International Symposium on Numerics and Scientific Computing Schloß Bruchsal, 22–24 October 2013

Computing Eigenvalues of *H*(ackbusch) Matrices

Peter Benner Thomas Mach

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

> KU Leuven Department of Computer Science

Hackbusch (*H*-)Matrices

LR Algorithr

Slicing Algorit

rithm

PINVIT

Conclusions

Max Planck Mathematicians...

61st Annual Meeting of the Max Planck Society, Hannover, 2010

Courtesy of Joachim Heinze.

Max Planck Institute Magdeburg

Conclusions

Eigenvalue Problem

Definition

The pair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ is called an *eigenpair* of the symmetric matrix $M = M^T \in \mathbb{R}^{n \times n}$, if

 $Mv = v\lambda.$

The set $\Lambda(M) = \{\lambda | \exists v : (\lambda, v) \text{ eigenpair of } M\}$ is the spectrum of M.

Similarity Transformation

 $\Lambda(M) = \Lambda(P^{-1}MP) \qquad \forall P \text{ invertible}$

Max Planck Institute Magdeburg

[Golub, Van der Vorst '00]

• Is *M* real or complex?

[Golub, Van der Vorst '00]

• Is M real or complex? $M \in \mathbb{R}^{n \times n}$

Conclusions

Classification of Eigenvalue Problems

- Is M real or complex? $M \in \mathbb{R}^{n \times n}$
- Special properties (symmetric, Hermitian, skew-symmetric or unitary)?

- Is M real or complex? $M \in \mathbb{R}^{n \times n}$
- Special properties (symmetric, Hermitian, skew-symmetric or unitary)?
 symmetric: M = M^T

- Is M real or complex? $M \in \mathbb{R}^{n \times n}$
- Special properties (symmetric, Hermitian, skew-symmetric or unitary)?
 symmetric: M = M^T
- Further structure?

- Is M real or complex? $M \in \mathbb{R}^{n \times n}$
- Special properties (symmetric, Hermitian, skew-symmetric or unitary)?
 symmetric: M = M^T
- Further structure? Yep.

- Is M real or complex? $M \in \mathbb{R}^{n \times n}$
- Special properties (symmetric, Hermitian, skew-symmetric or unitary)?
 symmetric: M = M^T
- Further structure? Yep. $M \in \mathcal{H}(T_{\mathfrak{I} \times \mathfrak{I}}, k) \Rightarrow \text{see next slide}$

- Is M real or complex? $M \in \mathbb{R}^{n \times n}$
- Special properties (symmetric, Hermitian, skew-symmetric or unitary)?
 symmetric: M = M^T
- Further structure? Yep. $M \in \mathcal{H}(T_{\mathfrak{I} \times \mathfrak{I}}, k) \Rightarrow \text{see next slide}$
- Which eigenvalues required?

- Is M real or complex? $M \in \mathbb{R}^{n \times n}$
- Special properties (symmetric, Hermitian, skew-symmetric or unitary)?
 symmetric: M = M^T
- Further structure? Yep.
 M ∈ H(T_{J×J}, k) ⇒ see next slide
- Which eigenvalues required? some (inner) or all eigenvalues

Some dense matrices, e.g. BEM or FEM, can be approximated by \mathcal{H} -matrices in a data-sparse manner.

rank-k-matrix:
$$M_{a \times b} = AB^T$$
, $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{m \times k}$ $(k \ll n, m)$,

$\mathcal{H} extsf{-Matrices}$		[Hackbusc	н 1998] 🕜

Hierarchical Matrices

 $\mathcal{H}(\mathcal{T}_{\mathbb{I}\times\mathbb{J}},k) = \left\{ M \in \mathbb{R}^{\mathbb{I}\times\mathbb{I}} | \operatorname{rank}(M_{a\times b}) \leq k \,\,\forall a \times b \,\, \text{admissible} \right\}$

- adaptive rank $k(\varepsilon)$
- storage $N_{St,\mathcal{H}}(T,k) = \mathcal{O}(n \log n \ k(\varepsilon))$
- complexity of approximate arithmetic

 $\begin{array}{ll} M_{\mathcal{H}} v & \mathcal{O}(n \log n \ k(\varepsilon)) \\ +_{\mathcal{H}}, -_{\mathcal{H}} & \mathcal{O}(n \log n \ k(\varepsilon)^2) \\ *_{\mathcal{H}}, \mathcal{H}LU(\cdot), (\cdot)_{\mathcal{H}}^{-1} & \mathcal{O}(n (\log n)^2 \ k(\varepsilon)^2) \end{array}$

$\mathcal{H} extsf{-Matrices}$		[Hackbusch	н 1998] 🧖

Hierarchical Matrices

$$\mathcal{H}(\mathcal{T}_{\mathbb{J}\times\mathbb{J}},k) = \left\{ \left. M \in \mathbb{R}^{\mathbb{J}\times\mathbb{J}} \right| \operatorname{rank}\left(M_{a\times b} \right) \leq k \,\,\forall a \times b \,\, \text{admissible} \right\}$$

- adaptive rank $k(\varepsilon)$
- storage $N_{St,\mathcal{H}}(T,k) = \mathcal{O}(n \log n \ k(\varepsilon))$
- complexity of approximate arithmetic

$$\begin{array}{ll} M_{\mathcal{H}} v & \mathcal{O}(n \log n \ k(\varepsilon)) \\ +_{\mathcal{H}}, -_{\mathcal{H}} & \mathcal{O}(n \log n \ k(\varepsilon)^2) \\ *_{\mathcal{H}}, \mathcal{H}LU(\cdot), (\cdot)_{\mathcal{H}}^{-1} & \mathcal{O}(n (\log n)^2 \ k(\varepsilon)^2) \end{array}$$

Max Planck Institute Magdeburg

Hackbusch (\mathcal{H} -)Matrices LR Algorithm Slicing Algorithm PINVIT Conclusions Special Case: \mathcal{H}_{l} -Matrices [HACKBUSCH 1998]

Structure of a symmetric $\mathcal{H}_3(k)$ -matrix.

Max Planck Institute Magdeburg

$\mathcal{H}\text{lib}$

$\mathcal{H}\mathsf{lib}$

Börm, Grasedyck, et al.]

We use the $\mathcal{H}lib$ (www.hlib.org) for the \mathcal{H} -arithmetic operations and some examples out of the library for testing the eigenvalue algorithm.

Max Planck Institute Magdeburg

Eigenvalues of Symmetric \mathcal{H} -Matrices

$$M = M^T \in \mathcal{H}(T, k)$$
$$\Downarrow$$

$$\Lambda_{\mathcal{H}}(M) = \{\lambda_1, \ldots, \lambda_n\}$$
 in $\mathcal{O}(n^2 (\log n)^{\alpha} k^{\beta})$

$$\{\lambda_i\} \in \Lambda_{\mathcal{H}}(M) \text{ in } \mathcal{O}(n(\log n)^{\alpha} k^{\beta})?$$

Max Planck Institute Magdeburg

Eigenvalues of Symmetric \mathcal{H}-Matrices

$$M = M^T \in \mathcal{H}(T, k)$$
$$\Downarrow$$

$$\Lambda_{\mathcal{H}}(M) = \{\lambda_1, \ldots, \lambda_n\}$$
 in $\mathcal{O}(n^2 (\log n)^{lpha} k^{eta})$

$$\{\lambda_i\} \in \Lambda_{\mathcal{H}}(M) \text{ in } \mathcal{O}(n(\log n)^{\alpha} k^{\beta})?$$

dense: M + N, Mv in $\mathcal{O}(n^2)$ and $\Lambda(M)$ in $\mathcal{O}(n^3)$

Max Planck Institute Magdeburg

Hackbusch ($\mathcal H$ -)Matrices

LR Algorithm

licing Algorithr

NVIT

Conclusions

LR Cholesky Algorithm

QR-like Algorithm

Max Planck Institute Magdeburg

Hackbusch (*H*-)Matrices

LR Algorithm

licing Algorithr

PIN

Conclusions

LR Cholesky Algorithm

LR Cholesky Algorithm

Max Planck Institute Magdeburg

LR-Cholesky Transformation

for
$$i = 1, \dots$$
 do
 $\begin{vmatrix} L_i L_i^T = M_i \\ M_{i+1} = L_i^T L_i \end{vmatrix}$
end

	LR Algorithm			
LR Cholesky	Algorithm	[Rutishauser	1958]	Ø

LR-Cholesky Transformation

for
$$i = 1, ...$$
 do
 $\begin{vmatrix} L_i L_i^T = M_i \Rightarrow L_i = M_i L_i^{-T} \\ M_{i+1} = L_i^T L_i = L_i^T M_i L_i^{-T} \end{vmatrix}$
end

$$\lim_{i\to\infty} M_i = \operatorname{diag} \left(\lambda_1, \lambda_2, \dots, \lambda_n\right) \in \mathcal{H}(\mathcal{T}, 0)$$

LR-Cholesky Transformation

for
$$i = 1, ...$$
 do
 $\begin{vmatrix} L_i L_i^T = M_i - \mu_i \mathcal{I} \\ M_{i+1} = L_i^T L_i + \mu_i \mathcal{I} \end{vmatrix}$
end

$$\lim_{\substack{i \to \infty \\ \forall i: }} M_i = \operatorname{diag} \left(\lambda_1, \lambda_2, \dots, \lambda_n \right) \in \mathcal{H}(\mathcal{T}, \mathbf{0})$$

LR-Cholesky Transformation

for
$$i = 1, \dots$$
 do
 $\begin{vmatrix} L_i L_i^T = M_i - \mu_i \mathcal{I} \\ M_{i+1} = L_i^T L_i + \mu_i \mathcal{I} \end{vmatrix}$
end

$$\lim_{i \to \infty} M_i = \operatorname{diag} (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathcal{H}(\mathcal{T}, 0) \\ \forall i: M_i - \mu_i \mathcal{I} \text{ symmetric positive definite}$$

H-LR-Cholesky Transformation

$$\begin{array}{l} \text{for } i=1,\ldots \text{ do} \\ \left| \begin{array}{c} \tilde{L}_i = \mathcal{H}\text{-Cholesky factorization}(\tilde{M}_i - \mu_i \mathcal{I}) \\ \tilde{M}_{i+1} = \tilde{L}_i^T *_{\mathcal{H}} \tilde{L}_i + \mu_i \mathcal{I} \end{array} \right| \\ \text{end} \end{array}$$

Max Planck Institute Magdeburg

LR-Cholesky Transformation

for
$$i = 1, ...$$
 do
 $\begin{vmatrix} L_i L_i^T = M_i - \mu_i \mathcal{I} \\ M_{i+1} = L_i^T L_i + \mu_i \mathcal{I} \end{vmatrix}$
end

$$\lim_{i \to \infty} M_i = \text{diag} \left(\lambda_1, \lambda_2, \dots, \lambda_n \right) \in \mathcal{H}(\mathcal{T}, 0) \\ \forall i: M_i - \mu_i \mathcal{I} \text{ symmetric positive definite}$$

H-LR-Cholesky Transformation

Example - \mathcal{H} -Fill-In

Matrix FEM16 ($\Delta_{2,h}$, 16 inner discr. points).

Max Planck Institute Magdeburg

Example - \mathcal{H} -Fill-In

Matrix FEM16 ($\Delta_{2,h}$, 16 inner discr. points), after 1 step.

Max Planck Institute Magdeburg

Example - \mathcal{H} -Fill-In

Matrix FEM16 ($\Delta_{2,h}$, 16 inner discr. points), after 2 steps.

Max Planck Institute Magdeburg

Example - \mathcal{H} -Fill-In

Matrix FEM16 ($\Delta_{2,h}$, 16 inner discr. points), after 3 steps.

Max Planck Institute Magdeburg

Example - \mathcal{H} -Fill-In

Matrix FEM16 ($\Delta_{2,h}$, 16 inner discr. points), after 4 steps.

Max Planck Institute Magdeburg

Conclusions

$\textbf{Example} \textbf{ - } \mathcal{H}\textbf{-}\textbf{Fill-In}$

Matrix FEM32 ($\Delta_{2,h}$, 32 inner discr. points).

Max Planck Institute Magdeburg

$\textbf{Example} - \mathcal{H}\textbf{-Fill-In}$

Matrix FEM32 ($\Delta_{2,h}$, 32 inner discr. points), after 1 step.

Max Planck Institute Magdeburg

Example - \mathcal{H} -Fill-In

Matrix FEM32 ($\Delta_{2,h}$, 32 inner discr. points), after 50 steps.

Max Planck Institute Magdeburg

Computation Time

Computation Time

Hackbusch ($\mathcal H$ -)Matrices

LR Algorithr

licing Algorith

n

Theorem

Adaption of [FASINO '05/PLESTENJAK, VAN BAREL, VAN CAMP '08]

$$M = \operatorname{diag}\left(d\right) + \sum_{i=1}^{r} \left(\operatorname{tril}\left(u_{i}v_{i}^{T}\right) + \operatorname{triu}\left(v_{i}u_{i}^{T}\right)\right)$$

icing Algorithr

Theorem

Adaption of [FASINO '05/PLESTENJAK, VAN BAREL, VAN CAMP '08]

$$M = \operatorname{diag} \left(d \right) + \sum_{i=1}^{r} \left(\operatorname{tril} \left(u_{i} v_{i}^{T} \right) + \operatorname{triu} \left(v_{i} u_{i}^{T} \right) \right)$$

Structure Preservation of dpss Matrices

Let M be a symmetric positive definite diagonal plus semiseparable matrix, with a decomposition as in the definition. The Cholesky factor L of $M = LL^T$ can be written in the form

$$L = \operatorname{diag}\left(\widetilde{d}\right) + \sum_{i=1}^{r} \operatorname{tril}\left(u_{i}\widetilde{v}_{i}^{T}\right).$$

Multiplying the Cholesky factors in reverse order gives the next iterate $N = L^T L$ of the LR Cholesky algorithm. The matrix N has the same form as M,

$$N = \operatorname{diag}\left(\hat{d}\right) + \sum_{i=1}^{r} \left(\operatorname{tril}\left(\hat{u}_{i}\tilde{v}_{i}^{T}\right) + \operatorname{triu}\left(\tilde{v}_{i}\hat{u}_{i}^{T}\right)\right).$$

Max Planck Institute Magdeburg

Proof Idea

$$L_{1:p-1,1:p-1}L_{p,1:p-1}^{T} = M_{1:p-1,p} = \sum_{i} v_{i}u_{i}^{T}$$

$$\Rightarrow L_{1:p-1,1:p-1}\tilde{v}_{i}|_{1:p-1} = v_{i}|_{1:p-1} \text{ and } L_{p,1:p-1} = \sum_{i} u_{i}|_{p} \tilde{v}_{i}^{T}|_{1:p-1}$$

$$\tilde{d}_{p} + \sum_{i} u_{i}|_{p} \tilde{v}_{i}|_{p} = L_{pp} = \sqrt{M_{pp} - L_{p,1:p-1}L_{p,1:p-1}^{T}}$$

L is a dpss matrix.

Max Planck Institute Magdeburg

Proof Idea

$$N = L^{T}L = \left(\operatorname{diag}\left(\tilde{d}\right) + \sum_{i} \operatorname{tril}\left(u_{i}\tilde{v}_{i}^{T}\right)\right)^{T}$$

$$\left(\operatorname{diag}\left(\tilde{d}\right) + \sum_{i} \operatorname{tril}\left(u_{i}\tilde{v}_{i}^{T}\right)\right)$$

$$\left(\tilde{u}^{i} = \left(Z + \operatorname{diag}\left(\tilde{d}\right)\right)u_{i}, \text{ with } Z_{\rho,:} = \sum_{j}\tilde{v}_{j}|_{p}\left[0 \cdots 0 \quad u_{j}|_{p} \quad u_{j}|_{p+1} \cdots \quad u_{j}|_{n}\right]$$

$$\operatorname{tril}\left(N, -1\right) = \sum_{i} \operatorname{tril}\left(\left(\operatorname{diag}(\tilde{d})u_{i} + Zu_{i}\right)\tilde{v}_{i}^{T}, -1\right)$$

$$= \sum_{i} \operatorname{tril}\left(\hat{u}_{i}\tilde{v}_{i}^{T}, -1\right)$$

N is a dpss matrix.

Max Planck Institute Magdeburg

Structure of \hat{u} and \tilde{v}

$$M = \operatorname{diag} (d) + \sum_{i=1}^{r} \operatorname{tril} (u_{i}v_{i}^{T}) + \dots$$

$$N = \operatorname{diag} (d) + \sum_{i=1}^{r} \operatorname{tril} (\hat{u}_{i}\tilde{v}_{i}^{T}) + \dots$$

$$v_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix} \rightsquigarrow \tilde{v}_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad u_{i} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix} \implies \tilde{u}_{i} = \begin{bmatrix} * \\ \vdots \\ * \\ \vdots \\ * \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Hierarchical Matrices

Hierarchical Matrices

The structure of hierarchical matrices is not preserved under LR Cholesky transformations.

Max Planck Institute Magdeburg

 \mathbf{tr}

Slicing Algorithm

$\textbf{Example - } \mathcal{H}\textbf{-}\textbf{Fill-In}$

icing Algorithm

$\mathcal{H}_{\ell}\text{-Matrices}$

<i>F</i> ₁	$B_2 A_2^T$	$B_4 A_4^T$					
$A_2B_2^T$	F ₃			Bo 4T			
	рT	F ₅	$B_6 A_6^T$	B_8A_8'		A ₈	
	D ₄	$A_6 B_6^T$	F ₇				
	A DT			F9	$B_{10}A_{10}^{T}$	D AT	
				$A_{10}B_{10}^T$	F ₁₁	D12	A ₁₂
A808			$F_{13} B_{14}$		$B_{14}A_{14}^{T}$		
			$A_{12}B_{12}'$		$A_{14}B_{14}^T$	F ₁₅	

icing Algorithm

Max Planck Institute Magdeburg

licing Algorithm

<i>F</i> ₁							
I.	F ₃						
		F ₅					
		T	F7				
				F9			
				T	F ₁₁		
	1					F ₁₃	
						I.	F ₁₅

Max Planck Institute Magdeburg

icing Algorithm

F_1							
I	F ₃						
	-	F ₅					
	1	I	F ₇				
				F9			
		I		I	F ₁₁		
						F ₁₃	
						I	F ₁₅

licing Algorithm

<i>F</i> ₁							
п	F ₃						
		F ₅					
	1	П	F7				
				F9			
		I		П	F ₁₁		
		l				F ₁₃	
					I	П	F ₁₅

icing Algorithm

$\mathcal{H}_{\ell}\text{-}Matrices$

F ₁							
Ξ	F ₃						
		F ₅					
I	I	Ш	F7				
				F9			
				ш	F ₁₁		
I			1	F ₁₃			
				I	ш	F ₁₅	

icing Algorithm

 \Rightarrow rank bounded by ℓk instead of k

 \Rightarrow total storage required by the low-rank parts of *M* is increased only from $2nk\ell$ to $2nk\frac{\ell(\ell-1)}{2}$

Max Planck Institute Magdeburg

Max Planck Institute Magdeburg

Hackbusch (*H*-)Matrices

LR Algorith

Slicing Algorithr

orithm

PINVIT

Conclusions

Slicing the Spectrum

Slicing the Spectrum

Max Planck Institute Magdeburg

Bisectioning		[Parlett	· '80]

Max Planck Institute Magdeburg

Max Planck Institute Magdeburg

$$\lambda_3 \in [-3.5, -2.75], \ \hat{\lambda}_3 = -3.125$$

Max Planck Institute Magdeburg

LR Algorithm

Slicing Algorithn

Conclusio

Evaluation of $\nu(\mu)$

Sylvester's Law of Inertia

Each matrix M is congruent to a matrix

diag
$$\left(-I_{\nu}, I_{\operatorname{rank}(M)-\nu}, \mathbf{0}_{n-\operatorname{rank}(M)}\right)$$
,

where $\boldsymbol{\nu}$ is the number of negative eigenvalues. The triple

$$(\nu, \operatorname{rank}(M) - \nu, n - \operatorname{rank}(M))$$

is called the *inertia* of M.

$$M = LDL^{T} \qquad \Rightarrow \qquad \nu(M) = \nu(D)$$
$$M - \mu I = L_{\mu}D_{\mu}L_{\mu}^{T} \qquad \Rightarrow \qquad \nu(\mu) = \nu(M - \mu I) = \nu(D_{\mu})$$

Slicing Algorithm

n

C

Complexity

Flops per factorization (for \mathcal{H}_{ℓ} -matrices):

$$\mathcal{O}\left(nk^{2}\left(\log n\right)^{4}\right)$$
.

Factorization per eigenvalue:

 $\mathcal{O}\left(\log(\left\|M\right\|_{2}/\epsilon)\right).$

Flops per eigenvalue:

$$\mathcal{O}\left(nk^{2}\left(\log n\right)^{4}\log\left\|M\right\|_{2}/\epsilon\right).$$

Slicing the whole spectrum:

$$\mathcal{O}\left(n^{2}k^{2}\left(\log n\right)^{4}\log(\left\|M\right\|_{2}/\epsilon)\right).$$

Max Planck Institute Magdeburg

Absolute error $|\lambda_i - \hat{\lambda}_i|$ for the $1024 \times 1024 \mathcal{H}_5(1)$ -matrix, $\epsilon_{ev} = 10^{-8}$.

Computation times for 10 eigenvalues of $\mathcal{H}_{\ell}(1)$ -matrices ($\ell = 8, \ldots, 15$).

Parallelization		Ø

Max Planck Institute Magdeburg

Parallelization Speedup

OpenMP:

Name	п	t _{1 core} in s	$t_{ m 1c}/t_{ m 2c}$	$t_{ m 1c}/t_{ m 4c}$	t _{8 core}	t_{1c}/t_{8c}
H2 r1	128	0.33	1.83	3.30	0.06	5.50
H4 r1	512	9.44	1.94	3.67	1.43	6.60
H6 r1	2048	219.28	1.91	3.64	33.88	6.47
H8 r1	8 1 9 2	4 022.80	1.87	3.44	676.57	5.95
H10 r1	32768	49012.24	1.93	3.18	10 006.60	4.90

Slicing Algorithr

rithm

Parallelization Speedup

Open MPI: $(\mathcal{H}_9(1) \in \mathbb{R}^{16\,384 \times 16\,384})$

No. of Processes	t in s	Speedup	Efficiency
1	16 564.58	1.00	1.00
2+1	8340.22	1.99	0.66
4+1	4044.13	4.10	0.82
6+1	2678.95	6.18	0.88
11 + 1	1 494.33	11.08	0.92
23+1	713.80	23.21	0.96
35+1	476.44	34.77	0.96
47+1	364.30	45.47	0.95
95+1	188.92	87.68	0.91
191+1	100.61	164.64	0.86
287+1	71.86	230.50	0.80
383+1	61.91	267.56	0.70

• Shifting affects the structure.

• The LDL^T factorization is of almost linear complexity only for the original *H*-matrix and not necessarily for the shifted ones.

- For *H_l*-matrices we use the exact LDL^T factorization.
 For general *H*-matrices: The truncation introduces errors in the LDL^T factorization the computed *D* may have another inertia
 - \Rightarrow some eigenvalues may lie outside the computed interval
 - \Rightarrow larger errors

Hackbusch (*H*-)Matrices

LR Algorithr

licing Algorith

Conclusions

Preconditioned Inverse Iteration

Preconditioned Inverse Iteration for Hierarchical Matrices

Max Planck Institute Magdeburg

 ackbusch (H-)Matrices
 LR Algorithm
 Slicing Algorithm
 PINVIT
 Conclusions

 Preconditioned Inverse Iteration
 Image: Conclusion of the second second

[KNYAZEV, NEYMEYR, ET AL.]

Definition

The function

$$\mu(x) = \mu(x, M) = \frac{x^T M x}{x^T x}$$

is called the Rayleigh quotient.

 ackbusch (H-)Matrices
 LR Algorithm
 Slicing Algorithm
 PINVIT
 Conclusions

 Preconditioned Inverse Iteration
 Image: Conclusion of the second second

[KNYAZEV, NEYMEYR, ET AL.]

Definition

The function

$$\mu(x) = \mu(x, M) = \frac{x^T M x}{x^T x}$$

is called the Rayleigh quotient.

Minimize the Rayleigh quotient by a gradient method:

$$x_{i+1} := x_i - \alpha \nabla \mu(x_i), \quad \nabla \mu(x) = \frac{2}{x^T x} (Mx - x \mu(x)),$$

Max Planck Institute Magdeburg
ackbusch (H-)Matrices
LR Algorithm
Slicing Algorithm
PINVIT
Conclusions

Preconditioned Inverse Iteration
Image: Conclusion of the second second

[KNYAZEV, NEYMEYR, ET AL.]

Definition

The function

$$\mu(x) = \mu(x, M) = \frac{x^T M x}{x^T x}$$

is called the Rayleigh quotient.

Minimize the Rayleigh quotient by a gradient method:

$$x_{i+1} := x_i - \alpha \nabla \mu(x_i), \quad \nabla \mu(x) = \frac{2}{x^T x} (Mx - x \mu(x)),$$

+ preconditioning \Rightarrow update equation:

$$x_{i+1} := x_i - B^{-1} (Mx_i - x_i \mu(x_i)).$$

Max Planck Institute Magdeburg

[KNYAZEV, NEYMEYR 2009]

$$x_{i+1} := x_i - B^{-1} (M x_i - x_i \mu(x_i))$$

lf

- $M \in \mathbb{R}^{n \times n}$ symmetric positive definite and
- B^{-1} approximates the inverse of M, such that

$$\left\|\mathcal{I}-B^{-1}M\right\|_{M}\leq c<1,$$

then Preconditioned INVerse ITeration (PINVIT) converges and the number of iterations is independent of *n*.

Slicing Algorithm

NVIT

Conclusions

Algorithm and Complexity

The number of iterations is independent of matrix size *n*.

$\overline{\mathcal{H}}$ -PINVIT

Input: $M \in \mathbb{R}^{n \times n}$, $X_0 \in \mathbb{R}^{n \times d}$ ($X_0^T X_0 = I$, e.g. randomly chosen) Output: $X_p \in \mathbb{R}^{n \times d}$, $\mu \in \mathbb{R}^{d \times d}$, with $||MX_p - X_p\mu|| \le \epsilon$ $B^{-1} = (M)_{\mathcal{H}}^{-1}$ or $B^{-1} = L_{\mathcal{H}}^{-T} L_{\mathcal{H}}^{-1}$ $R := MX_0 - X_0\mu$, $\mu = X_0^T MX_0$ for $(i := 1; ||R||_F > \epsilon; i + +)$ do $|X_i := \text{Orthogonalize} (X_{i-1} - B^{-1}R)$ $R := MX_i - X_i\mu$, $\mu = X_i^T MX_i$ end

Slicing Algorithm

INVIT

Conclusions

Algorithm and Complexity

The number of iterations is independent of matrix size n.

$\overline{\mathcal{H}}$ -PINVIT

Input: $M \in \mathbb{R}^{n \times n}$, $X_0 \in \mathbb{R}^{n \times d}$ $(X_0^T X_0 = I$, e.g. randomly chosen) Output: $X_p \in \mathbb{R}^{n \times d}$, $\mu \in \mathbb{R}^{d \times d}$, with $||MX_p - X_p\mu|| \le \epsilon$ $B^{-1} = (M)_{\mathcal{H}}^{-1}$ or $B^{-1} = L_{\mathcal{H}}^{-T} L_{\mathcal{H}}^{-1}$ $\mathcal{O}(n(\log n)^2 k(c)^2)$ $R := MX_0 - X_0\mu$, $\mu = X_0^T MX_0$ for $(i := 1; ||R||_F > \epsilon; i + +)$ do $|X_i := \text{Orthogonalize} (X_{i-1} - B^{-1}R)$ $\mathcal{O}(n(\log n) k(c)^2)$ $R := MX_i - X_i\mu$, $\mu = X_i^T MX_i$ $\mathcal{O}(n(\log n) k(c))$ end

The complexity of the algorithm is determined by the \mathcal{H} -matrix inversion/Cholesky decomposition: $\Rightarrow \mathcal{O}(n(\log n)^2 k(c)^2)$.

CPU Time H-Cholesky PINVIT 10^{4} MATLAB eigs $\mathcal{H} ext{-}\mathsf{Cholesky}$ decomposition 10³ CPU time in s 10² of memory 10¹ 10⁰ out 10^{-1} 10^{-2} FEM3D16 4 096 FEM3D32 32 768 FEM3D128 2 079 152 262 144 512 64 FEM3D4 FEM3D8 FEM3D64

Slicing Algorithn

of memory

out

CPU Time H-Cholesky PINVIT 10^{4} MATLAB eigs H-Cholesky decomposition 10³ Slicing the Spectrum CPU time in s 10² 10¹ 10⁰ 10^{-1} Œ 10^{-2} FEM3D16 4 096 FEM3D32 32 768 FEM3D64 262 144 512 64 FEM3D4 FEM3D8

Max Planck Institute Magdeburg

Folded Spectrum Method

[Wang, Zunger 1994]

$$M_{\sigma} = (M - \sigma \mathcal{I})^2$$

 M_{σ} is s.p.d., if M is s.p.d. and $\sigma \neq \lambda_i$.

Folded Spectrum Method

[Wang, Zunger 1994]

$$M_{\sigma} = (M - \sigma \mathcal{I})^2$$

 M_{σ} is s.p.d., if M is s.p.d. and $\sigma \neq \lambda_i$.

- The condition number of $(M \sigma I)^2$ is large.
- \Rightarrow The computation of M_{σ}^{-1} is more expensive.
- $\Rightarrow M_{\sigma}^{-1}$ has larger local ranks.
- $\Rightarrow M_{\sigma}^{-1}v$ is more expensive.

Folded Spectrum Method

[WANG, ZUNGER 1994]

$$M_{\sigma} = (M - \sigma \mathcal{I})^2$$

 M_{σ} is s.p.d., if M is s.p.d. and $\sigma \neq \lambda_i$.

- The condition number of $(M \sigma I)^2$ is large.
- \Rightarrow The computation of M_{σ}^{-1} is more expensive.
- $\Rightarrow M_{\sigma}^{-1}$ has larger local ranks.
- $\Rightarrow M_{\sigma}^{-1}v$ is more expensive.
 - Multiple eigenvalues of M_{σ} may lead to incomplete subspace information.

$$\Rightarrow v^T M v / v^T v$$
 does not approximate λ .

Max Planck Institute Magdeburg

Conclusions

Max Planck Institute Magdeburg

Peter Benner, Thomas Mach, Computing Eigenvalues of H(ackbusch) Matrices

LR Algorithr

licing Algorithm

- Three algorithms:
 - \mathcal{H} -LR Cholesky algorithm: efficient only for \mathcal{H}_{ℓ} -matrices, but expensive otherwise

- Three algorithms:
 - \mathcal{H} -LR Cholesky algorithm: efficient only for \mathcal{H}_{ℓ} -matrices, but expensive otherwise
 - Slicing the spectrum: efficient for $\mathcal{H}_\ell\text{-matrices, good parallel performance}$

- Three algorithms:
 - \mathcal{H} -LR Cholesky algorithm: efficient only for \mathcal{H}_{ℓ} -matrices, but expensive otherwise
 - Slicing the spectrum: efficient for $\mathcal{H}_\ell\text{-matrices, good parallel performance}$
 - *H*-**PINVIT**: efficient for the smallest eigenvalue(s) of positive definite *H*-matrices, computation of inner eigenvalues is possible. Subspace-accelerated variants, LOBPCG also investigated.

- Three algorithms:
 - \mathcal{H} -LR Cholesky algorithm: efficient only for \mathcal{H}_{ℓ} -matrices, but expensive otherwise
 - Slicing the spectrum: efficient for $\mathcal{H}_\ell\text{-matrices, good parallel performance}$
 - *H*-**PINVIT**: efficient for the smallest eigenvalue(s) of positive definite *H*-matrices, computation of inner eigenvalues is possible. Subspace-accelerated variants, LOBPCG also investigated.
- \bullet Other ideas ot compute eigenvalues of $\mathcal H\text{-matrices:}$

J. Gördes

Eigenwertproblem von hierarchischen Matrizen mit lokalem Rang 1. Diplomarbeit, Mathematisch-Naturwissenschaftlichen Fakultät, CAU Kiel, May 2009.

W. Hackbusch and W. Kress.

A projection method for the computation of inner eigenvalues using high degree rational operators. COMPUTING 81:259–268, 2007.

S. Delvaux, K. Frederix, and M. Van Barel.

Transforming a hierarchical into a unitary-weight representation. ELECTR. TRANS. NUM. ANAL. 33:163–188, 2009.

- Three algorithms:
 - $\mathcal{H}\text{-}LR$ Cholesky algorithm: efficient only for $\mathcal{H}_\ell\text{-}matrices,$ but expensive otherwise
 - Slicing the spectrum: efficient for $\mathcal{H}_\ell\text{-matrices, good parallel performance}$
 - *H*-**PINVIT**: efficient for the smallest eigenvalue(s) of positive definite *H*-matrices, computation of inner eigenvalues is possible. Subspace-accelerated variants, LOBPCG also investigated.
- Probably similar conclusions for unsymmetric case.

- Three algorithms:
 - $\mathcal{H}\text{-}LR$ Cholesky algorithm: efficient only for $\mathcal{H}_\ell\text{-}matrices,$ but expensive otherwise
 - Slicing the spectrum: efficient for $\mathcal{H}_\ell\text{-matrices, good parallel performance}$
 - *H*-**PINVIT**: efficient for the smallest eigenvalue(s) of positive definite *H*-matrices, computation of inner eigenvalues is possible. Subspace-accelerated variants, LOBPCG also investigated.
- Probably similar conclusions for unsymmetric case.
- Possible improvements employing PDE theory?

- Three algorithms:
 - \mathcal{H} -LR Cholesky algorithm: efficient only for \mathcal{H}_{ℓ} -matrices, but expensive otherwise
 - Slicing the spectrum: efficient for $\mathcal{H}_\ell\text{-matrices, good parallel performance}$
 - *H*-**PINVIT**: efficient for the smallest eigenvalue(s) of positive definite *H*-matrices, computation of inner eigenvalues is possible. Subspace-accelerated variants, LOBPCG also investigated.
- Probably similar conclusions for unsymmetric case.
- Possible improvements employing PDE theory?
- Concepts carry over to TT format, but so far not competitive with tensor-specific methods.

Details to be found in...

Peter Benner and Thomas Mach. The LR Cholesky algorithm for symmetric hierarchical matrices. LINEAR ALGEBRA AND ITS APPLICATIONS 439(4):1150–1166, 2013.

Peter Benner and Thomas Mach.

Computing all or some eigenvalues of symmetric \mathcal{H}_{ℓ} -matrices. SIAM JOURNAL ON SCIENTIFIC COMPUTING 34(1):A485–A496, 2012.

The preconditioned inverse iteration for hierarchical matrices. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 20(1):150–166, 2013.

Peter Benner and Thomas Mach.

Locally optimal block preconditioned conjugate gradient method for hierarchical matrices.

PROCEEDINGS IN APPLIED MATHEMATICS AND MECHANICS 11:741-742, 2011.

Peter Benner and Thomas Mach. On the QR decomposition of *H*-matrices. COMPUTING 88(3–4):111–129, 2010.

All about \mathcal{H} ackbusch matrices to be found in...

Max Planck Institute Magdeburg

All about \mathcal{H} ackbusch matrices to be found in...

HAPPY BIRTHDAYS!

Max Planck Institute Magdeburg