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Introduction

Introduction

Model Reduction for Dynamical Systems

Dynamical Systems

[ x(1) f(t,x(t),u(t)), x(to) = xo,
z'{ y(t) = gltx(1), u(t))

with
o states x(t) € R”,
o inputs u(t) € R,
o outputs y(t) € RY.
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Introduction

Model Reduction for Dynamical Systems

f x(t) = f(t,x(t), u(t)),
o {Y(t) = g(t, x(t), u(t)).

o states x(t) € R,

@ inputs u(t) € R",

@ outputs y(t) € RY.
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Introduction

Model Reduction for Dynamical Systems

Reduced-Order Model (ROM)

CJ x(e) = f(t,x(t), u(t)), o [ () = F(t,%(t), u(t)),
> {y(t) = g(t, x(t), u(t)). T {y(t) = 2(t, %(¢), u(t)).

o states x(t) € R, o states X(t) eR", r< n
@ inputs u(t) € R™, @ inputs u(t) € R",
@ outputs y(t) € RY. @ outputs y(t) € RY.
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Introduction

Model Reduction for Dynamical Systems

Reduced-Order Model (ROM)

CJ x(e) = f(t,x(t), u(t)), o [ () = F(t,%(t), u(t)),
> {y(t) = g(t,x(t), u(?)). T {y(t) — 2t 300), (D)),
o states x(t) € R, o states X(t) € R", r < n
@ inputs u(t) € R™, @ inputs u(t) € R",
@ outputs y(t) € RY. @ outputs y(t) € RY.
CEE | R

|ly = |l < tolerance - ||u]| for all admissible input signals. I
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Introduction

Model Reduction for Dynamical Systems

Reduced-Order Model (ROM)

x(t) = f(t,x(t), u(t)), e [ () = F(t,%
SR e
o states x(t) € R, o states X(t) R, r < n
@ inputs u(t) € R™, @ inputs u(t) € R",
@ outputs y(t) € RY. @ outputs y(t) € RY.

lly = |l < tolerance - ||u]| for all admissible input signals.

Secondary goal: reconstruct approximation of x from X.

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 5/54



Introduction

Model Reduction for Dynamical Systems

Parameter-Dependent Dynamical Systems

Dynamical Systems

[ E(tp) = Fex(tp)u(t)p), )= ()
E(p); | EEAER Z Memelattieh xw=a B

with
o (generalized) states x(t; p) € R" (E € R™"),
o inputs u(t) € R,
@ outputs y(t; p) € R, (b) is called output equation,
o pcQcRYis a parameter vector, Q is bounded.

Applications:

@ Repeated simulation for varying material or geometry parameters,
boundary conditions,

@ Control, optimization and design.
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Introduction

Model Reduction for Dynamical Systems

Parameter-Dependent Dynamical Systems

Dynamical Systems

[ E(tp) = Fex(tp)u(t)p), )= ()
E(p); | EEAER Z Memelattieh xw=a B

with
o (generalized) states x(t; p) € R" (E € R™"),
o inputs u(t) € R,
@ outputs y(t; p) € R, (b) is called output equation,
o pcQcRYis a parameter vector, Q is bounded.

Applications:

@ Repeated simulation for varying material or geometry parameters,
boundary conditions,

@ Control, optimization and design.
Requirement: keep parameters as symbolic quantities in ROM.
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Introduction

Model Reduction for Dynamical Systems

Linear Systems

Linear, Time-Invariant (LTI) Systems

Ex = f(t,x,u) = Ax+Bu, E,AeR™" B e R™m
y = g(t,x,u) = Cx+Du, CeRI*" D € RIxm,
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Introduction

Model Reduction for Dynamical Systems

Linear Systems

Linear, Time-Invariant (LTI) Systems

Ex = f(t,x,u) = Ax+Bu, E,AeR™" B e R™m
y = g(t,x,u) = Cx+Du, CeRI*" D € RIxm,

Time-Invariant Parametric Systems

E(p)x(t; p) A(p)x(t; p) + B(p)u(t),
y(t:p) = C(p)x(t;p) + D(p)u(t),

where A(p), E(p) € R"™", B(p) € R"™*™, C(p) € R9*", D(p) € RI*™.
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Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

@ SIMPLORER® test circuit with 2 transistors.

@ Conservative thermic sub-system in SIMPLORER:
voltage ~» temperature, current ~~ heat flow.
@ Original model: n =270,593, m=qg=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):
— Main computational cost for set-up data ~ 22min.
— Computation of reduced models from set-up data: 44-49sec. (r = 20-70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5h for original system, < 1min for reduced system.
— Speed-up factor: 18 including / > 450 excluding reduced model generation!
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Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]
@ Original model: n =270,593, m=qg=2 =

Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

Main computational cost for set-up data =~ 22min.
Computation of reduced models from set-up data: 44-49sec. (r = 20-70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5h for original system, < 1min for reduced system.
— Speed-up factor: 18 including / > 450 excluding reduced model generation!

Bode Plot (Amplitude) Hankel Singular Values

5 Transfer functions of original and reduced systems

Computed Hankel singular values
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Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

@ Original model: n =270,593, m=qg=2 =
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

— Main computational cost for set-up data ~ 22min.
— Computation of reduced models from set-up data: 44-49sec. (r = 20-70).
— Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):
7.5h for original system, < 1min for reduced system.
— Speed-up factor: 18 including / > 450 excluding reduced model generation!

Absolute Error Relative Error

o absolute model reduction error wou ] - relative model reduction error om0
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

@ Simple model for neuron (de-)activation [CHATURANTABUT/SORENSEN 2009]

eve(x, t) = €vi(x, t) 4+ F(v(x, 1)) — w(x, t) + g,
we(x, t) = hv(x,t) — yw(x,t) + g,

with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions

v(x,0) =0, w(x,0) =0, x €[0,1]
v«(0,t) = —io(2), vi(1,t) =0, t>0,

where € = 0.015, h= 05, v =2, g = 0.05, ip(t) = 50,0003 exp(—15t).

Source: http://en.wikipedia.org/wiki/Neuron
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

@ Simple model for neuron (de-)activation [CHATURANTABUT/SORENSEN 2009]

eve(x, t) = €vi(x, t) 4+ F(v(x, 1)) — w(x, t) + g,
Wt(X7 t) = hV(X7 t) - ny(X7 t) + &,
with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions
v(x,0) =0, w(x,0) =0, x €[0,1]
v«(0,t) = —io(2), vi(1,t) =0, t>0,
where € = 0.015, h=0.5, v =2, g = 0.05, io(t) = 50,000t> exp(—15t).
@ Parameter g handled as an additional input.

@ Original state dimension n =2 - 400, QBDAE dimension N = 3 - 400,
reduced QBDAE dimension r = 26, chosen expansion point o = 1.
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System
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Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly

@ Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

@ FE model of second order:
N =17.361 ~» n=34.722, m=1, g = 12.

@ Sensor for position control based on
acceleration and rotation.

@ Application: inertial navigation.

=

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark
v
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gy
Parametric FE model: M(d)x(t) + D(®, d, a, 8)x(t) + T(d)x(t) = Bu(t).
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gy

Parametric FE model:

M(d)x(t) + D(®, d, o, B)x(t) + T(d)x(t) = Bu(t),

wobei
M(d) = M+ dMy,

D(®,d,a,8) = &(D1+ dDy) + aM(d)+ BT(d),
T(d) = Ti+ %Tz + dT3,

with

@ width of bearing: d,

@ angular velocity: @,

@ Rayleigh damping parameters: «, .
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Motivating Examples

Parametric MOR: Applications in Microsystems/MEMS Design

[Hijeed)|

IH (i, 8,d}|
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2

and reduced-order model.

=002

Max Planck Institute Magdeburg

(@© Peter Benner, MOR for Linear and Nonlinear Systems

10/54



Introduction

Some Background
The Laplace transform

Definition
The Laplace transform of a time domain function f € Ly 1o with
dom (f) = Ry is

L:fes F, F(s):= L{F(£)}(s) = /Ooo etf(t)dt, seC.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (" frequency response analysis”), one
takes res = 0 and ims > 0. Then w := im s takes the role of a frequency (in
[rad/s], i.e., w = 27v with v measured in [Hz]).
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Introduction

Some Background
The Laplace transform

Definition
The Laplace transform of a time domain function f € Ly 1o with
dom (f) = Ry is
oo
Lo F, F(s) = LIF(D)}(s) = / e~tf(t)dt, seC.
0

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (" frequency response analysis”), one
takes res = 0 and ims > 0. Then w := im s takes the role of a frequency (in
[rad/s], i.e., w = 27v with v measured in [Hz]).

L{f(t)}(s) = sF(s).
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Introduction

Some Background
The Laplace transform

The Laplace transform of a time domain function f € Ly 1o with
dom (f) = Ry is
oo
Lo F, F(s) = LIF(D)}(s) = / e~tf(t)dt, seC.
0

F is a function in the (Laplace or) frequency domain.

L{f(t)}(s) = sF(s).

Note: for ease of notation, in the following we will use lower-case letters
for both, a function and its Laplace transform!
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Introduction

Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain
Application of Laplace transform  (x(t) — x(s), x(t) — sx(s)) to linear

system

Ex(t) = Ax(t) + Bu(t), y(t)= Cx(t)+ Du(t)
with x(0) = 0 yields:
sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),

(@© Peter Benner, MOR for Linear and Nonlinear Systems 12/54
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Introduction

Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), X(t) — sx(s)) to linear

system
Ex(t) = Ax(t) + Bu(t), y(t)= Cx(t)+ Du(t)

with x(0) = 0 yields:
sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
= |/O-relation in frequency domain:

y(s) = ( C(sE—A)'B+D ) u(s).

=:G(s)

G(s) is the transfer function of X.
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Introduction

Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), X(t) — sx(s)) to linear

system
Ex(t) = Ax(t) + Bu(t), y(t)= Cx(t)+ Du(t)

with x(0) = 0 yields:
sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
= |/O-relation in frequency domain:

y(s) = ( C(sE—A)'B+D ) u(s).

=:G(s)

G(s) is the transfer function of X.

Goal: Fast evaluation of mapping u — y.
v
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Introduction

Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

Ex Ax+Bu, E,A€R"™" BeRmMm
y = Cx+Du,  CeRI*" DeRI*M

by reduced-order system

EX = AR+ Bu, E,AcR™™r, BeR™m,
y = Cx+Du, € R DeRIxm

of order r < n, such that

ly =9Il = 16u = Gull < |G — G| - [lu| < tolerance - |lu].
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Introduction

Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

Ex Ax+ Bu, E,AeR™n BeR™m
y = C+ Du, C e R9*" D e RI*™,

by reduced-order system

EX = AR+ Bu, E,AcR™™r, BeR™m,
y = Cx+Du, € R DeRIxm

of order r < n, such that
ly =9Il = |Gu — Gul| < [|G — G| - [|u|| < tolerance - ||u].

— Approximation problem:  min [|G — G|.
order (G)<r
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Introduction

Some Background
Properties of linear systems

Definition
A linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C~ := {z € C|%(z) < 0}.
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Introduction

Some Background
Properties of linear systems

Definition
A linear system

Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C~ := {z € C|%(z) < 0}.

Lemma

| \

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the spectrum of A — AE, denoted by A (A, E), satisfies
AN(AE) Cc C.

Note that by abuse of notation, often stable system is used for asymptotically
stable systems.
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Introduction

Some Background
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system
x(t)

PEE
{ y(t)

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s) = C(sl — A)"'B+ D,
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Introduction

Some Background
Realizations of Linear Systems (with E = [, for simplicity)

For a linear (time-invariant) system
x(t)

PEE
{ y(t)

the quadruple (A, B, C, D) € R™" x R™™ x RI*" x RI*™ s called a
realization of X.

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s) = C(sl — A)"'B+ D,

| A\

Definition

The McMillan degree of ¥ is the unique minimal number i > 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (A, B, C, D) of ¥ with order f.
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Some Background
Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,00} (w.log. oj>0j1,j=1,...,n—1).
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Some Background
Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

When does a balanced realization exist?
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Introduction

Some Background
Balanced Realizations

Definition

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. A(A) C C™. Then:

Theorem

Given a stable minimal linear system X : (A, B, C, D), a balanced
realization is obtained by the state-space transformation with

T, =Y V'R,

where P = STS, Q = RTR (e.g., Cholesky decompositions) and
SRT = UZVT is the SVD of SRT.

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems
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Some Background
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P = Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!
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Some Background
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!

The infinite controllability /observability Gramians P/Q satisfy the Lyapunov
equations

AP+ PAT +BBT =0, ATQ+QA+C'C=0.
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Some Background
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!

The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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Some Background
Balanced Realizations

Definition

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.log. oj>0j41,j=1,...,n—1).

01,...,0n are the Hankel singular values of .

Note: 01,...,0, > 0 as P, Q > 0 by definition, and o1,...,0, > 0 in case of
minimality!

For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading A x /i submatrices equal to diag(os,...,05), and

PQ = diag(ci,...,02,0,...,0).

see [LAUB/HEATH/PAIGE/WARD 1987, TOMBS/POSTLETHWAITE 1987].
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Introduction

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 = LJ'(—00, c0), with the Ly-norm

1 oo
ol = 5 [ ) u(e) do
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Introduction

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 = LJ'(—00, c0), with the Ly-norm
1

o
ol i= o [ a0 ule) d
2 2m J_

Hardy space H.o

Function space of matrix-/scalar-valued functions that are analytic and
bounded in C*.
The H,o-norm is

IFlloo := sup omax (F(s)) = sup omax (F(yw)) .
0 weR

res>
Stable transfer functions are in the Hardy spaces
@ Hoo in the SISO case (single-input, single-output, m = g = 1);
@ HIX™ in the MIMO case (multi-input, multi-output, m > 1,g > 1).

v
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Introduction

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 = LJ'(—00, c0), with the Ly-norm

1 oo
ol = 5 [ ) u(e) do

Paley-Wiener Theorem (Parseval's equation/Plancherel Theorem)

Ly(—00,00) & Ly,  L(0,00) = Ho

Consequently, 2-norms in time and frequency domains coincide!
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Introduction

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G(s)=C(sl—A'B+D

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

Lg(—OO, OO) = [Q, L2(0, OO) = Hz

Consequently, 2-norms in time and frequency domains coincide!

| A

‘H . approximation error
Reduced-order model = transfer function G(s) = C(sl, — A)~"'B + D.
ly = 9lla = l1Gu — Gull2 < |6 — Glloclull2.

— compute reduced-order model such that ||G — G||o < tol!
Note: error bound holds in time- and frequency domain due to Paley-Wiener!
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Introduction

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G(s)=C(sl—A)'B, ie D=0.

Hardy space H,

Function space of matrix-/scalar-valued functions that are analytic C* and
bounded w.r.t. the H>-norm

1
1 o 2
IFl. = g(sup/ ||F(a+gw)||%dw>

rec>0.J — oo

- = ||F(Jw)||12fdw>%-

Stable transfer functions are in the Hardy spaces
@ H in the SISO case (single-input, single-output, m = g = 1);
@ HJ*™ in the MIMO case (multi-input, multi-output, m > 1,q > 1).
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Introduction

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G(s)=C(sl—A)'B, ie D=0.

Hardy space H,

Function space of matrix-/scalar-valued functions that are analytic C* and
bounded w.r.t. the H>-norm

Fle = L ([T )’
2 = o _oo|| ()llFdw ) .

> approximation error for impulse response (u(t) = ud(t))

Reduced-order model = transfer function G(s) = C(sl, — A)~1B.
ly = 7ll2 = | Guod — Guodl|2 < ||G — Gl|2]|uo]-
— compute reduced-order model such that |G — G||, < tol!
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Introduction

Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G(s)=C(sl—A)'B, ie D=0.

Hardy space H,

Function space of matrix-/scalar-valued functions that are analytic C* and
bounded w.r.t. the H>-norm

Fle = L ([T )’
2 = o _oo|| ()llFdw ) .

Theorem (Practical Computation of the #,-norm)
IFIB = tr (B7QB) =tr (cPCT),

where P, Q are the controllability and observability Gramians of the
corresponding LTI system.
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Introduction

Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

IG = Gllllullz =16 — Gl < tol
1G = Gllaflulla == [|G — Gll2 < tol

ly =92
Iy = Flloo

IN A
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Introduction

Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

ly =9l < 116 =Gllollulz =116 = Glloo < tol
Iy =9l < [1G=Gl2llulz = [IG -G}z < tol
Hoo-norm best approximation problem for given reduced order r in

general open; balanced truncation yields suboptimal solu-
tion with computable Ho.-norm bound.

Ho-norm necessary conditions for best approximation known; (local)
optimizer computable with iterative rational Krylov algo-
rithm (IRKA)

Hankel-norm optimal Hankel norm approximation (AAK theory).

Gl = Tmax
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Introduction

Goals

@ Automatic generation of compact models.
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Introduction

Goals

@ Automatic generation of compact models.

@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Yu € L(R,R™).

—> Need computable error bound/estimate!
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Introduction

Goals

@ Automatic generation of compact models.

@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7| < tolerance - || ul| Yu € L(R,R™).

—> Need computable error bound/estimate!
@ Preserve physical properties:
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Introduction

Goals

@ Automatic generation of compact models.
@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Yu € L(R,R™).
—> Need computable error bound/estimate!
@ Preserve physical properties:
— stability (poles of G in C7),
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Introduction

Goals

@ Automatic generation of compact models.
@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Yu € L(R,R™).
—> Need computable error bound/estimate!
@ Preserve physical properties:

— stability (poles of G in C7),
— minimum phase (zeroes of G in C7),
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Introduction

Goals

@ Automatic generation of compact models.
@ Satisfy desired error tolerance for all admissible input signals, i.e.,
want
lly — 7|l < tolerance - | ul| Yu € L(R,R™).
—> Need computable error bound/estimate!
@ Preserve physical properties:

— stability (poles of G in C7),
— minimum phase (zeroes of G in C7),
— passivity

t
/ u(r)Ty(r)dr >0 VteR, Vue Lr(R,RM).

(“system does not generate energy” ).
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by Projection

Outline

e Model Reduction by Projection
@ Projection Methods
@ Projection and Rational Interpolation

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 20/54



MOR by Projection

Model Reduction by Projection

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix P € R™" with P> = P. Let V = range (P), then P is
projector onto V.

If P= PT, then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector (aka: Petrov-Galerkin projection).

Max Planck Institute Magdeburg
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MOR by Projection

Model Reduction by Projection

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix P € R"*" with P> = P. Let V = range (P), then P is
projector onto V.

If P = PT, then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector (aka: Petrov-Galerkin projection).

Lemma 3.2 (Projector Properties)

o If {v1,...,v} is a basisof Vand V =[wv1,...,v,], then
P = V(VTV)™'VT is an orthogonal projector onto V.

Let W C R” be another r-dimensional subspace and W = [w,
be a basis matrix for W, then P = V(W™ V)'WT is an
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MOR by Projection

Model Reduction by Projection

Projection Basics

Definition 3.1 (Projector)

A projector is a matrix P € R"*" with P> = P. Let V = range (P), then P is
projector onto V.

If P = PT, then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector (aka: Petrov-Galerkin projection).

Lemma 3.2 (Projector Properties)

o If {v1,...,v} is a basisof Vand V =[wv1,...,v,], then
P = V(VTV)™'VT is an orthogonal projector onto V.

o Let W C R” be another r-dimensional subspace and W = [wx, ..., w,]
be a basis matrix for W, then P = V(W' V)™*WT is an oblique
projector onto V along W.

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 21/54



MOR by Projection

Model Reduction by Projection

Projection Methods

Methods:
@ Modal Truncation

@ Rational Interpolation (Padé-Approximation and (rational) Krylov
Subspace Methods)

© Balanced Truncation
@ many more. ..

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 22/54



MOR by Projection

Model Reduction by Projection

Projection Methods

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ~ VW x =: X, where

range (V) =V, range(W)=W, W'V =1,
Then, with ¥ = WTx, we obtain x ~ VX so that
lIx — Il = [lx — V&I,
and the reduced-order model is

A=wTAv, B:=w'B, C:=cv, (b:=D).
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MOR by Projection

Model Reduction by Projection

Projection Methods

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x &~ VW x =: %, and the reduced-order model is
x=WTx

A=wWTAv, B:=w'B, C:=cv, (b:=D).

Important observation:

@ The state equation residual satisfies % — A% — Bu L W, since

WT(Q—AQ—BQ - WT(VWTX—AVWTX—B@
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MOR by Projection

Model Reduction by Projection

Projection Methods

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x &~ VW x =: %, and the reduced-order model is
x=WTx

A=wWTAv, B:=w'B, C:=cv, (b:=D).

Important observation:
@ The state equation residual satisfies % — A% — Bu L W, since
WT(Q—AQ—BQ - WT(VWTX—AVWTX—B@
= Wx-—WAVW x—W'Bu
—— ——

% =A =X =B
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MOR by Projection

Model Reduction by Projection

Projection Methods

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x &~ VW x =: %, and the reduced-order model is
x=WTx

A=wWTAv, B:=w'B, C:=cv, (b:=D).

Important observation:

@ The state equation residual satisfies % — A% — Bu L W, since

wT ()%—Ai— Bu) w’ (VWTX—AVWTX— Bu)

= Wix—WTAVW x—WTBu
N—— N——

% =A =X =B

~

= %—-Ax—-Bu=o.
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MOR by Projection

Model Reduction by Projection

Projection and Rational Interpolation

Projection ~~ Rational Interpolation

Given the ROM
A=w'TAv, B=w'B, C=cv, (D=D),

the error transfer function can be written as

G(s)— G(s) = (C(sln —A'B+ D) - (é(s/, —AB+ b)
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MOR by Projection

Model Reduction by Projection

Projection and Rational Interpolation

Projection ~~ Rational Interpolation
Given the ROM
A=wTAv, B=w'B, C=cVv, (L

(D = D),
the error transfer function can be written as

G(s) - G(s) = (C(sl,, —A'B+ D) - (6(51, ~A) B+ D)

c ((sl,, — A - V(sh — A)’IWT> B

Max Planck Institute Magdeburg
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MOR by Projection
u

Model Reduction by Projection

Projection and Rational Interpolation

Projection ~~ Rational Interpolation
Given the ROM

A=WTAv, B=w'B, C=cv, (bD=D),
the error transfer function can be written as
G(s)— G(s) = (C(sl,, —A)B+ D) - (é(s/, ~ A B+ D)
c ((sl,, —A) V(s — A)’IWT) B
= C(la— V(s — A) "W (sl, — A))(sl, — A)"'B.

=:P(s)
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Model Reduction by Projection

Projection and Rational Interpolation

Projection ~~ Rational Interpolation
Given the ROM

A=wWTAv, B=w'B, C=cv, (b=D),

the error transfer function can be written as
G(s)— G(s) = (C(sl,, —A)B+ D) - (C(s/, —A) B+ D)
c ((sl,, —A) - V(s — A)’IWT) B

= C(la— V(s — A) "W (sl, — A))(sl, — A)"'B.

=:P(s)

If s, € C\ (A(A)UA(A)), then P(s.) is a projector onto V =
if (sily — A)T'B €V, then (I, — P(s.))(s«ln — A)"'B =0,

Hence

G(s.) — G(s.) =0 = G(s.) = G(s.), i.e., G interpolates G in s,!

v
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Model Reduction by Projection

Projection and Rational Interpolation

Projection ~~ Rational Interpolation

Given the ROM

A=wTAv, B=w'B, C=cVv, (L

the error transfer function can be written as

Ele) — El)

Analogously,

(D = D),

(C(sl,, —A)'B+ D) - (é(s/, ~ A 7B+ D)

C(sly — A) " (In — (sln — A)V(sl, — A)*'WT ) B.

=:Q(s)

If s. € C\ (A(A) UA(A)), then Q(s)" is a projector onto W =

Hence

G(s:) — G(s:) =0 = G(s.) = G(s.), i.e., G interpolates G in s,

if (sxly — A)"*CT € W, then C(sily — A) (I, — Q(s.)) = 0.

Max Planck Institute Magdeburg

(@© Peter Benner, MOR for Linear and Nonlinear Systems

23/54
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Model Reduction by Projection

Projection and Rational Interpolation

Theorem [GRIMME ’97, VILLEMAGNE/SKELTON ’87]
Given the ROM

A=wWTAv, B=wW'B, C=cv, (b=

~

and s, € C\ (A (A) UA(A)), if either
o (sil, — A)71B € range (V), or
o (sily — A)~*CT € range (W),

then the interpolation condition
G(s:) = G(s:).

in s, holds.

Note: extension to Hermite interpolation conditions later!
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Ratlnt

Outline

e Interpolatory Model Reduction
@ Padé Approximation
@ A Change of Perspective: Rational Interpolation
@ H,-Optimal Model Reduction
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex = Ax+ Bu, y=Cx

with transfer function G(s) = C(sE — A)"'B.
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):
Ex = Ax+ Bu, y= Cx

with transfer function G(s) = C(sE — A)"'B.
o For sp € N(A, E):

G(s) = C((E—A)+(s—s)E) 'B
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):
Ex = Ax+ Bu, y= Cx

with transfer function G(s) = C(sE — A)"'B.
o For sp € N(A, E):

G(s) = C((E—A)+(s—s)E) 'B
- C(I+(s—so)(soE—A)_1E>_l(soE—A)_lB
=A =B
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):
Ex = Ax+ Bu, y=Cx

with transfer function G(s) = C(sE — A)"'B.
o For sp € N(A, E):

G(s) = C((E—A)+(s—s)E) 'B
- C(I+(s—so)(soE—A)_1E>_l(soE—A)_lB
=A =B

= C(I+(s—so)74)_lé
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex =Ax+ Bu, y=Cx

with transfer function G(s) = C(sE — A)™'B.
o For sp € N(A, E):

G(s) = C((E—A)+(s—s)E) 'B
- C(I+(s—so)(soE—A)*1E)71(soE—A)*lB
=A =B

C (I + (s — 5<))/Z\)_1 B

Neumann Lemma. ||F|| <1 = [ — F invertible, (I — F)™' =352 F~.
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex =Ax+ Bu, y=Cx
with transfer function G(s) = C(sE — A)™'B.
@ For so € N(A, E):
G(s) = C((E—A)+(s—s)E) 'B
= (14 (s~ ) (0E - A)*lE)A (E — A)'B

=A =B
=0 =1 N
= c(/+(s—so)A) B:C(I—(—(s—so)A)) B
—_————
=F
Neumann Lemma. ||F|| <1 = | — F invertible, (I — F)™' =352 F~.
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex =Ax+ Bu, y=Cx
with transfer function G(s) = C(sE — A)™'B.
o For ss € A(AE), and A= (sE — A)*E, B = (soE — A)7'B:

G6(s) = C(1+(s-2)A) B=c(I-(~(s-=)4)) B

=F

C (i(—l)k(s — so)k/ak> B

k=0

Neumann Lemma. ||F|| <1 = /- F invertible, (/ — F)~' =332, F*.
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex =Ax+ Bu, y=Cx
with transfer function G(s) = C(sE — A)™'B.
o For ss € A(AE), and A= (sE — A)*E, B = (soE — A)7'B:

C(14(-2)A) B=c(I-(~(s-=)4)) B

=F

G(s)

= C(i(—l)k(s—so)kﬂk)é
k=0
= S (C1) CAB(s — %)t
Zg_)r (s )
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex =Ax+ Bu, y=Cx

with transfer function G(s) = C(sE — A)™'B.
o For ss € A(AE), and A= (sE — A)*E, B = (soE — A)7'B:

6(s) = C(1+(s-2)A) B=c(I-(~(s-=)4)) B
= C (i(—l)k(s— so)k/ak) B

k=0
= > (-1 CA"B(s - %)
0 T
=:my

= mo+m(s—s)+m(s—s)+...
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex = Ax+ Bu, y= Cx
with transfer function G(s) = C(sE — A)"'B.
@ For s) € A(AE), and A= (soE — A)'E, B = (sE — A)"'B:
G(s)

with my = (—1)*CA*B.

mo—|—m1(5—50)+m2(5—so)2+...

Max Planck Institute Magdeburg
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):
Ex =Ax+ Bu, y=Cx
with transfer function G(s) = C(sE — A)™'B.
o For ss € A(AE), and A= (sE — A)*E, B = (soE — A)7'B:

G(s) = mo+m(s—so)+ m(s—s) +...
with my = (—1)*CA*B.
— For sp=0: my:=—C(AE)*A"'B ~~ moments.

(my = —CcA—k+1)B for E = In)

— For sp =00 and E = I, mo =0, m := CA"1B for k >1 ~
Markov parameters.
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Padé Approximation

o Consider (even for possibly singular E if A\E — A regular):

Ex =Ax+ Bu, y=Cx
with transfer function G(s) = C(sE — A)™'B.
o For ss € A(AE), and A= (sE — A)*E, B = (soE — A)7'B:
G(s) = mo+m(s—so)+m(s—s) +...
with my = (—1)*CA*B.
@ As reduced-order model use rth Padé approximant G to G:
G(s) = G(s) + O((s — %0)™),
ie., mg=my fork=0,...,2r—1
~~ moment matching if sp < oo,

~~ partial realization if sp = co.

v

Max Planck Institute Magdeburg
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Theorem [GRIMME 97, VILLEMAGNE/SKELTON ’87]

Let s. € A(A, E) and

A = (s.E—A'E, B:=(s.E—A)'B,
A" = (s.E—-ATE", C:=(s.E—A)C".

If the reduced-order model is obtained by oblique projection onto V C R" along
W C R", and

then G(s.) = G(s.), 4 G(s.) = L G(s.) for k=1,...,6— 1, where

= 2K ifm=q=1,
> { L§J+L§J ifm#1orq#1.
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Padé Approximation

The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

o Padé approximation/moment matching yield:

mye = %G(U(SO) - %aw(s(,) =i, k=0,...2K—1,

i.e., Hermite interpolation in sp.

Recall interpolation via projection result = moments need not be
computed explicitly; moment matching is equivalent to projecting

state-space onto

V = span(B, AB, . . ., AKX 'B) =: Kk(A, B)

(where A* = (s,E — A" TET, C=(s«E—A)TCT).

Computation via unsymmetric Lanczos method.

(@© Peter Benner, MOR for Linear and Nonlinear Systems 27/54

Max Planck Institute Magdeburg



Ratlnt
mm

Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)
o Padé approximation/moment matching yield:
my = %G(k)(so) = %G(k)(so) = A, k=0,...2K—1,

i.e., Hermite interpolation in sp.

@ Recall interpolation via projection result = moments need not be
computed explicitly; moment matching is equivalent to projecting
state-space onto

V = span(B, AB, ..., AX1B) —: k(A B)
(where A = (soE — A)*E, B = (soE — A)"'B) along
W =span(C,A*CT,... (A")"1C) = Kk(A%, C).

(where A* = (s,E — A" TET, C=(s.E—A)"TC").
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

o Padé approximation/moment matching yield:

1

EG<k>(so):mk, k=0,...,2K—1,

1
m = 1760 (s) =

i.e., Hermite interpolation in sp.

@ Recall interpolation via projection result = moments need not be
computed explicitly; moment matching is equivalent to projecting
state-space onto

V = span(B, AB, ..., AX1B) —: k(A B)
(where A = (soE — A)*E, B = (soE — A)"'B) along
W =span(C,A*CT,... (A")"71C) =: Kk(A*, ).

(where A* = (s,E — A" TET, C=(s.E—A)"TC").

@ Computation via unsymmetric Lanczos method.
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Introduction MOR by Projection ncation Nonlinear Model Reduction
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

o Padé approximation/moment matching yield:

1
k!

1 - A
my = HG(k)(So) = G(k)(so) =M, k=0,...,2K—-1,

i.e., Hermite interpolation in sp.

@ Recall interpolation via projection result = moments need not be
computed explicitly; moment matching is equivalent to projecting
state-space onto

V = span(B, AB, ..., AX"1B) —: k(A B)
(where A = (soE — A)*E, B = (soE — A)"'B) along
W =span(C,A*CT,... (A")"71C) =: Kk(A*, ).

(where A* = (s,E — A" TET, C=(s.E—A)"TC").
@ Computation via unsymmetric Lanczos method.

Remark: Arnoldi (PRIMA) yields only G(s) = G(s) + O((s — s0)")-
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Ratlnt
(mm |

Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

Difficulties:

@ Computable error estimates/bounds for ||y — 7||> often very pessimistic or
expensive to evaluate.

Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional/Rayleigh
damping (BEATTIE/GUGERCIN '05).

Good approximation quality only locally.

Preservation of physical properties only in special cases (e.g.
PRIMA/Arnoldi: VTAV is stable if A is negative definite or dissipative

); usually requires post processing which (partially) destroys
moment matching properties.
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The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

Difficulties:

@ Computable error estimates/bounds for ||y — §||> often very pessimistic or
expensive to evaluate.

@ Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional /Rayleigh
damping (BEATTIE/ GUGERCIN ’05).
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Padé-via-Lanczos Method (PVL)

Difficulties:

@ Computable error estimates/bounds for ||y — §||> often very pessimistic or
expensive to evaluate.

@ Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional /Rayleigh
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

Difficulties:

@ Computable error estimates/bounds for ||y — §||> often very pessimistic or
expensive to evaluate.

@ Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional /Rayleigh
damping (BEATTIE/ GUGERCIN ’05).

@ Good approximation quality only locally.

@ Preservation of physical properties only in special cases (e.g.
PRIMA/Arnoldi: VT AV is stable if A is negative definite or dissipative ~
exercises); usually requires post processing which (partially) destroys
moment matching properties.
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Interpolatory Model Reduction

A Change of Perspective: Rational Interpolation

Theorem (simplified) [GriMME "97, VILLEMAGNE/SKELTON '87]

span {(si/y — A)7'B, ..., (scls — A)'B} C Ran(V),
span {(sily —A)"TCT,... (sclh—A)TTCT} < Ran(W),

then

5 d d , .
G(sj) = G(sj), EG(SJ) = gG(sj), forj=1,... k.
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Interpolatory Model Reduction

A Change of Perspective: Rational Interpolation

Theorem (simplified) [GriMME "97, VILLEMAGNE/SKELTON '87]

span {(si/y — A)7'B, ..., (scls — A)'B} C Ran(V),
span {(sily —A)"TCT,... (sclh—A)TTCT} < Ran(W),

then
d

ds@(sj), forj=1,... k.

6(s) = bls), 2 6(s5)=

Remark:
computation of V, W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME '97],

— lterative Rational Krylov-Algo. [ANTOULAS/BEATTIE/GUGERCIN '07].
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‘H,>-Optimal Model Reduction

Best H,-norm approximation problem

Find argming oy of order Sr”G — G2
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‘H,>-Optimal Model Reduction

Best H,-norm approximation problem

Find argming oy of order Sr”G — G2

~~ First-order necessary Hy-optimality conditions:

For SISO systems

where p; are the poles of the reduced transfer function G.
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‘H,>-Optimal Model Reduction

Best H,-norm approximation problem

Find argming oy of order Sr”G — G2

~~ First-order necessary Hy-optimality conditions:
For MIMO systems

G(—pi)Bi = G(—ui)B;, fori=1,...,r,
CTG(—pi) = CT G(—wi), fori=1,...,r,
CTG'(—ui)Bi = CTG'(—ui) B, fori=1,...,r,

where T71AT = diag {1, - .., 1t} = spectral decomposition and
B=BTT T, C=CT.
~> tangential interpolation conditions.
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Interpolatory Model Reduction

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT, ie.

G(s)=CV (sl — WTAV) " WTB,
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Interpolatory Model Reduction

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT, ie.

G(s)=CV (sl — WTAV) " WTB,
where V' and W are given as the rational Krylov subspaces

V= [(—ml—A)'B,....(—pu! — A)'B],
W= [(—pal —AT)ICT, ... (=l — AT)7ICT]
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Interpolatory Model Reduction

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT, ie.

G(s)=CV (sl — WTAV) " WTB,
where V' and W are given as the rational Krylov subspaces

V= [(—ml—A)'B,....(—pu! — A)'B],
W= [(—pal —AT)ICT, ... (=l — AT)7ICT]

Then R R
G(—pi) = G(—pi) and G'(—pi) = G'(—pi),

fori=1,...,r as desired.
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Interpolatory Model Reduction

Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

G(s)=CV (sl — WTAV) " WTB,
where V' and W are given as the rational Krylov subspaces
V= [(—ml—A)'B,....(—pu! — A)'B],
W= [(—pal —AT)ICT, ... (=l — AT)7ICT]

Then A A

G(—pi) = G(—pi) and G'(—pi) = G'(—pi),
fori=1,...,r as desired.
~~ iterative algorithms (IRKA/MIRIAm) that yield H,-optimal models.

[GUGERCIN ET AL. ’06], [BUNSE-GERSTNER ET AL. '07],
[VAN DOOREN ET AL. '08]
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’Hg-OptlmaI Model Reductlon

The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C, A stable, B, C, 6> 0.
Output: A°Pt, BoPt (ort

old
1: while (man=1,...,r { IHJWJ‘ ‘ } > 5)

20 diag{p, ..., pur} Z:AT_l/Z\T = spectral decomposition,
B=BHT-T, C=CT.

3 V= [( ol — )1BBl,...,(—u,I—A)‘1BB,]

& W= (-l = AT)ICTG, (—u,/—AT)—lch:,]

5.V =orth(V), W=orth(W), W= w(vHw)-!

6: A= WHAV, B=WHB, C=cV

7: end while
8 A% =A B¥ =B, CP=C
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Balanced Truncation

Outline

e Balanced Truncation
@ The basic method
@ Numerical examples for BT
@ Software
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Balanced Truncation

Basic principle:

o Recall: a stable system X, realized by (A, B, C, D), is called
balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with oy > 00> ... > 0, > 0.
/\(PQ)% = {oy,..., on} are the Hankel singular values (HSVs) of X.
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Balanced Truncation

Basic principle:

o Recall: a stable system X, realized by (A, B, C, D), is called
balanced, if the Gramians, i.e., solutions P, @ of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with oy > 00> ... > 0, > 0.
o A(PQ)z = {oy,...,0,} are the Hankel singular values (HSVs) of ¥.
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Balanced Truncation

Basic principle:

o Recall: a stable system X, realized by (A, B, C, D), is called
balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with oy > 00> ... >0, > 0.
o A(PQ)z = {oy,...,0,} are the Hankel singular values (HSVs) of ¥.

o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ' TB,CT ', D)

_ Aun A By
= <[A21 A22:|’|:32:|’[C1 C2],D)

4
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Balanced Truncation

Basic principle:

o Recall: a stable system X, realized by (A, B, C, D), is called
balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ+ QA+ CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with oy > 00> ... >0, > 0.
o A(PQ)z = {oy,...,0,} are the Hankel singular values (HSVs) of ¥.
o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT ' TB,CT ', D)
_ Aun A By
= <[A21 A22:|,|:B2:|,[C1 CQ],D)

A A A A

@ Truncation ~ (A, B, C, D) := (A1, B1, G1, D).

4
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, @ = R"R.

T 21 vy
Compute SVD SR" = [ U, Us ] 5, Vi |
ROM is (WTAV, WTB, CV, D), where
W=RTWT 2, V=5Tus;".
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
> T

@ Compute SVD SRT = [ Uy, U] | [ 74 ] .

| LV

ROM is (WT AV, WT B, CV, D), where

W=RTWY,?, V=S"u,%;".
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, @ = R"R.

T Zi Vi’
@ Compute SVD SR' = [ U, Us] Tl
22 V2
Q@ ROMis (WTAV, WTB, CV, D), where

W=RTVT?, V=sTus, .
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, @ = R"R.

Zl VT
@ Compute SVD SRT = [ Ui, Us] [ 4 ] .
Y, V)
@ ROM is (WTAV, WTB, CV, D), where
W=RTVI; %,  V=STuz "
Note:

VIw = (5 EUTS)(RTVE, )
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, @ = R"R.

Zl VT
@ Compute SVD SRT = [ Ui, Us] [ 4 ] .
Y, V)
@ ROM is (WTAV, WTB, CV, D), where
W=RTVI; %,  V=STuz "
Note:

1 _1 _1 1
Viw = (Z,2U/S)(R"TWiZ, %) = £, 20/ UsVT Vi3, 2
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, @ = R"R.

Zl VT
@ Compute SVD SRT = [ Ui, Us] [ 4 ] _
Y, V)
@ ROM is (WTAV, WTB, CV, D), where
W=RTVI; %,  V=STuz "
Note:

(NI

1 _1
STIUTSYRTVE?) = s Ul usvT vy ?
1 1 1

viw .
-1 2 I, _
¥, 2[1, 0] 5, [ X ]zl

Nl
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Balanced Truncation

Implementation: SR Method

@ Compute (Cholesky) factors of the Gramians, P = S7S, @ = R"R.

> T

@ Compute SVD SRT = [ Uy, Uy] ! { V1T ] )
P v,

Q@ ROMis (WTAV, WTB, CV, D), where
W=RTVis[?, V=5Tux %
Note:

a 1 4 4
(L, 20U S)(R™ Wiz, ?) = ¥, 20/ usvT vz, ?

_1 > I, _1 _1 _1
T, ?[ 1, 0] - [O]zlzzzlzzlzlzzl,
2

<
=

S

[

= VWY is an oblique projector, hence balanced truncation is a
Petrov-Galerkin projection method.
v

33/54
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Balanced Truncation

@ Reduced-order model is stable with HSVs o1, ..., 0,.

Adaptive choice of r via computable error bound:

ly =5l < (23" o) llull.
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Balanced Truncation

o Reduced-order model is stable with HSVs o1, ..., 0,.

@ Adaptive choice of r via computable error bound:

n
ly=9l2< (2327 o) llull
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Balanced Truncation

Numerical examples for BT: Optimal Cooling of Steel Profiles

n = 1,357, Absolute Err

5 Absolute Error
10
BT error bound
168l modal truncation
h balanced truncation
o, s
3 10 w;
& Sty
L. g
O 10 =
= M
[ Tiag T
S 10 ~ >y
Y T, L
~% B,
8 g1 ~
[ ™
0" e
10"
10% 10° 10° 10f 10°
Frequency(w»)

— BT model computed with sign
function method,

— MT w/o static condensation,
same order as BT model.
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Balanced Truncation

Numerical examples for BT: Optimal Cooling of Steel Profiles

n = 1,357, Absolute Error n = 79,841, Absolute Error

5 Absolute Error absolute model reduction error
10 0 : | .
error bound o ioerance
107 fmme dal truncation 10° —
e Janced truncation
3 10 \\\\\ 10
% mss 2w
o 10° S o
3 T - ‘\\\\ gm"
S 10 £ . Segl gémv
210" Sy °
) S 10
10" e, 10"
0 10° 10° 108 10 10° s 10° 10° 10° 100
Frequency(es) ©
— BT model computed with sign — BT model computed using
function method, M.E.S.S. in MATLAB,
— MT w/o static condensation, — Computation time: ~1 min.
same order as BT model.
4
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Balanced Truncation
Numerical examples for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
~n=234,722, m=1, g=12.

@ Reduced model computed using SPARED, r = 30.
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Balanced Truncation
Numerical examples for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
~n=234,722, m=1, g=12.

@ Reduced model computed using SPARED, r = 30.

Frequency Repsonse Analysis

Bode Diagram

Wagnitude (§2)

-200
10 10° 10 10 10

Frequency (rad/sec)
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Balanced Truncation

Balanced Truncation
Numerical examples for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
~n=234,722, m=1, g=12.

@ Reduced model computed using SPARED, r = 30.

Frequency Repsonse Analysis Hankel Singular Values

Hankel singular values

Bode Diagram

Wagnitude (§2)

»
; io ;
200 e 0 1 10 0 10 20 30 2 50

Frequency (rad/sec) k
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Balanced Truncation
Software

[Penzl 2000]

MATLAB toolbox for solving

— Lyapunov equations and algebraic Riccati equations,
— model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.
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Balanced Truncation
Software

[Penzl 2000]

MATLAB toolbox for solving

— Lyapunov equations and algebraic Riccati equations,
— model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. — Matrix Equations Sparse Solvers

[B./Kéohler/Saak '08-]

@ Extended and revised version of LYAPACK.
Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).
Many algorithmic improvements:

— new ADI parameter selection,

— column compression based on RRQR,

— more efficient use of direct solvers,

— treatment of generalized systems without factorization of the mass matrix,
— new ADI versions avoiding complex arithmetic etc.

@ C and MATLAB versions.
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Balanced Truncation
Software

[Penzl 2000]

MATLAB toolbox for solving

— Lyapunov equations and algebraic Riccati equations,
— model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. — Matrix Equations Sparse Solvers

[B./Kéohler/Saak '08-]

@ Extended and revised version of LYAPACK.

@ Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).
Many algorithmic improvements:

— new ADI parameter selection,

— column compression based on RRQR,

— more efficient use of direct solvers,

— treatment of generalized systems without factorization of the mass matrix,
— new ADI versions avoiding complex arithmetic etc.

@ C and MATLAB versions.
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Balanced Truncation
Software

[Penzl 2000]

MATLAB toolbox for solving

— Lyapunov equations and algebraic Riccati equations,
— model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. — Matrix Equations Sparse Solvers

[B./Kéohler/Saak '08-]
o Extended and revised version of LYAPACK.
@ Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).
@ Many algorithmic improvements:

— new ADI parameter selection,

— column compression based on RRQR,

— more efficient use of direct solvers,

— treatment of generalized systems without factorization of the mass matrix,
— new ADI versions avoiding complex arithmetic etc.

@ C and MATLAB versions. )
(@© Peter Benner, MOR for Linear and Nonlinear Systems 36/54




Nonlinear Model Reduction

Outline

e Nonlinear Model Reduction
@ A Brief Introduction
@ Nonlinear Model Reduction by Generalized Moment-Matching
@ Numerical Examples
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Nonlinear Model Reduction

Nonlinear Model Reduction

A Brief Introduction

Given a large-scale control-affine nonlinear control system of the form

y(t) = ch(t), x(0) = xo,

{)’((t) = f(x(t)) + bu(t),

with f : R” — R" nonlinear and b,c € R", x ¢ R", u,y € R.

with # : R" — R and b,&é € R?, x € R?, u € R and

(@© Peter Benner, MOR for Linear and Nonlinear Systems 38/54
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Nonlinear Model Reduction

Nonlinear Model Reduction

A Brief Introduction

Given a large-scale control-affine nonlinear control system of the form

y(t) = ch(t), x(0) = xo,

{)’((t) = f(x(t)) + bu(t),

with f : R” — R" nonlinear and b,c € R", x ¢ R", u,y € R.

with f :R* 5> R and b, € R? x e R*, uc Rand j~ycR, A< n.
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Max Planck Institute Magdeburg



Introduction MOR by Projection atln 1cation Nonlinear Model Reduction

[um)

Nonlinear Model Reduction
Common Reduction Techniques
Proper Orthogonal Decomposition (POD)
o Take computed or experimental 'snapshots’ of full model:
[x(t1), x(t2), ..., x(tn)] =: X,
o perform SVD of snapshot matrix: X = VSWT ~ V,S,W,].
o Reduction by POD-Galerkin projection: % = V,J f(V4%) + V,/ Bu.
@ Requires evaluation of f
~~ discrete empirical interpolation [Sorensen/Chaturantabut '09].

@ Input dependency due to 'snapshots'!

Trajectory Piecewise Linear (TPWL)
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[um)

Nonlinear Model Reduction

Common Reduction Techniques

Proper Orthogonal Decomposition (POD)

o Take computed or experimental 'snapshots’ of full model:
[x(t1), x(t2), ..., x(tn)] =: X,
perform SVD of snapshot matrix: X = VSWT ~ V;S;,W,.
Reduction by POD-Galerkin projection: % = Vi f(Vax) + V] Bu.
Requires evaluation of £
~~ discrete empirical interpolation [Sorensen/Chaturantabut '09].

Input dependency due to 'snapshots’!

Trajectory Piecewise Linear (TPWL)
o Linearize f along trajectory,
@ reduce resulting linear systems,
@ construct reduced model by weighted sum of linear systems.
(*]

Requires simulation of original model and several linear reduction
steps, many heuristics.
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Nonlinear Model Reduction by Generalized Moment-Matching
Quadratic-Bilinear Differential Algebraic Equations (QBDAEs)

Consider the class of quadratic-bilinear differential algebraic equations

Ex(t) = Aix(t) + Axx(t) @ x(t) + Nx(t)u(t) + Bu(t),

x: y(t) = Cx(t),  x(0) = xo,

where E, A;, N € R™*" A, € RxA (Hessian tensor), B, CTc R" are
quite helpful.

@ A large class of smooth nonlinear control-affine systems can be
transformed into the above type of control system.

@ The transformation is exact, but a slight increase of the state
dimension has to be accepted.

@ Input-output behavior can be characterized by generalized transfer
functions ~~ enables us to use Krylov-/rational interpolation-based
reduction techniques.
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.
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Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.

o xp =exp(—x) - V/x2+1, X=-—x+u

0 7 ;= exp(—x),
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.

o xp =exp(—x) - V/x2+1, X=-—x+u

0 z1 :=exp(—x2), 2z :=+/x2+1
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Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.

o xp =exp(—x) - V/x2+1, X=-—x+u

0 z1 :=exp(—x2), 2z :=+/x2+1

0).(1221‘22,
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Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.

o xp =exp(—x) - V/x2+1, X=-—x+u

0 z1 :=exp(—x2), 2z :=+/x2+1

O X1 =212, X2=—Xo+uU,
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Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.

o x; = exp(—x2) - /x2 + 1,

0 z1 :=exp(—x2), 2z :=+/x2+1

0 =2z-2, Xx=-Xx+u z=-z" (—x+u),

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 41/54



Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = aox + a181(x) + ... + akgk(x) + Bu,

where gj(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, X can be transformed into a system of QBDAEs.

o xp =exp(—x) - V/x2+1, X=-—x+u

0 z1 :=exp(—x2), 2z :=+/x2+1

@ X1 =212, Xo=—Xo+U 21=—21" (—X2 ar U),
22 2. Xé 2 Z =x1 -2z
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
@ consider input of the form au(t),
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
@ consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + a®xo(t) + 3x3(t) + ...
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Variational Analysis and Linear Subsystems
Analysis of nonlinear systems by variational equation approach:

@ consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear

subsystems, i.e. response should be of the form

x(t) = axi(t) + a®xo(t) + 3x3(t) + ...

o Comparison of terms o/, i = 1,2, ... leads to series of systems

Ex; = Aixy + Bu,
Exo = A1xo + Aox ® x1 + Nxqu,
Exs = A1xz + Az (x1 @ X2 + %2 ® x1) + Nxau

(@© Peter Benner, MOR for Linear and Nonlinear Systems 42/54
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Nonlinear Model Reduction by Generalized Moment-Matching
Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
@ consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + a®xo(t) + 3x3(t) + ...

o Comparison of terms o/, i = 1,2, ... leads to series of systems

Ex; = Aixy + Bu,
Exo = A1xo + Aox ® x1 + Nxqu,
Exs = A1xz + Az (x1 @ X2 + %2 ® x1) + Nxau

@ although i-th subsystem is coupled nonlinearly to preceding systems,
linear systems are obtained if terms x;, j < i, are interpreted as
pseudo-inputs.
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:

H1(51) = C(SlE — Al)_lB,
—_——

G1 (51)
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:

Hi(s1) = C(s1E — A1) !B,
Gi(s1)
Ha(s1, 52) = %c (514 9)E — A L[N (Gu(51) + Gu(5))
Ao (Gu(s1) @ Gi(2) + Gu(s) @ Gi(s1))]
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:

Hi(s1) = C(s1E — A1) 7B,
Gi(s1)
Ha(s1,52) = %c (514 9)E — A L[N (Gi(51) + Gu(5))
+A2 (Gi(s1) ® Gi(2) + Gi(2) ® Gi(s1))],
Hs(s1,$2,83) = %C ((s1+ s+ s3)E— Al)f1
[N(Gg(sl, ) + Ga(s2,53) + Ga(s1,53))

+ A2(Gi(s51) ® Ga(s2,53) + Gi(s2) @ Go(s1, 53)
+ G1(S3) & G2(51, 53) + G2(52,53) ® Gl(Sl)

+ Ga(s1,53) ® Gi(2) + Ga(s1,52) ® G1(53))}-
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Nonlinear Model Reduction by Generalized Moment-Matching
Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For Hi(s1),
choosing o and making use of the Neumann lemma leads to

Hi(s1) = > C (AL~ 0E)'E) (A1 — 0E) B (s1 — o)’
i=0 )

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 44/54



Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For Hi(s1),
choosing o and making use of the Neumann lemma leads to

Hi(s1) = > C (AL~ 0E)'E) (A1 — 0E) B (s1 — o)’
i=0

i
m51 o

Similarly, specifying an expansion point (7, &) yields

2(s1%2) = 5 Z C ( (A — (7 + g)E)_lE)i (A —(r+E) (a4 n—T—&)"

p=0
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: PEE 1H1(0')—3q —9_FAi(o), 6,,,,HQ(O' o) = almH2(U o), l+m<qg-—1.

Construct the foIIowmg sequence of nested Krylov subspaces
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: PEE 1H1(0')—3q —9_FAi(o), 6,,,,HQ(O' o) = almH2(U o), l+m<qg-—1.

Construct the foIIowmg sequence of nested Krylov subspaces

Vi =Kq (AL — 0E) 'E, (AL — 0E) " 'b)
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: PEE —9 _H(o) = PES —9_FAi(o), 6,,,,HQ(O'U) 31mH2(‘7‘7) I+m<qg-—1.

Construct the foIIowmg sequence of nested Krylov subspaces

Vi =Kq ((AL — 0E)'E, (AL — 0E) " 'b)
fori=1:gq
Vi = Kg—ir1 (AL — 20E)1E, (AL — 20E) " INVA(:, i),
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: PEE 1H1(0')—3q —9_FAi(o), 6,,,,HQ(O'U) 31mH2(‘7‘7) I+m<qg-—1.

Construct the foIIowmg sequence of nested Krylov subspaces
Vi =Kgq (AL — 0E)'E, (AL — 0E)"'b)
fori=1:q
Vi = Kg—is1 (AL — 20E) 1E, (A1 — 20E) INVA(:, 1)),
for j=1:min(g—i+1,i)
Vil = Kgoicjio (AL — 20E)T1E, (A — 20E) P A VA (s, 1) @ VA(4,)))

Vi(:, i) denoting the i-th column of V4.

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 45/54
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Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: PEE —9 _H(o) = PES —9_FAi(o), 8,mHg(O'O') 6,mHz(aa) I+m<qg-—1.

Construct the foIIowmg sequence of nested Krylov subspaces

Vi =Kgq (AL — 0E)'E, (AL — 0E)"'b)
fori=1:q
Vs = Kqoit1 (AL — 20E)1E, (AL — 20E) T NVA(:, 1)),
for j=1:min(g—i+1,i)

V3l = Kqoizjra (AL = 20E)E, (AL — 20E) A Vi (i) @ VA(:, )

Vi(:, i) denotlng the i-th column of V4. Set V = orth [V4, Vi, V3’J] and
construct 3 by the Galerkin-Projection P = VY-

Ay = VTAY e R A, = VT Ay(V @ V) € RPXP

N=VTNYVeR™ b=VTpheR" &7 =c"VeR"

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 45/54



Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Two-Sided Projection Methods

@ Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided (Petrov-Galerkin) projection methods.
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Nonlinear Model Reduction

Nonlinear Model Reduction by Generalized Moment-Matching
Two-Sided Projection Methods

@ Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided (Petrov-Galerkin) projection methods.

@ Construction the dual Krylov subspaces efficiently requires a bit of tensor
calculus.
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Nonlinear Model Reduction by Generalized Moment-Matching
Two-Sided Projection Methods

Theorem [B./BREITEN 2012]
@ Y = (E, A1, Az, N, b, c) original QBDAE system.
@ Reduced system by Petrov-Galerkin projection P = VW7 with
Vi =K, (E, A1, b,o), Wi=Kg (ET,A{,C, 20)
fori=1:q
Vo = Kq,—it1 (E, Ar, NVA(:, i), 20)
Wa = Kgy—is1 (ET, AT, NTWAG:, 1), 0)

for j=1:min(g2—i+1,i)
V3 = Kgy—i—jy2 (E, A1, A2 Vi (:, 1) ® Va(:,J), 20)
Ws = Ko,imjs2 (ET, AL AOVAG, 1) @ WA(:,)), ) -

Then, it holds:
O'H o'H O'H o' H
L(0) = = (o), (20) = —(20), i=0,...,q1—1,
Os; 0Os; Os; Os;
8i+jH( ) BMF/( ) i+j <2 1
—Hy(0,0) = ——Ha(0,0), I+ < 2q— 1.
os]s) o]}

.
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Numerical Examples
Two-Dimensional Burgers Equation

@ 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_———

=Q
up=—(u-V)u+vAu

with u(x, y,t) € R? describing the motion of a compressible fluid.
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Numerical Examples
Two-Dimensional Burgers Equation

@ 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_———
=Q
up=—(u-V)u+vAu

with u(x, y,t) € R? describing the motion of a compressible fluid.

o Consider initial and boundary conditions

V2 V2

Ux(vaaO) = Ta Uy(Xay’O) = 7) for (X’y) S Ql = (070515
ux(vaao) = 07 Uy(XayaO) = 07 for (X,)’) S Q\le
u, =0, u, =0, for (x,y) € 0Q.
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Numerical Examples
Two-Dimensional Burgers Equation

@ 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_———
=Q
up=—(u-V)u+vAu

with u(x, y,t) € R? describing the motion of a compressible fluid.
o Consider initial and boundary conditions

V2 V2

Ux(vaaO) = Ta Uy(Xay’O) = 7) for (X7y) S Ql = (070515
Ux(vaao) = O, Uy(XayaO) = 07 for (X,}’) S Q\le
u, =0, u, =0, for (x,y) € 0Q.

@ Spatial discretization ~~ QBDAE system with nonzero I.C. and
N = 0 ~~ reformulate as system with zero I.C. and constant input.
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Numerical Examples
Two-Dimensional Burgers Equation

@ 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_———
=Q
up=—(u-V)u+vAu

with u(x, y,t) € R? describing the motion of a compressible fluid.

o Consider initial and boundary conditions

V2 V2

Ux(vaaO) = 75 Uy(Xay’O) = 7) for (X7y) S Ql = (070515
Ux(vaao) = O, Uy(XayaO) = 07 for (X,}’) S Q\le
u, =0, u, =0, for (x,y) € 0Q.

@ Spatial discretization ~~ QBDAE system with nonzero I.C. and
N = 0 ~~ reformulate as system with zero I.C. and constant input.

@ Output C chosen to be average x-velocity.

Max Planck Institute Magdeburg (@© Peter Benner, MOR for Linear and Nonlinear Systems 47/54



Nonlinear Model Reduction
| snmnsl

Numerical Examples
Two-Dimensional Burgers Equation

Comparison of relative time-domain error for n = 1600

101

=~

102

5 1073 | |

o £ E

2 1074} %

EA ;

€ 1075} l-sided, g1 = 4,qp = 2,7 =6 | -

2-sided, g1 =4,qp =2,A =6 |

10— 3 --- l-sided, 1 =6,g2 =0,71=6 | 4

g -~ 2-sided, g1 = 6,0 =0, =6 | ]

-7 ! ; ‘ ‘
0% 0.1 0.2 0.3 0.4 0.5
Time t
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Numerical Examples
Two-Dimensional Burgers Equation

@ 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_———
=Q
up=—(u-V)u+vAu

with u(x, y,t) € R? describing the motion of a compressible fluid.

o Now consider initial and boundary conditions

UX(X7y70):0a Uy(X,y,O):O, for X:yEQ7
uy = cos(mt),  u, = cos(2wt), for (x,y) € {0,1} x (0,1),
ux =sin(rt),  u, =sin(2wt), for (x,y) € (0,1) x {0,1}.
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Numerical Examples
Two-Dimensional Burgers Equation

@ 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_———
=Q
up=—(u-V)u+vAu

with u(x, y,t) € R? describing the motion of a compressible fluid.

o Now consider initial and boundary conditions

UX(X,y,O):O, Uy(X,y,O):O, for X:}’GQ,
ux = cos(wt),  u, = cos(2rt), for (x,y) € {0,1} x (0,1),
ux =sin(rt),  u, =sin(2wt), for (x,y) € (0,1) x {0,1}.

@ Spatial discretization ~~ QBDAE system with zero I.C. and 4 inputs
B € R™*, Ny, Na, N3, Ny, ROM with g =5,q, = 2,0 = 0,4 = 52.
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Numerical Examples
Two-Dimensional Burgers Equation

@ 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_———
=Q
up=—(u-V)u+vAu

with u(x, y,t) € R? describing the motion of a compressible fluid.

o Now consider initial and boundary conditions

uy(x,y,0) =0, u,(x,y,0)=0, for x,y € Q,
ux = cos(wt),  u, = cos(2rt), for (x,y) € {0,1} x (0,1),
ux =sin(rt),  u, =sin(2wt), for (x,y) € (0,1) x {0,1}.
@ Spatial discretization ~~ QBDAE system with zero I.C. and 4 inputs
B € R™*, Ny, Na, N3, Ny, ROM with g =5,q, = 2,0 = 0,4 = 52.
o State reconstruction by reduced model x ~ VX, max. rel. err < 3%.
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Nonlinear Model Reduction
Numerical Examples
The Chafee-Infante equation

o Consider PDE with a cubic nonlinearity:

Vit vi=vatv, in (0,1) x (0, T),
v(0,-) = u(t), in (0, T),

vx(1,) =0, in (0, T),

v(x,0) = vw(x), in (0,1)

@ original state dimension n = 500, QBDAE dimension N = 2 - 500,
reduced QBDAE dimension r =9
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Nonlinear Model Reduction

Numerical Examples
The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 5 cos (t))

) ! ! ! !
0 2 4 6 8 10

Time (t)
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Numerical Examples
The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 50sin (t))

——FOM, n =500
POD, n =9

1-si =9 ||
2-sided MM, n

Time (t)
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Numerical Examples
The FitzHugh-Nagumo System

o FitzHugh-Nagumo system modeling a neuron
[CHATURANTABUT, SORENSEN ’09]

evi(x, t) = Evi(x, t) 4+ F(v(x, 1)) — w(x, t) + g,
Wt(X7 t) = hV(X, t) - ’YW(Xv t) + g,
with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions
v(x,0) =0, w(x,0) =0, x €1[0,1],
vi(0,t) = —io(t), v(1,t) =0, t>0,

where

€=10.015, h=0.5, y=2, g =0.05, io(t) =5 - 10*t3 exp(—15t)
@ original state dimension n = 2 - 1000, QBDAE dimension

N = 3-1000, reduced QBDAE dimension r = 20
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Nonlinear Model Reduction

Numerical Examples
The FitzHugh-Nagumo System

POD via moment-matching (varying input)

4
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Topics Not Covered

Linear Systems:
o Balanced residualization (singular perturbation approximation),

PN

yields G(0) = G(0).

Balancing-related methods.

Special methods for second-order (mechanical) systems.
Extensions to bilinear and stochastic systems.

MOR methods for discrete-time systems.

Extensions to descriptor systems Ex = Ax + Bu, E singular.

Parametric model reduction:

x = A(p)x+ B(p)u, y=C(p)x,
where p € R? is a free parameter vector; parameters should be
preserved in the reduced-order model.
Nonlinear Systems:
@ Other MOR techniques like POD, RB, Empirical Gramians.
@ Simulation-free methods for parametric systems is widely open!
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