll* + s — 3/"llp — £
MMM-PMOR

i.e., first K, L,k + ¢ (mostly: K =L = k + ¢) coefficients
(multi-moments) of Taylor/Laurent series coincide.



Parametric Model Reduction based on

Multi-Moment Matching

Mogaremetric, Idea: choose appropriate frequency parameter $ and parameter vector

R B P, expand into multivariate power series about (3, p) and compute
reduced-order model, so that

G(s,p) = G(s,p) + O (Is — 8" + llp — Bll* + s — 3/"llp — £

MMM-PMOR

i.e., first K, L,k + ¢ (mostly: K =L = k + ¢) coefficients
(multi-moments) of Taylor/Laurent series coincide.

Algorithms:

@ [DaNIEL ET AL. 04]: explicit computation of moments, numerically
unstable.

@ [FaRLE ET AL. '06/°07]: Krylov subspace approach, only
polynomial parameter-dependance, numerical properties not
clear, but appears to be robust.

@ [FenG/B. ’07-'10]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger
as with [FARLE ET AL.].



Parametric Model Reduction based on
Multi-Moment Matching

Numerical Examples

Parametric

Model Reduction Electro-chemical SEM:
Peter Benner .
: compute cyclic voltammogram based on FEM model

Ex(t) = (Ao + p1A1 + p2A2)x(t) + Bu(t), y(t) = c'x(t),
where n = 16,912, m = 3, Ay, A, diagonal.

MMM-PMOR

K=L=k+/{=4 = r=26 K=L=k+¢=9 = r=286

——full simulation, n=16912
—reduced order 26

——full simulation, n=16912
——~reduced order 86

current, nA
current, nA

] 0 05 L 0 05
voltage u(t), alpha=0.5 voltage u(h, alpha=0.5




Parametric Model Reduction based on
Multi-Moment Matching

Numerical Examples

Parametric
Model Reduction

Anemometer:
FEM model

Peter Benner

Ex(t) = (Ao + pr1A1)x(t) + bu(t), y(t) = c"x(t),
where n =29,008, m=q=1.

MMM-PMOR

Output errors for p = 1

0
.
IR et e e
i L T rer ot rdens modymoparemans medeiecucion
— e .o | o aore of e recod model oy axphty compuing momdvctos
e P BT ) IR O B =
35 +  outout atp=1 by our proposed algorithm, error=ge-4 &
output at p=1 by explicitly computing moment vectors, error=1a-2. 3|
3
T
025
L
2 o
z 4
- o 2
i
g
o 15—
15]
i
)
o5
as S —
e ESILE- LI E -
T o T T

parameter: p

time (seconds)




Parametric Model Reduction based on Rational Interpolation
Theory: Interpolation of the Transfer Function

Parametric

Model Reduction Theorem 1 [Baur/BearTie/B./GUGERCIN '07/°09]

B Lt GG = C)GER) - A) ()
Cp)V(sWTE(p)V — WTA(p)V) ' W' B(p)

and suppose p = [;31,. . Pda]" and 5 € C are chosen such that both
BatRMOR SE(p) — A(p) and 5 E(p) — A(p) are invertible.
If
(3E(p) — A(R)) " B(p) € Ran(V)
or

(ce) G Ee) - AB) ™) € Ran(w),




Parametric Model Reduction based on Rational Interpolation
Theory: Interpolation of the Transfer Function

Parametric

Model Reduction Theorem 1 [Baur/BearTie/B./GUGERCIN '07/°09]

B Lt GG = C)GER) - A) ()
= C(p)V(sWTE(p)V — WTA(p)V) ' WT'B(p)

and suppose p = [p1, ons pa]" and 5 € C are chosen such that both
BatRMOR SE(p) — A(p) and S E(p) — A(p) are invertible.
If
(3E(p) — A(R)) " B(p) € Ran(V)
or

() EED) - AE) ™) € Ran(w),

then G(3,p) = G(5, p).

Note: result extends to MIMO case using tangential interpolation:
Let 0 # b € R™, 0 # c € RY be arbitrary.

a) If BE(p) — A(P)) ! B(p)b € Ran(V), then G(3, p)b = G(5, p)b;
b) If (cTC(,s) (BE(p) — A(f:))’l)T € Ran(W), then c7 G(3,p) = c" G(3, p).




Parametric Model Reduction based on Rational Interpolation
Theory: Interpolation of the Parameter Gradient

Farametric. Theorem 2 [Baur/BearTie/B./GUGERCIN *07/°09]

Model Reduction

Feter B Suppose that E(p), A(p), B(p), C(p) are Cl in a neighborhood of
b= [pr..... ps]” and that both 3 £(p) — A(p) and § E(p) — A(p)
are invertible. If

RatPMOR (§ E(l’)) - A(:b))_l B(:b) € Ran( V)

and

1 T
(C(p) ($E(p) - A(B) ") € Ran(w),

then

o n 9 .. PR
V,G(5,p) = VG (5, D), EG(sp): —G(5, p).




Parametric Model Reduction based on Rational Interpolation
Theory: Interpolation of the Parameter Gradient

Farametric Theorem 2 [Baur/BearTie/B./GUGERCIN *07/°09]

Model Reduction

Feter B Suppose that E(p), A(p), B(p), C(p) are Cl in a neighborhood of
b= [pr..... ps]” and that both 3 £(p) — A(p) and § E(p) — A(p)
are invertible. If

RatPMOR (§ E(l’)) - A(:b))_l B(:b) € Ran( V)

and

1 T
(C(p) ($E(p) - A(B) ") € Ran(w),

then

va(§7 f)) = var(gu ﬁ)a

Note: result extends to MIMO case using tangential interpolation:

Let 0 # b € R™, 0 # ¢ € RY be arbitrary. If (8 E(p) — A(p)) ! B(p)b € Ran(V) and
T N

(cTC(,s) (BE(p) — A(,s))*l) € Ran(W), then V,c' G(3, p)b = V,c' G(5, p)b.



Parametric Model Reduction based on Rational Interpolation
Theory: Interpolation of the Parameter Gradient

Farametric Theorem 2 [Baur/BearTie/B./GUGERCIN *07/°09]

Model Reduction

Feter B Suppose that E(p), A(p), B(p), C(p) are Cl in a neighborhood of
b= [pr..... ps]” and that both 3 £(p) — A(p) and § E(p) — A(p)
are invertible. If

RatPMOR (3 E(p) — A(p)) ' B(p) € Ran(V)
and
(Cp)(3E(G) ~ AB) ™) € Ran(w),
then

va(§7 f)) = var(gu ﬁ)a

@ Assertion of theorem satisfies necessary conditions for surrogate models in
trust region methods [ALEXANDROV/DENNIS/LEWIS/TORCZON '98].

© Approximation of gradient allows use of reduced-order model for sensitivity
analysis.



Parametric Model Reduction based on Rational Interpolation
Algorithm

Parametric
Model Reducti . . . o
o TS I Generic implementation of interpolatory PMOR

Peter Benner
Define A(s, p) := sE(p) — A(p).
@ Select “frequencies” si,...,sx € C and parameter vectors
p(l), ey p(e) € R

© Compute (orthonormal) basis of

v = span {A(s1,p9) B(p). ... Alse, o) B .

RatPMOR

© Compute (orthonormal) basis of
W = span { A(si, pM)=Hc(pWHT, ..., A(sk,p(f))_TC(p(e))T}.
Q Set V:=[vi,...,vke], W:=[w1,..., wk], and W := W(WT V)1
(Note: r = k).
p):=WTA(p)V, B(p)
E

A p) = WTB(p)V.
9 Com te{ &(p) = WTC(p)V. Ep)

= WTE(p)V.




Parametric Model Reduction based on Rational Interpolation

REUES

Parametric

Model Reduction o If directional derivatives w.r.t. p are included in Ran(V),
AR Ran(W), then also the Hessian of G(3, p) is interpolated by the
Hessian of G(5, p).

RatPMOR



Parametric Model Reduction based on Rational Interpolation

REUES

Parametric

Model Reduction o If directional derivatives w.r.t. p are included in Ran(V),

Peter Bene Ran(W), then also the Hessian of G(5,p) is interpolated by the
Hessian of G(3,p).

@ Choice of optimal interpolation frequencies s, and parameter
vectors p(k) in general is an open problem.

RatPMOR



Parametric Model Reduction based on Rational Interpolation

REUES

Parametric

Model Reduction o If directional derivatives w.r.t. p are included in Ran(V),

Peter Bene Ran(W), then also the Hessian of G(5,p) is interpolated by the
Hessian of G(3,p).

@ Choice of optimal interpolation frequencies s, and parameter
vectors p(k) in general is an open problem.

EEMOR @ For prescribed parameter vectors p(X), we can use corresponding
H»-optimal frequencies sk, £ =1,..., r, computed by IRKA,
i.e., reduced-order systems G.gk) so that

16(.p%) = 60 = min [16(.p%) = GO llpe

order(G)=ry
G stable

where

1 ~+o0 5 1/2
161, = (55 [ l6Glas)




Parametric Model Reduction based on Rational Interpolation

REUES

Parametric

Model Reduction o If directional derivatives w.r.t. p are included in Ran(V),
AR Ran(W), then also the Hessian of G(3, p) is interpolated by the
Hessian of G(5, p).
@ Choice of optimal interpolation frequencies s, and parameter
vectors p(k) in general is an open problem.
EEMOR @ For prescribed parameter vectors p(X), we can use corresponding
H»-optimal frequencies sk, £ =1,..., r, computed by IRKA,
i.e., reduced-order systems G.gk) so that
16(.p%) = 60 = min [16(.p%) = GO llpe

order(G)=ry
G stable

where

1 ~+o0 5 1/2
161, = (55 [ l6Glas)

@ Optimal choice of interpolation frequencies s, and parameter
vectors p(k) possible for special parameterized SISO systems.




Parametric Model Reduction based on Rational Interpolation
Optimality of Interpolation Points

Mogaremetric, Theorem 3 [Baur/BeaTTIE/B./GUGERCIN "09]

Peter Benner For special parameterized SISO systems,

A(p) = Ao, E(p) = Eo, B(p) = Bo+ p1B1, C(p) = Co+ G,
optimal choice possible, necessary conditions:
If G minimizes the approximation error w.r.t.

G — Gllrax 22 peQCR’,

RatPMOR

and A (A, E) = {X1,..., )} (all simple), then the interpolation frequencies
satisfy

S/:*)\,', izl,...,r,

and the parameter interpolation points {p(l), ey p(’)} satisfy the
interpolation conditions

G(_S\kyp(k)) - G(_)\7P(k))7
o - A « A
52 G(=3.p") G(=Ap"), V,G6(=4,p%) = V,G(-4,pY).

y




Parametric Model Reduction based on Rational Interpolation
Optimality of Interpolation Points

Farametric. Theorem 3 [Baur/BeaTTIE/B./GUGERCIN "09]

Model Reduction

Peter Benner For special parameterized SISO systems,
A(p) = Ao, E(p) = Eo, B(p) = Bo+p1B1, C(p) = Go+ p2Ca,

optimal choice possible, necessary conditions:
If G minimizes the approximation error w.r.t.

G — Gllrax 22 peQCR’,

RatPMOR

the parameter interpolation points {p(l), A p(’)} satisfy the interpolation

conditions
G(—Ae, p) = G(=A pY),
2 650" = 636( Sp0), VoG(=4,pY) = V,6(-5,p%)
Proof:
TG . B 1 0
1G4, x £5(0) = |ILTGL|#,, whereG(s) = G (sE-A)'[Bo,Bi], L=1| | |
2 2V3

— Computation via IRKA applied to G.



Parametric Model Reduction based on Rational Interpolation
Numerical Example: 2D Convection-Diffusion Equation

Parametric
Model Reduction

@ FD discretization (n = 400, m = g = 1) yields

Peter Benner
X(t) = (poAo + p1A1 + p2A2) x(t) + B u(t),

where pg = diffusion coefficient; p;, i = 1,2, convection in x;
RatPMOR direction, p € [0,1]3.

@ Parameter vectors for interpolation:

pM) =(0.8,0.5,0.5), p® =(0.8,0,0.5), p® =(0.8,1,0.5),
p® =(0.1,0.5,05), p® =(0.1,0,1), p® =(0.1,1,1).

@ Compare implementations:

— generic rational PMOR (= fix interpolation frequencies),
— IRKA-based rational PMOR (= optimize interpolation
frequencies).

@ Reduced-order model: n =rn=n=3, n=rn=r=4=
r=21.



Parametric Model Reduction based on Rational Interpolation
Numerical Example: 2D Convection-Diffusion Equation

Parametric
Model Reduction

Peter Benner

elative Hy Error for p

Relative H, error for p, = 0.1 Relative H, error for p, = 0.1

RatPMOR

log (Il H = H_ I
log (I H = H_ Il /1l H 11)

IRKA, 5 steps generic




Parametric Model Reduction based on Rational Interpolation
Numerical Example: 2D Convection-Diffusion Equation

Parametric
Model Reduction

Relative H_ error for p = 0.1

RatPMOR

log (Il H=H_Il_/1HIL)
log (1 H~H_Il_/IH1I)

IRKA, 5 steps generic




Parametric Model Reduction based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Parametric
Model Reduction

Peter Benne @ Important requirement for a compact model of thermal conduction is
boundary condition independence.

@ The thermal problem is modeled by the heat equation, where heat
exchange through device interfaces is modeled by convection
boundary conditions containing film coefficients {p;};_;, to describe

RatPMOR ) )
the heat exchange at the ith interface.

@ Spatial semi-discretization leads to
3
Ex(t) = (Ao+ > piAx(t) + bu(t), y(t)=c"x(t),
i=1
where n = 4,257, A;, i = 1,2, 3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact
thermal modeling phenomena, |IEEE. Trans. Components and Packaging
Technologies, Vol. 24, No. 4, pp. 559-565, 2001.



Parametric Model Reduction based on Rational Interpolation

Numerical Example: Thermal Conduction in a Semiconductor Chip

\oharametric Choose 2 interpolation points for parameters (“important” configurations),
8/7 interpolation frequencies are picked H. optimal by IRKA.
= k=2,{=28,7, hence r = 15.

ps =1, p1,p2 € [1,10%].

Relative H_ error for Py = 1

Peter Benner

RatPMOR

_8 -16
E
=
I
-
;22
T
= 24
j=2)
°

log (p,)




System-Theoretic Methods

Balanced Truncation

Parametric

Modol fiednerion Il |dea (for simplicity, E = I,,)

Feter Benne @ A system X, realized by (A, B, C, D), is called balanced, if
solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+CTC = 0,

Balanced

TRt satisfy: P = Q = diag(o1,...,0,) with oy > 02> ... >0, > 0.
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Modol fiednerion Il |dea (for simplicity, E = I,,)

Feter Beme @ A system X, realized by (A, B, C, D), is called balanced, if
solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+CTC = 0,

Balanced

TRt satisfy: P = Q = diag(o1,...,0,) with oy > 02> ... >0, > 0.
@ {01,...,0,} are the Hankel singular values (HSVs) of X.




System-Theoretic Methods

Balanced Truncation

Parametric

Modol fiednerion Il |dea (for simplicity, E = I,,)

Feter Beme @ A system X, realized by (A, B, C, D), is called balanced, if
solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+CTC = 0,

Balanced

TRt satisfy: P = Q = diag(o1,...,0,) with oy > 02> ... >0, > 0.

@ {01,...,0n} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)

_ A A By
- (& & l[a]re e10)




System-Theoretic Methods

Balanced Truncation

Parametric

Modol fiednerion Il |dea (for simplicity, E = I,,)

Peter Benner

@ A system X, realized by (A, B, C, D), is called balanced, if
solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+CTC = 0,

Balanced

TRt satisfy: P = Q = diag(o1,...,0,) with oy > 02> ... >0, > 0.

@ {01,...,0n} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ', TB,CT ', D)
_ Aun A By
- ([Am Azz]’{Bz]’[Cl C2]7D>

N

@ Truncation ~ (/A4, B,C, D) = (A1, B1, Gi, D).




System-Theoretic Methods

Balanced Truncation

it
P e HSV are system invariants: they are preserved under 7" and
determine the energy transfer given by the Hankel map

H : Ly(—00,0) — L3(0,00) : u_ +— y,.

Balanced
Truncation




Parametric
Model Reduction

Peter Benner

Balanced
Truncation

System-Theoretic Methods

Balanced Truncation

HSV are system invariants: they are preserved under 7 and
determine the energy transfer given by the Hankel map

H : Ly(—00,0) — L3(0,00) : u_ +— y,.

In balanced coordinates . ..energy transfer from u_ to y,:

7° y(£)Ty(t) dt

Za

E:= sup
u€L2 ooO]

« f(t

||Xo||2




System-Theoretic Methods

Balanced Truncation

Parametric

Model Reduction Motivation:

Rtz B HSV are system invariants: they are preserved under 7 and
determine the energy transfer given by the Hankel map

H : Ly(—00,0) — L3(0,00) : u_ +— y,.

el In balanced coordinates . ..energy transfer from u_ to y,:
oo
f y(t)Ty(t) dt
E:= sup 0% X
u€L2 ooO] ||X0||2 Z

« f(t

= Truncate states corresponding to “small” HSVs
—> analogy to best approximation via SVD, therefore
balancing-related methods are sometimes called SVD methods.

v




System-Theoretic Methods

Balanced Truncation

Mo e Implementation: SR Method

Feter Benne @ Compute (Cholesky) factors of the solutions of the Lyapunov
equations,
P=S"S, Q=R'R.

Balanced
Truncation




System-Theoretic Methods

Balanced Truncation

Mo e Implementation: SR Method

Feter Benne @ Compute (Cholesky) factors of the solutions of the Lyapunov
equations,
P=S"S, Q=R'R.

@ Compute SVD

Balanced
Truncation

SRT = [ Uy, Us]




System-Theoretic Methods

Balanced Truncation

Mo e Implementation: SR Method

Feter Benne @ Compute (Cholesky) factors of the solutions of the Lyapunov
equations,
P=S"S, Q=R'R.

vy
vy

w=RTW3 2  v=sTusx; '
@ Reduced model is (WTAV, WTB, CV, D).

@ Compute SVD

Balanced
Truncation

SRT = [ Uy, Us] -

© Set




System-Theoretic Methods

Balanced Truncation

Parametri S
Model Reduciion [l Properties:

AR @ Reduced-order model is stable with HSVs o4, ..., 0,.

Balanced
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Parametri S
Model Reduciion [l Properties:

AR @ Reduced-order model is stable with HSVs o4, ..., 0,.

@ Adaptive choice of r via computable error bound:

n
ly =92 < (2327 ok) lulle:

Balanced
Truncation
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Balanced Truncation

Parametri S
Model Reduciion [l Properties:

AR @ Reduced-order model is stable with HSVs o4, ..., 0,.

@ Adaptive choice of r via computable error bound:

n
ly =92 < (2327 ok) lulle:

@ General misconception:
complexity O(n®) — true for several implementations (e.g.,
MATLAB, SLICOT, MorLAB).

Balanced
Truncation




System-Theoretic Methods

Balanced Truncation

Parametri S
Model Reduciion [l Properties:

Feter Benne @ Reduced-order model is stable with HSVs oq,... . 0,.

@ Adaptive choice of r via computable error bound:

n
ly =92 < (2327 ok) lulle:

@ General misconception:
complexity O(n®) — true for several implementations (e.g.,
MATLAB, SLICOT, MorLAB).

Balanced
Truncation

But: recent developments in Numerical Linear Algebra yield
matrix equation solvers with sparse linear systems complexity!




Solving Large-Scale Lyapunov Equations

Parametric
Model Reduction

Peter Benner

General form for A, W = WT € R"™ " given and P € R"*" unknown:

0 = L(Q:=ATQ+ QA+ W.

In large scale applications from semi-discretized control problems for
Lyepurey PDEs,

Equations
@ n=10%-10° (= 10° — 10'2 unknowns!),
@ A has sparse representation (A= —M~1K for FEM),
@ W low-rank with W € {BBT,CT C}, where
BeR™™ m« n CeRI*" p<n.
@ Standard (Schur decomposition-based) O(n*) methods are not
applicable!



Solving Large-Scale Lyapunov Equations
ADI Method for Lyapunov Equations

Parametric
Model Reduction

Peter Benner

@ For A € R"™" stable, B € R"™™ (w < n), consider Lyapunov
equation
AX + XAT = —BBT.

@ ADI Iteration: [WAcCHSPRESS 1988]
et (A+ pl)X(k—1)2 = —BBT = Xu1(AT — pil)
(A+B)XT = —BBT — X(1)2(AT = pil)

with parameters py € C~ and pxi1 = px if px € R.

@ For Xy = 0 and proper choice of py: klim X=X

(super)linearly.



Solving Large-Scale Lyapunov Equations
ADI Method for Lyapunov Equations

Parametric
Model Reduction

Peter Benner

@ For A € R"™" stable, B € R"™™ (w < n), consider Lyapunov
equation
AX + XAT = —BBT.

@ ADI Iteration: [WAcCHSPRESS 1988]
et (A+ pl)X(k—1)2 = —BBT = Xu1(AT — pil)
(A+B)XT = —BBT — X(1)2(AT = pil)

with parameters py € C~ and pxi1 = px if px € R.

@ For Xy = 0 and proper choice of py: klim X=X

(super)linearly.

@ Re-formulation using X, = Yk YkT yields iteration for Yi...



Factored ADI lteration

Lyapunov equation 0 = AX + XAT + BBT.

Parametric
Model Reduction

Peter Benner Setting X =

Yk YkT, some algebraic manipulations —>

Algorithm [PenzL ’97/°00, L1i/WHITE ’ 2, B. 04, B./L1/PENzL
Vi« +/—2Re(p1)(A+pil)7'B, Yi — Wi
FOR j =2,3,...
i Vi — ) o2y (Vier — (pe + Pren) (A + ol ) ™ Vi)
\ 7 <—[ Y1 Vi ]
Yi < rrlq( Yk, 7) % column compression

At convergence, Y

max

Ykzax ~ X, where

Ykmax = [ V1 e Vkmax } , Vk — H c Cnxm.

Note: Implementation in real arithmetic possible by combining two steps.



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

WS Projection-based methods for Lyapunov equations with A+ AT < 0:
PO @ Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.
Q@ Set A:=27TAZ, B:=7"B.
© Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Q Use X ~ ZXZT.

Examples:
Lyapunov
Equations

@ Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

WS Projection-based methods for Lyapunov equations with A+ AT < 0:
PO @ Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.
Q@ Set A:=27TAZ, B:=7"B.
© Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Q Use X ~ ZXZT.

Examples:
Lyapunov
Equations

@ Krylov subspace methods, i.e., for m=1:
Z=K(A,B,r)=span{B,AB,A’B,... A" B}

[JaimoukHA /KASENALLY ’94, JBILOU '02-°08].

o K-PIK [Smvoncint 707],

Z=K(A B,r)UK(A™}, B,r).



Factored Galerkin-ADI lteration

Lyapunov equation 0 = AX + XAT + BBT

WS Projection-based methods for Lyapunov equations with A+ AT < 0:
PO @ Compute orthonormal basis range (Z), Z € R"*", for subspace
ZCR", dmZ=r.
Q@ Set A:=27TAZ, B:=7"B.
© Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Q Use X ~ ZXZT.

Examples:
Lyapunov
Equations

@ ADI subspace [B./R.-C. Li/TRUHAR ’08]:
Z:colspan[ Vi, ..., V, ]

Note: ADI subspace is rational Krylov subspace [J.-R. L1/WHITE ’02].



Factored Galerkin-ADI lteration

Numerical example

Parametric FEM semi-discretized control problem for parabolic PDE:

Model Reduction

Sy B @ optimal cooling of rail profiles,
e n=20,209, m=7, p=6.

Good | shifts
Iteration history for controllability gramian g Iteration history for observability gramian
10
—no projection —no projection
Lyapunov 10° —every step —every step
Etions = ——every 5 steps s 107 —every 5 steps
= =
5 5
3 10°
2 g 10"
N N
5 10" 5
g g
2, 210°
8 8
10 10
0 10 20 30 40 o] 10 20 30 40

iteration number iteration number

CPU times: 80s (projection every 5th ADI step) vs. 94s (no projection).

Computations by Jens Saak.



Factored Galerkin-ADI lteration

Numerical example

Parametric FEM semi-discretized control problem for parabolic PDE:

Model Reduction

Sy B @ optimal cooling of rail profiles,
e n=20,209, m=7, p=6.

Bad ADI shifts

Iteration history for controllability gramian g Iteration history for observability gramian
10

—no projection
—every step
—every 5 steps

Lyapunov
Equations

—no projection
—every step
—every 5 steps

normalized residual

0 50 100 150 200 250 o] 50 100 150 200 250
iteration number iteration number

CPU times: 368s (projection every 5th ADI step) vs. 1207s (no projection).

Computations by Jens Saak.



rw Parametric Model Reduction Using Balanced Truncation
[Baur/B. '09]

e Idea: for selected parameter values p!), j=1,..., k, compute
Model Reduction

reduced-order models G;(s) of G(s; pU)) by BT.
Peter Benner
Parametric reduced-order system by Lagrange interpolation:
k k k p— pt)
A A — T A 1A
G(sip) = ZLJ(P)GJ(S) = Z Al o= &' (sl — A) B
j=1 j=1 i=1,i#j
A T vl A~
Gi(p) (sl — A1) B
BTPMOR = . .

Ck(p) (sl = Ae) ™ B

Note: no discretization/grid for frequency parameter s necessary!

Related ideas:

— use barycentric interpolation for improved stability and easy
incorporation of new interpolation data;

— employ (rational) Hermite interpolation w.r.t. p;

— use sinc interpolation.



PMOR using BT (d =1)

Error Bound

Parametric

Model Reduction Combination of interpolation error and balanced truncation bound —-

Peter Benner
k

sup [|G(s;p) — G(sip)ll = sup [G(sip) — Y Li(p)Gi(s)ll
sect sect j=0
pelarb] pelab]

< sup [[G(sip) — ZL Gj(s)Il + sup ||ZL(P)(G(5) Gi(s))ll

plort] =0 pllo =0
BTPMOR k
< sup [|Ru(G, s, p)|l +tol - sup [ > Li(p)l
sect pEla,b] j=0
p€la,b]

with remainder R(G, s, p) = G(s; p) — G(s; p)

k+1 k
6.5 = gy (e Scten ) TG0~

at {(p) € [min; pj, max; pj].



PMOR Using BT (d

Numerical Example

Parametric

Model Reduction il Convection-diffusion equation

Peter Benner

Gr(t,€) = AT(t,6)+p-VT(t,€)+b(E)u(t) €€ (0,1)?
y  FDM with n = 400
Ix(t) = (A+pA)x(t)+bu(t), b=e
y(t) = CTX(t)7 CT = [1715 71]

BTPMOR

@ Choose py, - -+, ps € [0, 10] as Chebyshev points;
@ prescribe BT error bound for G(s; p;) by tol=10"*
= systems of reduced order r; € {3,4};
© error estimate for @(s; p) obtained by Lagrange interpolation:
sup  |G(yw,p) — G(jw,p)] <3.3x 1075,

we10—2,100]
pE[0,10]
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Parametric
Model Reduction



PMOR Using BT (d =1)

Numerical Examples — Anemometer

PEEITEAE Anemometer: FEM model

Model Reduction

Peter Benner Ex(t) = (Ao + p1A1)x(t) + bu(t), y(t) = c"x(t),

where n =29,008, m=q = 1.

BTPMOR

o2
' 0
'0.'
/ "",'0
""

IIIIIIIIIIIIIIIIIII

‘n

0 g2
p (parameter) i uencies)



Parametric Model Reduction Using Balanced Truncation on

Sparse Grids [Baur/B. '09]

Parametric
Model Reduction

Peter Benner

Disadvantage of interpolating BT reduced-order models:
for d-dimensional parameter spaces p € [0,1]¢ with d > 2
we need many interpolation points = many times BT,

i.e. very high complexity!

SGBTPMOR Thus:
employ sparse grid interpolation [Zenger 91, Griebel 91, Bungartz 92].

Main advantages:
@ requires significantly fewer grid points,
@ preserves asymptotic error decay with increasing grid resolution
(up to logarithmic factor).



PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

Coremete On [0, 1], construct equidistant grid with mesh size hy = 2~¢ and

Model Reduction

Rezmy Bae) associated (2¢ — 1)-dim. space of piecewise linear functions S;.

Hierarchical basis decomposition Subspaces of Sy
[Yserentant '86]

Se=T®---dT;

Ty
SGBTPMOR

T2

2 Ty




PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

o On [0, 1], construct equidistant grid with mesh size hy = 2~¢ and

Model Reduction

Rezmy Bae) associated (2¢ — 1)-dim. space of piecewise linear functions S;.

Hierarchical basis decomposition Subspaces of Sy
[Yserentant '86]

S$5=T10--- 0T,
e TEMOR For f € C?[0, 1] and interpolant f1 € S; n
fi= zg: fi, fi € Ti, T,
i=1
the interpolation error is bounded by AN A
IF = filee < ch 5
1l < 247120

= 2




PMOR Using BT on Sparse Grids

Hierarchical basis decomposition in d = 2

Parametric
Model Reduction

oerer Benner On [0, 1]? construct rectangular grid with mesh size hy, =271, hy, = 2%

and (2° — 1)-dim. space of piecewise bilinear functions S, (£ := ({1, £2))

Hierarchical basis decomposition: Subspaces of Sss:
VA
SS=PPT i=(ih) .
=1 ip=1 . .
SGBTPMOR ) M

supports of bases of Ty, ...



PMOR Using BT on Sparse Grids

Hierarchical basis decomposition in d = 2

Parametric
Model Reduction

oerer Benner On [0, 1]? construct rectangular grid with mesh size hy, =271, hy, = 2%

and (2° — 1)-dim. space of piecewise bilinear functions S, (£ := ({1, £2))

Hierarchical basis decomposition' Subspaces of Sss:

@ @ Ti, i=(i,h) . .

i1=1 =1 . .

SCRTRNOR For f: [0, 1> = R, £ ., € C°([0, 1]?) :
¢ 0 o | . —
A=Y Sh fem |- FHEE
=1 i=1 | .
the interpolation error is bounded . . EENIDDRE
0 ||f — f1llec < O(H2)

0 |filloo < 3471725 8X28X2 Il supports of bases of Ty1,. ..



PMOR Using BT on Sparse Grids

Sparse grids in d =2  [Zenger 91, Griebel 91, Bungartz 92]

Parametric
Model Reduction

Peter Benner Sparse decomposition:

S5= P T oi=(hi)

i+ <l4+1

with reduced dimension
dimS, =2 —1)+1

SGBTPMOR

Subspaces of Ss3:

-\--

LFTR

supports of bases of Tii,...




PMOR Using BT on Sparse Grids

Sparse grids in d =2  [Zenger 91, Griebel 91, Bungartz 92]

Parametric
Model Reduction

Peter Benner Sparse decomposition:

S5= P T oi=(hi)

i+ <l4+1

Subspaces of Ss3:

with reduced dimension

dimS, =2 —1)+1

SERTEOR For f: [07 1]2 — R, f;<(14>21X2X2 € Co([oa 1]2)7 NN AN
olefe]e BN
?I = Z fb f;, € Tb AN AT

i <+1
] ) ] supports of bases of Tii,...
the interpolation error is bounded:

If = Frlloe < O(h7log(hy ).



PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

Parametric
Model Reduction

Peter Benner

On [0, 1]9, construct grids with mesh size hy (i := (i

For f: [0, 1]9 - R, ax?%.d.(gxd € C°([o, 1]7) search

interpolant fr in space of piecewise d-linear functions:

SGBTPMOR



PMOR Using BT on Sparse Grids

Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]

Parametric
Model Reduction

Peter Benner

On [0, 1]9, construct grids with mesh size hy (i := (i

For f: [0, 1]9 - R, 8X‘92dgx € C°([o, 1]7) search
1 %d

interpolant fr in space of piecewise d-linear functions:

SGBTPMOR

full grid space

J4 14
S=@ DT

I1=1 id=1

dimension O(h; )

I = fillo O(h7)
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Sparse Grids [Zenger '91, Griebel '91, Bungartz '92]
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Peter Benner

On [0, 1]9, construct grids with mesh size hy (i := (i, ..., ig) € N9).

For f: [0, 119 - R, ax??.d.éxd € C°([0, 1)¢) search

interpolant fr in space of piecewise d-linear functions:

SGBTPMOR

full grid space sparse grid space
S=@ & 5= @ T
=1 ig=1 lijs <¢+d—1
dimension O(h; ) O(h,* (log(h, 1))4—1)
I = filloo O(hy) O(h7 (log(h;))*™1)
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MATLAB Sparse Grid Interpolation Toolbox [Klimke/WohImuth ‘05, Klimke '07]
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Peter Benner ebySheV Gau batto gl’ld

Points: 5, Level: 1 Points: 13, Level: 2 Points: 29, Level: 3 Points: 65, Level: 4
Points full grid: 9 Points full grid: 25 Points full grid: 81 Points full grid:289
1 1 - 1 T
0.8 08 08 08
06 06 06 06
0.4 0.4 0.4 0.4
02 02 02 02
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
SGBTPMOR
Points: 7, Level: 1 Points: 25, Level: 2 Points: 69, Level: 3 Points: 177, Level: 4

Points full grid: 27 Points full grid: 125 Points full grid:729 Point full grid: 4913
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Algorithmic Framework
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<t B @ For level ¢ choose O(h;  (log(h;1))¥™1) sparse grid points p;.
Peter Benner i g\n, g )j

SGBTPMOR
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Algorithmic Framework
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<t B @ For level ¢ choose O(h;  (log(h;1))¥™1) sparse grid points p;.
Peter Benner i g\n, g )j

© Apply balanced truncation to Gj(s) := G(s; pj):
Gi(s) = G (s, — A) "B,
determine r; by prescribed error tolerance:

I1G; = Gilloo < tol.

SGBTPMOR
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Algorithmic Framework
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RO @ For level £ choose O(h, *(log(h;*))™") sparse grid points p;.
© Apply balanced truncation to Gj(s) := G(s; pj):
&i(s) = & (sty — A) By,
determine r; by prescribed error tolerance:

I1G; = Gilloo < tol.

SGBTPMOR .
© Parametric reduced-order system:

G(sip)= > ilp)ailGuls). Gals),---)

iy <e+d—1

with interpolation error

d
PET? ||, <e+d—1

IG = Glloe <tol- C-sup > [6i(p)| + O(h;(log(hy*))* ™).



PMOR Using BT on Sparse Grids

Numerical Examples — Convection-Diffusion Equation
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Peter Benner a
S8 = Bx(t.)+p- V(£ +HQu(), e (0.1)

I FDM with n = 400
X(t) = (A—|—p1A1—|-p2A2)X(t)—|—bu(t)

SGBTPMOR
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Numerical Examples — Convection-Diffusion Equation
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Peter Benner

Z16) = Ax(t.€)+p-Vx(t.6)+ b(E)u(t), €< (0,17

ot
I  FDM with n =400
5() = (A+puAs+ o) x(t) + bu(t)
SGBTPMOR o b=¢, CT:[l,l,-" ,1]
@ Parameter space: p1, p2 € [0, 1].

Chebyshev-Gauss-Lobatto grid with polynomial interpolation,
level £ =1 = k =5 sparse grid points.

e Error tolerance for BT applied to G(s; pU)): 1074
= system of reduced order r; =3 for j =1,... k.

Estimated interpolation error: 1.8 x 1074,
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Numerical Examples — Convection-Diffusion Equation
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Peter Benner Absolute error of transfer funct
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Numerical Examples — Convection-Diffusion Equation
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Peter Benner error of transfer function

SGBTPMOR

max, | G (j @,p) - Gr (j o,p) |

10° 10 10
Frequenz o
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Numerical Examples — Convection-Diffusion Equation
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of transfer fun

freq 1.00e-02 freq 1.08e+01
—4 4
x 10

SGBTPMOR




Conclusions and Outlook

Parametric

Model Reduction We have presented a general framework for interpolation-based model
Peter Benner reduction of parametric systems.

@ Applications: microsystems technology in particular, but also
applicable to other areas where design and optimization are important.

@ Approximation results for partial derivatives w.r.t. parameters ~~
sensitivities for process variations, optimization can be computed

Conclusions and based on reduced-order model.

@ Implementation of parametric model reduction based on
multi-moment matching or rational Krylov methods (requires
discretization w.r.t. frequency parameter) or balanced truncation (no
discretization of frequency parameter).

@ Efficiency of parametric model reduction methods can be enhanced
when combined with sparse grid ideas.

@ Wide variety of algorithmic possibilities, further need for optimization
of interpolation point selection and error bounds, numerous possible
applications.

@ Explore connections to surrogate modeling in optimization: response
surfaces, Kriging — hybrid methods?
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