Abstract

We discuss the feedback stabilization of flow problems described by the incompressible Navier-Stokes equations. In the last decade, a series of papers by Raymond and co-workers showed that for small perturbations, the deviation from a nominal flow, defined by a possibly unstable solution of the steady Navier-Stokes equations, can be steered to zero at an exponential convergence rate using an LQR problem for the velocity field projected onto a suitable space of divergence-free functions. We show how to solve this LQR problem numerically using the associated algebraic (operator) Riccati equation. The key idea is to avoid the explicit Helmholtz projection onto the divergence-free vector fields by employing a saddle point formulation discussed already by Heinkenschloss, Sorensen, and Sun (SIAM J. Sci. Comp. 30:1038-1063, 2008) in the context of balanced truncation model reduction. Also, a number of other issues such as initializing Newton's method for the algebraic Riccati equations, need to be solved to derive a working algorithm for the numerical solution of the flow stabilization problem. We will show how the computed feedback control using this approach effectively stabilizes unstable flows using as test examples von Karman vortex shedding and the coupled systems of a reactive substance transported by an incompressible fluid.

Numerical Solution of the Feedback Control Problem for Navier-Stokes Equations

Peter Benner^{1,2} Jens Saak^{1,2} Heiko K. Weichelt²

¹ Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Research group Computational Methods in Systems and Control Theory

² Chemnitz University of Technology, Department of Mathematics, Research group Mathematics in Industry and Technology

IFIP TC 7 / 2013 System Modelling and Optimization, Alpen-Adria Universität Klagenfurt (AAU), Austria, September 8-13, 2013

Minisymposion On Optimal Feedback Control for Partial Differential Equations: Theory and Numerical Methods

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000		00000	0000	OO
Overview				

1 Introduction

2 Discretized Control Systems

3 Work Flow

4 Numerical Examples

5 Conclusion

Flow Models

- \bullet + boundary and initial conditions
- models describe incompressible, instationary flow
- viscosity $\nu \in \mathbb{R}^+$, (NSE: Reynolds number $\operatorname{Re} = \frac{v_{ch} \cdot d_{ch}}{\nu} \in \mathbb{R}^+$)
- initial boundary value problem with additional algebraic constraints

Introduction	Discretized System	Work Flow 00000	Numerical Examples 0000	Conclusion OO
Introdue Model Proble	ction ^{ems}			
Flow M	odels			
Stokes	Equations	Navier-S	tokes Equations	
$\frac{\partial}{\partial}$	$\frac{\vec{v}}{t} - \nu \Delta \vec{v} + \nabla p = \vec{f}$	$\frac{\partial \vec{v}}{\partial t} - \frac{1}{R}$	$-\Delta ec{v} + (ec{v} \cdot abla) ec{v} + abla ec{v}$	$p = \vec{f}$

div $\vec{v} = 0$

div $\vec{v} = 0$

Flow Models

Diffusion-Convection Models

Concentration Equation

$$rac{\partial c}{\partial t} - rac{1}{\mathsf{Re}\,\mathsf{Sc}}\Delta c + (ec{v}\cdot
abla)c = 0$$

$$\frac{\partial}{\partial t} - \frac{1}{\operatorname{\mathsf{Re}}\operatorname{\mathsf{Pr}}}\Delta\vartheta + (\vec{v}\cdot\nabla)\vartheta = 0$$

• defined on $(0,\infty) \times \Omega$, $\Omega \subset \mathbb{R}^2$ bounded and "smooth enough" $\Gamma = \partial \Omega$

 $\frac{\partial \mathbf{r}}{\partial \mathbf{r}}$

 \bullet + boundary and initial conditions

models describe diffusion and convection process

 \bullet Schmidt number $\mathsf{Sc} \in \mathbb{R}^+,$ Prandtl number $\mathsf{Pr} \in \mathbb{R}^+$

• Scenario 1: Feedback stabilization of flow field around stationary trajectory in "von Kármán Vortex Street".

• Scenario 2: Feedback stabilization of coupled flow and diffusion-convection field in a reactor model.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000				
Introductio Basic Ideas of Fee	n dback Stabilization			M

Motivation:

- \hookrightarrow Stabilize flow profiles.
- $\,\hookrightarrow\,$ Attenuate external perturbations.
- $\,\hookrightarrow\,$ Influence flow via boundary conditions.

- Motivation:
 - \hookrightarrow Stabilize flow profiles.
 - $\,\hookrightarrow\,$ Attenuate external perturbations.
 - $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - \hookrightarrow Influence the model via **boundary control**.
 - \hookrightarrow Stabilize the flow around a desired flow profile (stationary trajectory) that is used as linearization point.

- Motivation:
 - \hookrightarrow Stabilize flow profiles.
 - $\,\hookrightarrow\,$ Attenuate external perturbations.
 - $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - $\,\hookrightarrow\,$ Influence the model via boundary control.
 - → **Stabilize** the flow around a desired flow profile (stationary trajectory) that is used as **linearization point**.
- Analytical approach by [RAYMOND since 2005].
 - $\,\hookrightarrow\,$ Uses Leray projector to project onto the correct subspace.
 - \hookrightarrow Extended to finite dimensional controllers [RAYMOND/THEVENET '10].

- Motivation:
 - \hookrightarrow Stabilize flow profiles.
 - $\,\hookrightarrow\,$ Attenuate external perturbations.
 - $\,\hookrightarrow\,$ Influence flow via boundary conditions.
- Riccati-based feedback stabilization with boundary control input.
 - \hookrightarrow Use linear quadratic regulator (LQR) approach.
 - \hookrightarrow Influence the model via **boundary control**.
 - → **Stabilize** the flow around a desired flow profile (stationary trajectory) that is used as **linearization point**.
- Analytical approach by [RAYMOND since 2005].
 - $\,\hookrightarrow\,$ Uses Leray projector to project onto the correct subspace.
 - $\hookrightarrow \mbox{ Extended to finite dimensional controllers [Raymond/Thevenet '10]}.$
- Ideas for numerical treatment based on [BÄNSCH/BENNER '10].
 - $\,\hookrightarrow\,$ Consider linearized Navier-Stokes equations for 2D.
 - \hookrightarrow Discrete projection idea by [HEINKENSCHLOSS/SORENSEN/SUN '08].
 - \hookrightarrow Use *Newton-ADI* method to compute **optimal control**.

Introduction	Discretized System	Work Flow	Numerical Example	es Conclusion
0000				
Introductio Analytical Approad	n ^{ch}		[]	RAYMOND since 2005]

- Feedback boundary stabilization of (Navier)-Stokes flow problems.
- Linearize around a given stationary trajectory.
- Formulate stabilization problem for the perturbation.

Introduction	Discretized System	Work Flow	Numerical Examp	oles Conclusion
0000				
Introductio	n ^{ch}			[RAYMOND since 2005]

- Feedback boundary stabilization of (Navier)-Stokes flow problems.
- Linearize around a given stationary trajectory.
- Formulate stabilization problem for the perturbation.

Problem

- Partial differential equation with additional algebraic constrains.
 - \hookrightarrow Need projector onto correct solution manifold.
 - \hookrightarrow "Hide" constraints inside the function space.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000				
Introductio	n ^{ch}		[Каумс	ND since 2005]

- Feedback boundary stabilization of (Navier)-Stokes flow problems.
- Linearize around a given stationary trajectory.
- Formulate stabilization problem for the perturbation.

Problem

- Partial differential equation with additional algebraic constrains.
 - \hookrightarrow Need projector onto correct solution manifold.
 - \hookrightarrow "Hide" constraints inside the function space.

Leray Projector

- Orthogonal projection onto divergence-free function space.
 - \hookrightarrow LQR approach can be applied.
 - \hookrightarrow Perturbation vanishes and flow achieves given trajectory.

Introduction	Discretized System	Work Flow 00000	Numerical Examples	Conclusion OO
Introduc Leray Project	tion			

Helmholtz Decomposition

[GIRAULT/RAVIART '86]

- Splitting a vector field $\vec{v} \in (L^2(\mathbb{R}^d))^d$ into:
 - Divergence-free component: $ec{v}_{div} \in \mathbf{H}_{div0}(\mathbb{R}^d)$
 - Curl-free component: $ec{v}_{\mathit{curl}} \in \mathsf{H}_{\mathit{curl0}}(\mathbb{R}^d)$
 - $\hookrightarrow \exists$ stream-function ψ and potential-function p:

$$\vec{v} = \vec{v}_{div} + \vec{v}_{curl}$$

with
$$\vec{v}_{div} = \operatorname{curl} \psi$$
 (div $\vec{v}_{div} = 0$) and $\vec{v}_{curl} = \nabla p$ (curl $\vec{v}_{curl} = 0$).

Introduction	Discretized System	Work Flow 00000	Numerical Examples 0000	Conclusion OO
Introduc Leray Project	tion			

Helmholtz Decomposition

[GIRAULT/RAVIART '86]

- Splitting a vector field $ec{v} \in (L^2(\mathbb{R}^d))^d$ into:
 - Divergence-free component: $ec{v}_{div} \in \mathbf{H}_{div0}(\mathbb{R}^d)$
 - Curl-free component: $\vec{v}_{curl} \in \mathbf{H}_{curl0}(\mathbb{R}^d)$ $\hookrightarrow \exists$ stream-function ψ and potential-function p:

$$ec{v} = ec{v}_{div} + ec{v}_{curl} \quad \Rightarrow \quad (L^2(\mathbb{R}^d))^d = \mathsf{H}_{div0}(\mathbb{R}^d) \oplus^{\perp} \mathsf{H}_{curl0}(\mathbb{R}^d)$$

with
$$\vec{v}_{div} = \operatorname{curl} \psi$$
 (div $\vec{v}_{div} = 0$) and $\vec{v}_{curl} = \nabla p$ (curl $\vec{v}_{curl} = 0$).

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000		
Introduc Leray Project	ction ^{.ion}			

Helmholtz Decomposition

[GIRAULT/RAVIART '86]

- Splitting a vector field $\vec{v} \in (L^2(\mathbb{R}^d))^d$ into:
 - Divergence-free component: $\vec{v}_{div} \in \mathbf{H}_{div0}(\mathbb{R}^d)$
 - Curl-free component: $\vec{v}_{curl} \in \mathbf{H}_{curl0}(\mathbb{R}^d)$ $\hookrightarrow \exists$ stream-function ψ and potential-function p:

$$ec{v} = ec{v}_{div} + ec{v}_{curl} \quad \Rightarrow \quad (L^2(\mathbb{R}^d))^d = \mathbf{H}_{div0}(\mathbb{R}^d) \oplus^{\perp} \mathbf{H}_{curl0}(\mathbb{R}^d)$$

with
$$\vec{v}_{div} = \operatorname{curl} \psi$$
 (div $\vec{v}_{div} = 0$) and $\vec{v}_{curl} = \nabla p$ (curl $\vec{v}_{curl} = 0$).

Leray Projector P

 $P: \vec{v} \mapsto \vec{v}_{div}$, which means for a given \vec{v} solve

$$\vec{v}_{div} + \nabla p = \vec{v}, \\ \operatorname{div} \vec{v}_{div} = 0,$$

to compute the divergence-free component \vec{v}_{div} .

$$M\frac{d}{dt}\mathbf{v}(t) = A\mathbf{v}(t) + G\mathbf{p}(t) + \mathbf{f}(t), \qquad (1a)$$

$$0 = G^T \mathbf{v}(t). \tag{1b}$$

$$M\frac{d}{dt}\mathbf{v}(t) = A\mathbf{v}(t) + G\mathbf{p}(t) + \mathbf{f}(t), \qquad (1a)$$

$$O = G^{T} \mathbf{v}(t), \tag{1b}$$

$$\mathbf{y}(t) = C\mathbf{v}(t). \tag{1c}$$

$$M\frac{d}{dt}\mathbf{v}(t) = A\mathbf{v}(t) + G\mathbf{p}(t) + B\mathbf{u}(t), \qquad (1a)$$

$$\mathsf{O} = G^{\mathsf{T}} \mathbf{v}(t), \tag{1b}$$

$$\mathbf{y}(t) = C\mathbf{v}(t). \tag{1c}$$

$$M\frac{d}{dt}\mathbf{v}(t) = A\mathbf{v}(t) + G\mathbf{p}(t) + B\mathbf{u}(t), \qquad (1a)$$

$$0 = G^{T} \mathbf{v}(t), \tag{1b}$$

$$\mathbf{y}(t) = C\mathbf{v}(t). \tag{1c}$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & G \\ G^T & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

$$M \frac{d}{dt} \mathbf{v}(t) = A \mathbf{v}(t) + G \mathbf{p}(t) + B \mathbf{u}(t),$$
(1a)

$$0 = G^{T} \mathbf{v}(t),$$
(1b)

$$\mathbf{y}(t) = C \mathbf{v}(t).$$
(1c)

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & G \\ G^{\mathsf{T}} & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right)$$

Descriptor system with multiple inputs and outputs (MIMO).

$$M\frac{d}{dt}\mathbf{v}(t) = A\mathbf{v}(t) + G\mathbf{p}(t) + B\mathbf{u}(t), \qquad (1a)$$

$$0 = G^{T} \mathbf{v}(t), \tag{1b}$$

$$\mathbf{y}(t) = C\mathbf{v}(t). \tag{1c}$$

Properties

- Differential algebraic system (DAE) of D-index 2 (if \tilde{G} has full rank).
- Matrix pencil:

$$\left(\begin{bmatrix} A & G \\ G^T & 0 \end{bmatrix}, \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \right).$$

- Descriptor system with multiple inputs and outputs (MIMO).
- Index reduction to apply LQR approach [HEINKENSCHLOSS/SORENSEN/SUN '08].

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		M

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi := I - G(G^T M^{-1} G)^{-1} G^T M^{-1}.$$

[Heinkenschloss/Sorensen/Sun '08]

Properties of Π : for the properties of Π : $(\Pi := I - G(G^T M^{-1}G)^{-1}G^T M^{-1})$ $\Pi^2 = \Pi$ null $(\Pi) = \text{range}(G)$ $\Pi M = M\Pi^T$ range $(\Pi) = \text{null}(G^T M^{-1})$ $G^T \mathbf{x} = 0 \iff \Pi^T \mathbf{x} = \mathbf{x}$ Π^T seems to be discrete Leray projector

[Heinkenschloss/Sorensen/Sun '08]

Properties of Π^T : $(\Pi^T)^2 = \Pi^T$ $(\Pi^T)^2 = \Pi^T$ $\Pi M = M\Pi^T$ $G^T \mathbf{x} = 0 \iff \Pi^T \mathbf{x} = \mathbf{x}$ - Projection onto divergence-free functions (div $\vec{v} = 0$).

benner@mathematik.tu-chemnitz.de Numerical Solution of the Feedback Control Problem for Navier-Stokes Equat

	Discretized System	Work Flow	Numerical Examples	Conclusion
	00000			
Discrete Leray Pro	Control Sy	stems		

[Heinkenschloss/Sorensen/Sun '08]

Properties of Π^T : $(\Pi^T)^2 = \Pi^T$ $(\Pi^T)^$

$$\Pi M = M \Pi^{T} \qquad \operatorname{range}(\Pi^{T}) = \operatorname{null}(G^{T})$$
$$G^{T} \mathbf{x} = \mathbf{0} \iff \Pi^{T} \mathbf{x} = \mathbf{x}$$

– Projection onto divergence-free functions (div $\vec{v} = 0$).

- Nullspace represents curl-free components (rot $\nabla p = 0$).

[Heinkenschloss/Sorensen/Sun '08]

Properties of Π^{T} : $(\Pi^{T} := I - M^{-T}G(G^{T}M^{-1}G)^{-1}G^{T})$ $(\Pi^{T})^{2} = \Pi^{T}$ $\operatorname{null}(\Pi^{T}) = \operatorname{range}(M^{-1}G)$ $\Pi M = M\Pi^{T}$ $\operatorname{range}(\Pi^{T}) = \operatorname{null}(G^{T})$

$$G^T \mathbf{x} = \mathbf{0} \Longleftrightarrow \Pi^T \mathbf{x} = \mathbf{x}$$

- Projection onto divergence-free functions (div
$$\vec{v} = 0$$
).

- Nullspace represents curl-free components (rot $\nabla p = 0$).

- Symmetric w.r.t. $(.,.)_M$ (i.e., the discrete $(.,.)_{L_2}$) ⇒ oblique in $(\mathbb{R}^n, (.,.)_2)$ but orthogonal in $(\mathbb{R}^n, (.,.)_M)$.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^{T} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ 0 \end{bmatrix}$.
 $M\mathbf{w} + G\mathbf{p} = M\mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000		
Discretized	Control Sys	stems		

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v},$
 $\operatorname{div} \vec{w} = 0, \Rightarrow \begin{bmatrix} M & G \\ G^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}.$
 $G^{\mathsf{T}} M^{-1} M \mathbf{w} + G^{\mathsf{T}} M^{-1} G \mathbf{p} = G^{\mathsf{T}} M^{-1} M \mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000		
Discretized	Control Sys	stems		

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.
 $G^T \mathbf{w} + G^T M^{-1} G \mathbf{p} = G^T M^{-1} M \mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.
 $G^T \mathbf{w} + G^T M^{-1} G \mathbf{p} = G^T \mathbf{v}$
Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		

[Heinkenschloss/Sorensen/Sun '08]

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.
 $G^{\mathsf{T}} \mathbf{w} + G^{\mathsf{T}} M^{-1} G \mathbf{p} = G^{\mathsf{T}} \mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		

[Heinkenschloss/Sorensen/Sun '08]

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.
 $\mathbf{p} = (G^T M^{-1} G)^{-1} G^T \mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000		
Discretized	Control Sys	stems		

[Heinkenschloss/Sorensen/Sun '08]

• Index reduction for Lyapunov-solver.

• Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ 0 \end{bmatrix}$.
 $\mathbf{p} = (G^T M^{-1} G)^{-1} G^T \mathbf{v}$
 $M\mathbf{w} + G (G^T M^{-1} G)^{-1} G^T \mathbf{v} = M\mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	00000			
Discretized Discrete Leray Pro	Control Sys	stems		

[Heinkenschloss/Sorensen/Sun '08]

• Index reduction for Lyapunov-solver.

• Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.
 $\mathbf{p} = (G^T M^{-1} G)^{-1} G^T \mathbf{v}$
 $M \mathbf{w} = M(I - M^{-1} G (G^T M^{-1} G)^{-1} G^T) \mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		

[Heinkenschloss/Sorensen/Sun '08]

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1} G (G^{T} M^{-1} G)^{-1} G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.
 $\mathbf{p} = (G^T M^{-1} G)^{-1} G^T \mathbf{v}$
 $\mathbf{w} = (I - M^{-1} G (G^T M^{-1} G)^{-1} G^T) \mathbf{v}$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	0000			
Discretized	Control Sys	stems		

[Heinkenschloss/Sorensen/Sun '08]

- Index reduction for Lyapunov-solver.
- Projector:

$$\Pi^{T} := I - M^{-1} G (G^{T} M^{-1} G)^{-1} G^{T}.$$

Recall
$$P(\vec{v}) = \vec{w}$$
:
 $\vec{w} + \nabla p = \vec{v}$,
 $\operatorname{div} \vec{w} = 0$, $\Rightarrow \begin{bmatrix} M & G \\ G^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \mathbf{v} \\ 0 \end{bmatrix}$.
 $\mathbf{p} = (G^T M^{-1} G)^{-1} G^T \mathbf{v}$
 $\mathbf{w} = (I - M^{-1} G (G^T M^{-1} G)^{-1} G^T) \mathbf{v}$

Leray vs.
$$\Pi^T$$

 $\vec{w} = P(\vec{v})$ $\mathbf{w} = \Pi^T \mathbf{v}$
 $0 = \operatorname{div} \vec{w} \Rightarrow 0 = G^T \mathbf{w}$

0000 0000 00000	00
Discretized Control Systems Discrete Leray Projection	

Projection of Control System

• Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

• For
$$G^T \mathbf{v}(t) = \mathbf{0} \Leftrightarrow \Pi^T \mathbf{v}(t) = \mathbf{v}(t)$$
.

• Correct solution manifold (hidden manifold)

$$\mathbf{0} = G^{\mathsf{T}} M^{-1} A \mathbf{v}(t) + G^{\mathsf{T}} M^{-1} G \mathbf{p}(t) + G^{\mathsf{T}} M^{-1} B \mathbf{u}(t),$$

is invariant under Π^{T} .

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000		
Discretized	Control Sys	stems		

Projection of Control System

• Projector:

$$\Pi^{T} := I - M^{-1} G (G^{T} M^{-1} G)^{-1} G^{T}.$$

• For
$$G^T \mathbf{v}(t) = \mathbf{0} \Leftrightarrow \Pi^T \mathbf{v}(t) = \mathbf{v}(t)$$
.

• Correct solution manifold (hidden manifold)

$$\mathbf{0} = G^{\mathsf{T}} M^{-1} A \mathbf{v}(t) + G^{\mathsf{T}} M^{-1} G \mathbf{p}(t) + G^{\mathsf{T}} M^{-1} B \mathbf{u}(t),$$

is invariant under Π^{T} .

• System (1) reduces to

$$\Pi M \Pi^{T} \frac{d}{dt} \mathbf{v}(t) = \Pi A \Pi^{T} \mathbf{v}(t) + \Pi B \mathbf{u}(t), \qquad (2a)$$

$$\mathbf{y}(t) = C \Pi^{\mathsf{T}} \mathbf{v}(t). \tag{2b}$$

0000 0000 00000	00
Discretized Control Systems Discrete Leray Projection	

Projection of Control System

• Projector:

$$\Pi^{T} := I - M^{-1}G(G^{T}M^{-1}G)^{-1}G^{T}.$$

• For
$$G^T \mathbf{v}(t) = \mathbf{0} \Leftrightarrow \Pi^T \mathbf{v}(t) = \mathbf{v}(t)$$
.

• Correct solution manifold (hidden manifold)

$$\mathbf{0} = G^{\mathsf{T}} M^{-1} A \mathbf{v}(t) + G^{\mathsf{T}} M^{-1} G \mathbf{p}(t) + G^{\mathsf{T}} M^{-1} B \mathbf{u}(t),$$

is invariant und not invertible, because nullspace of Π is non trivial

• System (1) reduces to

$$\Pi M \Pi^{T} \frac{d}{dt} \mathbf{v}(t) = \Pi A \Pi^{T} \mathbf{v}(t) + \Pi B \mathbf{u}(t), \qquad (2a)$$

$$\mathbf{y}(t) = C \Pi^T \mathbf{v}(t). \tag{2b}$$

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000		00000	0000	OO
Discretize	d Control Sys	stems		

Decomposition of Projector

[Heinkenschloss/Sorensen/Sun '08]

• Consider decomposition:

$$\Pi = \Theta_I \Theta_r^T,$$

with $\Theta_l, \Theta_r \in \mathbb{R}^{n_v \times (n_v - n_p)}$, such that $\Theta_l^T \Theta_r = I_{(n_v - n_p) \times (n_v - n_p)}$.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000	0000	00
Discrete Loray Pro	Control Sy	ystems		

Decomposition of Projector

[Heinkenschloss/Sorensen/Sun '08]

Consider decomposition:

$$\Pi = \Theta_I \Theta_r^T,$$

with $\Theta_l, \Theta_r \in \mathbb{R}^{n_v \times (n_v - n_p)}$, such that $\Theta_l^T \Theta_r = I_{(n_v - n_p) \times (n_v - n_p)}$.

• Substituting the decomposition into (2) yields

$$\Theta_r^T M \Theta_r \frac{d}{dt} \tilde{\mathbf{v}}(t) = \Theta_r^T A \Theta_r \tilde{\mathbf{v}}(t) + \Theta_r^T B \mathbf{u}(t),$$

$$\mathbf{y}(t) = C \Theta_r \tilde{\mathbf{v}}(t).$$
(3)

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	00000			
Discretiz	ed Control Sys	stems		

Decomposition of Projector

[Heinkenschloss/Sorensen/Sun '08]

• Consider decomposition:

$$\Pi = \Theta_I \Theta_r^T,$$

with $\Theta_l, \Theta_r \in \mathbb{R}^{n_v \times (n_v - n_p)}$, such that $\Theta_l^T \Theta_r = I_{(n_v - n_p) \times (n_v - n_p)}$.

• Substituting the decomposition into (2) yields

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{v}}(t) = \mathcal{A}\tilde{\mathbf{v}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{v}}(t),$$
(3)

with $\tilde{\mathbf{v}} \in \mathbb{R}^{n_v - n_p}$ and $\mathcal{M} = \mathcal{M}^T \succ 0$.

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \; \mathsf{dt},$$

subject to

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{v}}(t) = \mathcal{A}\tilde{\mathbf{v}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{v}}(t).$$
 (4)

Minimize

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \; \mathsf{dt},$$

subject to

12/23

$$\mathcal{M}\frac{d}{dt}\tilde{\mathbf{v}}(t) = \mathcal{A}\tilde{\mathbf{v}}(t) + \mathcal{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathcal{C}\tilde{\mathbf{v}}(t).$$
 (4)

Riccati Based Feedback Approach

[e.g.,LOCATELLI '01]

- Optimal control: $\mathbf{u}(t) = -\mathcal{K}\tilde{\mathbf{v}}(t)$.
- Feedback: $\mathcal{K} = \mathcal{B}^T X \mathcal{M}$,

where X is the solution of the generalized algebraic Riccati equation

 $\mathcal{R}(X) = \mathcal{C}^{\mathsf{T}} \mathcal{C} + \mathcal{A}^{\mathsf{T}} X \mathcal{M} + \mathcal{M}^{\mathsf{T}} X \mathcal{A} - \mathcal{M}^{\mathsf{T}} X \mathcal{B} \mathcal{B}^{\mathsf{T}} X \mathcal{M} = 0.$

Minimize

$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \, \mathrm{dt}$$
s.t.

$$\begin{bmatrix} M_z & 0 & 0 \\ 0 & M_c & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_z & 0 & G \\ R & A_c & 0 \\ G^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} B_z \\ 0 \\ 0 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y}(t) = C_c \mathbf{c}$$

Minimize

$$\mathcal{J}(\mathbf{y}, \mathbf{u}) = \frac{1}{2} \int_0^\infty \lambda ||\mathbf{y}||^2 + ||\mathbf{u}||^2 \, \mathrm{dt}$$
s.t.

$$\begin{bmatrix} M_z & 0 & 0 \\ 0 & M_c & 0 \\ 0 & 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} A_z & 0 & G \\ R & A_c & 0 \\ G^T & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{c} \\ \mathbf{p} \end{bmatrix} + \begin{bmatrix} B_z \\ 0 \\ 0 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y}(t) = C_c \mathbf{c}$$

$$\mathcal{J}(\mathbf{y},\mathbf{u}) = rac{1}{2}\int_{0}^{\infty}\lambda||\mathbf{y}||^{2}+||\mathbf{u}||^{2}\;\mathsf{d}$$

s.t.

$$\mathcal{M}\frac{d}{dt}\begin{bmatrix}\tilde{\mathbf{z}}\\\mathbf{c}\end{bmatrix} = \mathcal{A}\begin{bmatrix}\tilde{\mathbf{z}}\\\mathbf{c}\end{bmatrix} + \begin{bmatrix}\mathcal{B}\\\mathbf{0}\end{bmatrix}\mathbf{u}$$
$$\mathbf{y}(t) = C_{\mathbf{c}}\mathbf{c}$$

Heinkenschloss/Sorensen/Sun

	Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
	Work Flow	r PDEs with Algebra	ic Constraints	0000	
0	Continuous Leve				
	• Linearize are	ound a given stat	ionary		
l	trajectory.				
	• Index reduc	tion via projectio	n		
l	method. [HEI	NKENSCHLOSS/SORENSEN/SUN	'08]		
	• Formulate s	tabilization probl	em for		
l	the perturba	ation.			

Introduction Discretized System Wor 00000 00000 00	Flow Numerical Examples Conclusion 00 0000 00
Work Flow LQR for Nonlinear PDEs with Algebraic Const	aints
Continuous Level	Semi-Discretized Level
• Linearize around a given stationary trajectory.	• Discretization via inf-sup stable FE (Taylor-Hood-Elements).
 Index reduction via projection method. [HEINKENSCHLOSS/SORENSEN/SUN '08] 	• Construct and assemble suitable input and output operators.
• Formulate stabilization problem for the perturbation.	• Adapt Newton-ADI approach to deal with projection.

	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Nested Iteration				MI

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Nested Iteration				MI

> Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Newton Kleinman method

low rank ADI method

	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Nested Iteration	,			MI

Step i: solve the projected linear system

 $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

(5)

Vewton Kleinman method

ow rank ADI method

Krylov solver

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Nested Iteration				MI

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

 Step i: solve the projected linear system

 $(\mathcal{A} - \mathcal{BK}^{(m)} + q_i \mathcal{M})^T \mathcal{V}_i = \mathcal{Y}$ (5)

 Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:

 avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]:

Vewton Kleinman method

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Nested Iteration	v			MI

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{BK}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{BK}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (5) Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: Replace (5) and solve instead the saddle point system (SPS) $\begin{bmatrix} A^T - (\mathcal{K}^{(m)})^T B^T + q_i M^T & \tilde{G} \\ \tilde{G}^T & 0 \end{bmatrix} \begin{bmatrix} V_i \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$ for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs Y.

Newton Kleinman method

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Nested Iteration	v			MI

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (5)

> Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: **Replace** (5) and **solve instead** the saddle point system (SPS) (using Sherman Morrison Woodbury formula)

$$\begin{bmatrix} A^{T} - (K^{(m)})^{T}B^{T} + q_{i}M^{T} & \tilde{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \begin{bmatrix} V_{i} \\ * \end{bmatrix} = \begin{bmatrix} Y \\ 0 \end{bmatrix}$$
for different ADI shifts $q_{i} \in \mathbb{C}^{-}$ for a couple of rhs Y

ow rank ADI method

Krylov solver

Newton Kleinman method

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Nested Iteration	v			MI

Step m + 1: solve Lyapunov equation $(\mathcal{A} - \mathcal{BK}^{(m)})^T X^{(m+1)} \mathcal{M} + \mathcal{M}^T X^{(m+1)} (\mathcal{A} - \mathcal{BK}^{(m)}) = -(\mathcal{W}^{(m)})^T \mathcal{W}^{(m)}$

Step i: solve the projected linear system $(\mathcal{A} - \mathcal{B}\mathcal{K}^{(m)} + q_i\mathcal{M})^T\mathcal{V}_i = \mathcal{Y}$ (5)

> Avoid explicit projection using [HEINKENSCHLOSS/SORENSEN/SUN '08]: **Replace** (5) and **solve instead** the saddle point system (SPS) (using Sherman Morrison Woodbury formula)

> > $\begin{bmatrix} A^{T} + q_{i}M^{T} & \ddot{G} \\ \tilde{G}^{T} & 0 \end{bmatrix} \begin{bmatrix} V_{i} \\ * \end{bmatrix} = \begin{bmatrix} \ddot{Y} \\ 0 \end{bmatrix}$

for different ADI shifts $q_i \in \mathbb{C}^-$ for a couple of rhs \tilde{Y} .

Vewton Kleinman method

ow rank ADI method

Krylov solvei

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000	0000	00
Work Flow Additional Tasks				

- Compute initial feedback for unstable systems.
 - $\, \hookrightarrow \, \text{ Determine the invariant unstable subspace } \mathcal{U}.$
 - \hookrightarrow Solve Bernoulli equation on \mathcal{U} [Benner '11, Amodei/Buchot '12].

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow				M

- Compute initial feedback for unstable systems.
 - $\, \hookrightarrow \, \text{ Determine the invariant unstable subspace } \mathcal{U}.$
 - \hookrightarrow Solve Bernoulli equation on \mathcal{U} [Benner '11, Amodei/Buchot '12].
- Derive an efficient variant of large-scale Newton-ADI.
 - $\,\hookrightarrow\,$ Preprint SPP1253-090 [Benner/Saak '10].

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
		00000		
Work Flow Additional Tasks				

- Compute initial feedback for unstable systems.
 - $\, \hookrightarrow \, \text{ Determine the invariant unstable subspace } \mathcal{U}.$
 - \hookrightarrow Solve Bernoulli equation on \mathcal{U} [BENNER '11, AMODEI/BUCHOT '12].
- Derive an efficient variant of large-scale Newton-ADI.
 - \hookrightarrow Preprint SPP1253-090 [Benner/Saak '10].
- Calculate ADI shift parameters depending on the problem structure.
 - \hookrightarrow Different methods have been tested (Penzl, Wachspress, Saak).
 - $\,\hookrightarrow\,$ Infinite eigenvalues of DAE pencil yield additional difficulties.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000		
Work Flow Additional Tasks				MI

- Compute initial feedback for unstable systems.
 - \hookrightarrow Determine the invariant unstable subspace \mathcal{U} .
 - \hookrightarrow Solve Bernoulli equation on \mathcal{U} [BENNER '11, AMODEI/BUCHOT '12].
- Derive an efficient variant of large-scale Newton-ADI.
 - → Preprint SPP1253-090 [BENNER/SAAK '10].
- Calculate ADI shift parameters depending on the problem structure.
 - \hookrightarrow Different methods have been tested (Penzl, Wachspress, Saak).
 - \hookrightarrow Infinite eigenvalues of DAE pencil yield additional difficulties.
- Preconditioned iterative solvers for innermost saddle point systems.
 - \hookrightarrow Preprint SPP1253-130 for Stokes equations [BENNER/SAAK/STOLL/W. '12].
| Introduction | Discretized System | Work Flow | Numerical Examples | Conclusion |
|-------------------------------|--------------------|-----------|--------------------|------------|
| | | 00000 | | |
| Work Flow
Additional Tasks | | | | |

- Compute initial feedback for unstable systems.
 - \hookrightarrow Determine the invariant unstable subspace \mathcal{U} .
 - \hookrightarrow Solve Bernoulli equation on \mathcal{U} [BENNER '11, AMODEI/BUCHOT '12].
- Derive an efficient variant of large-scale Newton-ADI.
 - \hookrightarrow Preprint SPP1253-090 [Benner/Saak '10].
- Calculate ADI shift parameters depending on the problem structure.
 - $\,\hookrightarrow\,$ Different methods have been tested (Penzl, Wachspress, Saak).
 - $\,\hookrightarrow\,$ Infinite eigenvalues of DAE pencil yield additional difficulties.
- Preconditioned iterative solvers for innermost saddle point systems.
 - $$\label{eq:preprint SPP1253-130 for Stokes equations} \begin{split} & \bigoplus \mbox{Preprint SPP1253-130 for Stokes equations} \\ & [\mbox{Benner}/\mbox{Saak}/\mbox{Stoll}/\mbox{W}.~'12]. \end{split}$$
- Parameter influence observation during the nested iteration.
 - $\hookrightarrow\,$ 3 stopping criteria, Reynolds & Schmidt number, ADI shifts, regularization parameters in cost functional.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000	0000	00
Work Flow Additional Tasks				MI

- Compute initial feedback for unstable systems.
 - \hookrightarrow Determine the invariant unstable subspace \mathcal{U} .
- \hookrightarrow Solve Bernoulli equation on \mathcal{U} [Benner '11, Amodei/Buchot '12].
- Derive an efficient variant of large-scale Newton-ADI.
 - \hookrightarrow Preprint SPP1253-090 [BENNER/SAAK '10].
- Calculate ADI shift parameters depending on the problem structure.
 - \rightarrow Different methods have been tested (Penzl, Wachspress, Saak).
 - \hookrightarrow Infinite eigenvalues of DAE pencil yield additional difficulties.
- Preconditioned iterative solvers for innermost saddle point systems.
 - $\hookrightarrow \begin{array}{l} \mbox{Preprint SPP1253-130 for Stokes equations} \\ \mbox{[Benner/Saak/Stoll/W. '12]}. \end{array}$
- Parameter influence observation during the nested iteration.
 - → 3 stopping criteria, Reynolds & Schmidt number, ADI shifts, regularization parameters in cost functional.

SPP13

Introduction 0000	Discretized System	Work Flow ○○○○●	Numerical Examples	Conclusion OO
Work Addition	al Tasks			
SPP1253	Compute initial feedbac \hookrightarrow Determine the invaria \hookrightarrow Solve Bernoulli equation	ck for unstable spant unstable subspace on $\mathcal U$ [Benne	ystems. pace U. er '11, Amodei/Bucho	от '12].
•	Derive an efficient variat \hookrightarrow Preprint SPP1253-09	nt of large-scale 90 [Benner/Saa	Newton-ADI. к '10].	
•	Calculate ADI shift para	meters dependin	g on the problem stru	cture.

- $\label{eq:point_optimal_state} \begin{array}{l} \hookrightarrow \\ \text{Different methods have been tested (Penzl, Wachspress, Saak).} \\ \leftrightarrow \\ \text{Infinite eigenvalues of DAE pencil yield additional difficulties.} \end{array}$
- Preconditioned iterative solvers for innermost saddle point systems.
 - \hookrightarrow Preprint SPP1253-130 for Stokes equations [BENNER/SAAK/STOLL/W. '12].

Parameter influence observation during the nested iteration.

 \hookrightarrow 3 stopping criteria, Reynolds & Schmidt number, ADI shifts, regularization parameters in cost functional.

Relative change of feedback matrix K for different Reynolds numbers ($\lambda = \rho = 1, n = 5468$, direct solver, $tol_{NM} = 10^{-8}$, $tol_{ADI} = 10^{-4}$).

Relative change of feedback matrix K for different Reynolds numbers ($\lambda = \rho = 1$, n = 5468, direct solver, $tol_{NM} = 10^{-8}$, $tol_{ADI} = 10^{-4}$).

(Re = Sc = 10, $\rho = 1$, n = 6515, direct solver, $tol_{NM} = 10^{-8}$, $tol_{ADI} = 10^{-6}$).

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
			0000	
Numerical	Examples	n Kármán Vortey S	treet for $R_{e} = 300$	M

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
				\odot
Conclusion				

- Adapted Newton-ADI algorithm for flow problems (DAE structure).
- Closed-loop simulation for NSE.
- Applied method to coupled flow in reactor model.

	Discretized System	Work Flow	Numerical Examples	Conclusion
				\odot
Conclusion				MI

- Adapted Newton-ADI algorithm for flow problems (DAE structure).
- Closed-loop simulation for NSE.
- Applied method to coupled flow in reactor model.
- Modulated ADI shift determination for DAE structure.
- Improved input matrix B w.r.t. Raymond's analytic approach.
- Developed suitable output matrix C for reactor model.

Introduction	Discretized System	Work Flow	Numerical Examples	Conclusion
0000	00000	00000		0
Conclusion				MI

- Adapted Newton-ADI algorithm for flow problems (DAE structure).
- Closed-loop simulation for NSE.
- Applied method to coupled flow in reactor model.
- Modulated ADI shift determination for DAE structure.
- Improved input matrix B w.r.t. Raymond's analytic approach.
- Developed suitable output matrix C for reactor model.

Outlook

- Improve idea of *inexact Newton* to threefold nested iteration.
- Residual based stopping criteria for feedback computation.
- Closed-loop simulation of coupled flow in reactor model.
- Improve Krylov solver via the use of recycling or block techniques.

	Discretized System	Work Flow	Numerical Examples	Conclusion
				•0
Conclusion				MI

- Adapted Newton-ADI algorithm for flow problems
- Closed-loop simulation for NSE.
- Applied method to coupled flow in react
- Pour attention Modulated ADI shift determination
- Improved input matrix B d's analytic approach.
- thanks Developed suitable for reactor model.

Outlook

- mexact Newton to threefold nested iteration. ased stopping criteria for feedback computation.
- ed-loop simulation of coupled flow in reactor model.
- Improve Krylov solver via the use of recycling or block techniques.

Introduction 0000	Discretized System	Work Flow 00000	Numerical Examples 0000	Conclusion
Liter	ature			
	E. BÄNSCH AND P. BENNER, S <i>Riccati-Based Feedback</i> , in Cor Differential Equations, G. Leugy Series of Numerical Mathematic	Stabilization of Incompr Istrained Optimization a ering and S. Engell et a cs, Birkhäuser, 2012, pp	essible Flow Problems by and Optimal Control for Parti I., eds., vol. 160 of Internation 5. 5–20.	al nal
	P. BENNER AND J. SAAK, A G Algebraic Riccati Equations, Pr	alerkin-Newton-ADI Me eprint DFG-SPP1253-0	ethod for Solving Large-Scale 90, SPP1253, 2010.	
	P. BENNER, J. SAAK, M. STOI saddle point systems arising in incompressible Stokes flow, Pre Accepted for publication in SIS	LL, AND H. K. WEICHI <i>Riccati-based boundary</i> print SPP1253-130, DF C Copper Mountain Sp	ELT, Efficient solution of large feedback stabilization of G-SPP1253, 2012.	-scale

H. ELMAN, D. SILVESTER, AND A. WATHEN, *Finite Elements and Fast Iterative Solvers:* with applications in incompressible fluid dynamics, Oxford University Press, Oxford, 2005.

