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Introduction/Motivation

Introduction /Motivation

Nonlinear feedback strategy for instationary PDE control problems.

Application of open-loop (optimization-based) control in practice often does
not lead to desired performance due to unmodeled (stochastic) disturbances.

<

Example: Burgers equation with distributed control

Application of optimal control to disturbed system:

Open-loop state MPC/LQG state

with MPC (nonlinear feedback)
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MPC/LQG for Finite-Dimensional Problems
o

Formulation of the Problem

Nonlinear Optimal Control Problem

Tr

min / (Qy (1), y(8)) + (Ru(e), u(t)) dt + G(x(T7)),  Tr € (to, 00,

to
subject to the semi-linear stochastic system

x(t) f(x(t)) + B(t)u(t) + F(t)v(t ), t>to (1)
x(to) = xo+m, u(t)eU, x(t)e

The output is given as y(t) = C(t)x(t) + w(t), y €.

@ v(t), w(t) are unknown Gaussian disturbance processes
@ If (1) is an ODE ~~ finite-dimensional problem

@ If (1) is a PDE ~~ infinite-dimensional problem
— semi-discretization (space) ~ ODE
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MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

© Prediction step on [t;, t; + T,|:
Linearize the nonlinear system dynamics around a reference
(xr(t), us(t)) to obtain the linear stochastic time-varying system

z(t) = A(t)z(t) + B(t) u(t) + F(t)v(t), z(t) = z,,
y(t) = C(t)z(t) + w(t),

with z(t) = x(t) — x,(t), @(t) = u(t) — u,(t) and A(t) := ' (x(t)).

@ Optimization step on [t;, t; + T,], T, < Tp:
© Implementation step on [t;, t; + T.], T. < T,
@ Receding horizon step:
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MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

© Prediction step on [t;, t; + T,|:
Linearize the nonlinear system dynamics around a reference
(xr(t), us(t)) to obtain the linear stochastic time-varying system

z(t)
y(t)
with z(t) = x(t) — x,(t), @(t) = u(t) — u,(t) and A(t) := ' (x(t)).
If B, F, C, @ and R are time-invariant = use an operating point X,
and A := f’(x,) to obtain an LTI system.

@ Optimization step on [t;, t; + T,], T, < Tp:
© Implementation step on [t;, t; + T.], T. < T,
@ Receding horizon step:

A(t) z(t) + B(t) a(t) + F(t)v(t), z(t) = z,,
C(t)z(t) + w(t),
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MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

© Prediction step on [t;, t; + T,|:

@ Optimization step on [t;, t; + T,], T, < Tp:
Find the optimal control for the linear problem via the solutions of
Riccati equations when applying an LQG approach.

© Implementation step on [t;, t; + T.], Tc < T,
@ Receding horizon step:
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MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

© Prediction step on [t;, t; + T,|:
@ Optimization step on [t;, t; + T,], T, < Tp:
Find the optimal control for the linear problem via the solutions of
Riccati equations when applying an LQG approach.
Solve the DRE and FDRE
X(t) = —AT(t)X(t) — X(t)A(t) + X(t)B(t)R™ ()BT ()X (t) — Q(t) ,

with X(t; + T,) = G and Q(t) = CT(t)Q(t)C(t),
Y (t) = A(t)Z(t) + Z(t)AT(t) — Z(t)CT ()W LC(t)Z(t) + F(t)VFT(t) ,
with Z(t;) = 2l

© Implementation step on [t;, t; + T¢], Tc < To:
@ Receding horizon step:
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MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

© Prediction step on [t;, t; + T,|:

@ Optimization step on [t;, t; + T,], T, < Tp:
Solve the DRE and FDRE
X(t) = —AT(£)X(t) = X(£)A(t) + X(£)B(t)R(£)BT (£)X(t) — Q(t) ,
with X(t + T,) = G and Q(t) = CT(t)Q(t)C(t),
> (t) = A()Z(t) + Z()AT(t) — Z(t)CT ()WL C(t)X(t) + F(t)VF(t) ,
with X(t) =X; .
Optimal control on [t;, t; + T,]:

u.(t) = u(t) = RTH£)BT ()X (£)(X(2) — x(1)),

where X(t) is the estimated state resulting from the Kalman filter
(1) = AR)X(E)+B(t)u(t)+L(1)(y(£) = C(O)R(£))+f (x (1) —A(t)x(t)
and L(t) = Z.(t)CT(t)W1L.

© Implementation step on [t;, t; + T.], Tc < To:

@ Receding horizon step:

Peter Benner MPC for disturbed co-dim. control problems



MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

@ Prediction step on [t;, t; + T,|:

@ Optimization step on [t;, t; + T,], T, < Tp:
LTI case:
Solve the ARE and FARE

0=ATX+XA—-XBRIBTX+ CTQC,

0=AL +YAT —YCTW-ICZ + FVFT.
Optimal control on [t;, t; + T,] is given by

u,(t) = u(t) — RTIBT X (X(t) — x(1)).

@ Implementation step on [t;, t; + T.], T. < T,
@ Receding horizon step:
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MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

o
2]
o

Prediction step on [t;, t; + T,

Optimization step on [t;, t; + T,], To < Tp:
Implementation step on [t;, t; + T¢], T. < T,:
Feed the original system with

0 () = u(t) — R (&)BT (X (D)(X(t) - x,(8)),

using the measurements y(t) for estimating %(t) (by solving the
corresponding ODEs).

© Receding horizon step:
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MPC/LQG for Finite-Dimensional Problems

MPC/LQG Strategy

© Prediction step on [t;, t; + T,|:
@ Optimization step on [t;, t; + T,], T, < Tp:
© Implementation step on [t;, t; + T], T. < T,:

© Receding horizon step:
Set tj :=t; + T..
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MPC/LQG for Infinite-Dimensional Problems
[ Jelele]e}

Formulation of the Problem - LTI Case

Nonlinear Optimal Control Problem

D) = (o B o /(x(t), C* QCx(£)) e + (u(t), Ru(t))uy dt
subject to  x(t) = i f(x(t)) + Bu(t) + Fv(t), t>0,
y(t) = Cx(t)+w(t), t>0,
x(0) = xo+n.

e X, Y, U are Hilbert spaces, f : D(f) C X — X nonlinear map

e BeL(U, X) Felu,x) CeLl(XY),GeL(X),

e Qe L(Y), R,R™t € L(U), all self-adjoint and nonnegative and
(v, Rv) > cu|\v||2 for all v € U and some a > 0,

@ xg € X and 7 is a zero mean Gaussian random variable on X" with
covariance X,

@ v(t) and w(t) are Wiener processes (Gaussian and zero mean) on
Hilbert spaces U and ) with incremental covariance operators
V e L(U) and W, W1 € L(D), respectively.
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MPC/LQG for Infinite-Dimensional Problems
[¢] lele]e}

Linearization - LTI Case

@ Assume that f(x) is Fréchet-differentiable.

@ Linearization on small intervals [t;, t; + T,] around a reference pair

(x(t), uy(t)) and partially replace x,(t) by a stationary operating
point X,.

LTI Problem in Differential Form on [t;, t; + T)]
dz(t) = Az(t)dt+ Bu(t)dt+ Fdv(t), t<t<ti+ Tp,
dy(t) = Cz(t)dt+dw(t), t<t<ti+ Tp,
Z(ﬁ)
with z(t) := h(t) = x(t) — x.(t), &(t) = u(t) — u,(t) and

f(x, + h)(t) = f(x(t)) + Ah(t),

Zt;,

where A := f'(X,) is the Fréchet derivative, evaluated at x,(t) = X,.

Peter Benner
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MPC/LQG for Infinite-Dimensional Problems

[e]e] le]e}

Linearization - LTI Case

To avoid problems of existence and uniqueness we use the

Integral Form on [t;, t; + T)]

t t

2t) = Teoz(t)+ / ) / To_oF dv(s),
ity ti
H<s<t<ti+ T

t
y(t) = /Cz(s) ds+w(t), t<t<ti+Tp,
t;
Z(t,') = Zy,

where T; is a strongly continuous semigroup on X generated by A on
[ti, ti + Tp).
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MPC/LQG for Infinite-Dimensional Problems
[e]ele] o}

Solution of the MPC/LQG/LTI Problem on [t;, t; + T,], T, < OODET

Optimal control u,(t) = u,(t) — R71B*T(t) (% (t) — x(¢)).
Estimated state is given by

2.(t) = U(t, 6)X(t: +f U(t, s)E(s)C* W dy(s) +f U(t, s)(F(x () Ax(s))ds,
where U(t,s) is the quasi-evolution operator generated by
A— BR1B*T(t) — (t)C*W-1C,
and M(t) and X(t) are the unique solutions of the ODRE
S(N(t)e,9) =
(N(£)BR=*B*N(t)p, ) — (N(t)ep, A) — (Ap, N(t)Y)) — (0, C*QCY),
for all ¢, 4 € D(A) and M(t; + T,) = G and the OFDRE
F(Z()p,v) =

(Z(t)p, A) + (A%, Z(t)y) — (E(t) WL CX(t)p, ¢) + (i, FVF¢h),
for all v, € D(A )and Z( ) = Xo.
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MPC/LQG for Infinite-Dimensional Problems
[e]ele]e] }

Solution to the MPC/LQG/LTI Problem on [t;, t; 4+ T,], T, = ocD m:r

The optimal control and corresponding estimated state on [t;, t; + T,] are
given by

uy(t) = u(t) — R7B Moo (Xu(t) — x:(2)),
t t
%(t) = Tux(t)+ / Te oo C* W dy(s) + / Teoo(F((s)) — Axi(s)) ds,
ti ti
where T; is the strongly continuous semigroup generated by
A—BR BNy — X, C*W™IC,

and N4, and ¥, are the unique nonnegative, self-adjoint solutions of the
OARE and OFARE

0=AN+NA-NBR!B*N+ C*QC ,

0=AY +TA* — Y C*WICT + FVF* .
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MPC/LQG for Infinite-Dimensional Problems
[ loJe}

Formulation of the Problem — LTV Case

Integral Form after Linearization on [t;, tj + T)]

z(t) = U(t, t,-)z(t,-)—i—/U(t,s)B(s)ﬂ(s)ds+/U(t,s)F(s)dv(s),

t<s<t<t+ T,
z(t;)) = zo +nif t =0 or z(t;) is given from the last interval for t > 0

y(t) = /C s) ds + w(t),

where U(t, s) is the mild evolution operator associated with A(t).
@ X, Y and Z are real Hilbert spaces,
o BeB®(tj,ti+ Tp, LU, X)), FeBx(t, t; + Tp; LIU, X)),
o CeB™®(ti,ti+ Tp L(X,D)), Q € B>®(ti, ti + Tp; L(Y)),
@ ReB>2(tj,ti+ Tp; LIU)), Ve L), We L(Y)and zp € X
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MPC/LQG for Infinite-Dimensional Problems
o] lo}

Solution to the MPC/LQG/LTV Problem on [t;, t; + T,] D@T

The optimal control and corresponding estimated state on [t;, t; + T,] are
given by

() = ur(£) = R (0B (OIN(1) (% (8) — ()
(1) = Une(t.0)3(8) + [ Une(e E()C (W d3()
" [ Uhe(e ) e(s) — Ax()
where Uns(t,s) is the quasi—evolutiontioperator generated by
A() — BRH(£)B*(1)1(2) — E(£)C* ()W (1)

and M(t) and X(t) are the unique solutions of the IRE and FIRE.
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MPC/LQG for Infinite-Dimensional Problems
ooe

Solution to the MPC/LQG/LTV Problem on [t;, t; + T,] D@T

IRE and FIRE:
ti+T,
N(t)e = / Ui(s,8)| C*(5)Q(s)C(s) + N(s)B(s)R(5)B" (s)N(5)| Un(s, £} ds

t

-‘rUf—ﬁ(t,' + Tp, t)GUn(t,' + Tp, t)g&,
S(t)p = / Us(t,s)| F(s)VF*(s) + Z(s)C" ()W C(s)Z(s)| U (1, ) s

+Us (¢, ) Zo Uz (t, ti) e,
where Up is the quasi-evolution operator generated by
A(t) — B(t)R™1(t)B*(t)N(¢t)
and Us is the quasi-evolution operator generated by

A(t) — () CH ()WL C ().
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MPC/LQG for Infinite-Dimensional Problems
@00

An Example: The Burgers Equation

Burgers Equation
Xt(tag) = fof(t,é.) - X(ta 5) X&(ta 5), on (07 Tf] X (07 1)
x(t,0) = x(t,1) =0, te€ (0, T¢],
X(O,f) = Xo(é-), 6 S (Oa 1)

Choose X' = L?(0,1) and define D¢z = % with
D(D¢) = {z € L?(0,1) | z is absolutely continuous, % € [(0,1), z(0) =
z(1) = 0}.

Abstract Burgers Equation

x(t) = f(x(t)), x(0) =xp, with f(x)= VD£2X — xDex

@ Linearization: A(t)h = f'(x,)h = VDEQh — De(x-h)
@ Replace x,(t) by stationary operating point X,:

Ah = f'(x.)h = vDZh — De(xh)

Peter Benner MPC for disturbed co-dim. control problems



MPC/LQG for Infinite-Dimensional Problems
(o] o}

An Example: The Burgers Equation

Abstract Burgers Equation

x(t) = f(x(t)), x(0) =xp, with f(x)= Z/DgX — xDex

Ah = f'(%,)h = vDZh — De¢(%,h)

Does A generates a strongly continuous semigroup?

Lemma [Curtain/Zwart '95]

A closed, densely defined operator on a Hilbert space is an infinitesimal
generator of a strongly continuous semigroup satisfying || T|| < e“?,
w <0, if
R(Az,z) < w||z|]* for z € D(A),
R(A*z,z) < wl|z|]|* for z € D(A).

Peter Benner MPC for disturbed co-dim. control problems



MPC/LQG for Infinite-Dimensional Problems
ooe

An Example: The Burgers Equation

Ah = f'(X,)h = vDZ h — De¢(X,h)

It can be shown that D¢ and DEZ are densely defined, closed operators,
see [Curtain/Zwart '95 .

= Ais a densely defined, closed operator.
Could show (using the Poincaré inequality and the Cauchy inequality with

e=15):
|2 v
az2) < (el — 20} g

If |[x||2, < 2wv + v2\g the requirement (Az, z) < wl|z||? can be fulfilled
and A generates a strongly continuous semigroup. In the case of w =0
and ||x||2, satisfying ||x/||2, < v?)o, the operator A is dissipative and
generates a contraction semigroup.

The same can be shown for the adjoint operator.
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System

@ Aim: model a chemical or biological
process where the species involved are
subjected to diffusion and reaction
among each other.

Source: Griesse/Volkwein, SIAM J. Cont. Optim., 44(2), 2005.
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Diﬂ'

@ Aim: model a chemical or biological
process where the species involved are
subjected to diffusion and reaction
among each other.

@ Modeled by a coupled system of
reaction-diffusion equations (i = 1,2):

(ci)e(x,t)
ci(x,0)

0
%Cl()@ t)

0
%62()(7 t)

AT

D,'AC,'(X7 t) — /(Cl(X7 t)CQ(X7 t) on Q x (07 T),
cio(x) +mi(x) on Q,

0 on 69 x (0, T), %Q(x, t) = 0 on (69 \ 69,) x (0, T),

a(x, t)u(t) on 69, x (0, T).

@ « models a counter-clockwise revolving nozzle around the upper
annular surface.
@ u(t) describes the intensity of the spray.

17/22

Source: Griesse/Volkwein, SIAM J. Cont. Optim., 44(2), 2005.
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Ar

@ Aim: model a chemical or biological
process where the species involved are
subjected to diffusion and reaction
among each other.

@ Modeled by a coupled system of
reaction-diffusion equations (i = 1,2):

(¢i)e(x,t) = DiAci(x,t) — ka(x, t)ea(x, t) on Q x (0, T),
ci(x,0) = cio(x) +ni(x) on €,

a(x,t) = 0ondQx(0,T), %Q(x, t) =0on (6Q2\Q,) x (0, T),

%Q(X’ t) = ax,t)u(t) on 6, x (0, T).

Goal: control intensity u(t) to achieve desired terminal concentrations of
the substances.
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Diﬂ'

@ Semi-discretization in space by
using piecewise linear and globally
continuous (Pr) finite elementson
tetrahedra.

@ After linearization on each interval
we obtain the linear system

Mz(t) = A(t)z(t) + B(t)(b(t) + v(t)), z(ti) =z, on [ti, t; + Tp),

[ —D1K — kMdiag(c,»(t)) —kMdiag(c,1(t)) ]
—kMdiag(c(t)) —DyK — kMdiag(c1(t)) |’

0 n]elaw] o-[28]

<
I
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System AT

o LTI/ARE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve AREs

o LTI/DRE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve DREs

o LTV/DRE-At time-varying A, nozzle is fixed in the middle of the
control interval, solve DREs

o LTV/DRE-AtBt time-varying system matrices on each horizon,
nozzle position changes in each time step, solve DREs

19/22 Peter Benner MPC for disturbed co-dim. control problems



Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Diﬂ'

o LTI/ARE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve AREs

o LTI/DRE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve DREs

o LTV/DRE-At time-varying A, nozzle is fixed in the middle of the
control interval, solve DREs

o LTV/DRE-AtBt time-varying system matrices on each horizon,
nozzle position changes in each time step, solve DREs

Parameters:

D1 = 015, D2 = 02, k = 1, Cio = ]., Coo = 0, T = 1, dtZOO].,
C=Q=lo4, R=10, 0(v) =0(w)=05,n=0

Aim: Steer ¢; to zero by spraying the second substance onto the reactor.
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Ar

o LTI/ARE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve AREs

o LTI/DRE time-invariant system matrices on each horizon, nozzle is
fixed in the middle of the control interval, solve DREs

o LTV/DRE-At time-varying A, nozzle is fixed in the middle of the
control interval, solve DREs

o LTV/DRE-AtBt time-varying system matrices on each horizon,
nozzle position changes in each time step, solve DREs

Parameters:

D1 = 015, D2 = 02, k = 1, Cio = ]., Coo = 0, T = 1, dt = 001,
C=Q=lo4, R=10, 0(v) =0(w)=05,n=0

Aim: Steer ¢; to zero by spraying the second substance onto the reactor.

MATLAB: basic routines, FEMLAB: FEM, LyaPack 1.8: AREs
DREs were solved with an adapted BDF code [Mena 07]
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System AT

i i 7
T, | Tc | Type J [zl zidt | [z]zdt | [UTTdt
0 0 0
LTI/ARE | 0.644872 | 0.067804 | 0.521638 | 0.005543
01 | 005 LTI/DRE | 0.623733 | 0.070703 | 0.524184 | 0.002885
LTV-At 0.624833 | 0.070120 | 0.525954 | 0.002876
LTV-AtBt | 0.129287 | 0.068377 | 0.057168 | 0.000374
LTI/ARE | 0.646785 | 0.067504 | 0523364 | 0.005592
0.05 | 0.05 | LT//DRE | 0.612729 | 0.068944 | 0.509253 | 0.001453
[TV-At | 0.612223 | 0.068680 | 0.520031 | 0.001451
[TV-AtBt | 0.131773 | 0.068104 | 0.061085 | 0.000168
LTI/ARE | 0.823303 | 0.061546 | 0.687169 | 0.007459
01 01 LTI/DRE | 0.812116 | 0.061004 | 0.724103 | 0.002701
LTV-At 0.809999 | 0.060147 | 0.722932 | 0.002692
LTV-AtBt | 0.145055 | 0.067758 | 0.073827 | 0.000347

T .
J=[2zTQz+0u"Riadt, T=001
0
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Diﬂ'

— Tref
ULTiARE
2l |—YrioRe™ YTviDRe-A
At
— Y 1v/DRE-AB
1t
0 0.2 0.4 0.6 0.8 t
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Numerical Results: 3D-Reaction-Diffusion System

Numerical Results: 3D-Reaction-Diffusio

0.16 U~ yaRel
— =Y 7ypRel
0.12 — U=y 1y pRel
3
= 0.08
0.04
0 L L L
0 0.2 0.4 0.6 0.8
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Ar

Optimized trajectory, no disturbances
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Numerical Results: 3D-Reaction-Diffusio

Numerical Results: 3D-Reaction-Diffusion System Ar

Disturbed trajectory, with MPC/LQG feedback
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