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(20 years of Peter Benner in science . . . )

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 2/26



20 Years of ETNA 60 Years of Lothar Lothar and Sylvester Equations Sylvester Equations Low-rank Sylvester ADI Optimal Low-Rank Solutions

60 Years of Lothar

Some time ago. . .
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60 Years of Lothar

Not so long ago . . . with friends at Prof. Varga’s 80th
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60 Years of Lothar

Just a little bit ago . . . at Luminy 2012
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60 Years of Lothar

. . . and always vibrant!
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Lothar and Sylvester Equations

Hu, D. Y.; Reichel, L., Krylov-subspace methods for the Sylvester equation.
Linear Algebra Appl. 172 (1992), 283-313.

Investigates Galerkin and Minimal Residual methods for Sylvester equations.

Most (83 in Scopus) or 2nd most (41 in MathSciNet, 151 in Google Scholar)
frequently cited of Lothar’s papers!

Levenberg, N.; Reichel, L., A generalized ADI iterative method. Numer. Math.
66 (1993), 215-233.

Proposes a variable alternating directions implicit (ADI) scheme, allows bias
towards one direction.

Calvetti, D.; Reichel, L., Application of ADI iterative methods to the restoration
of noisy images. SIAM J. Matrix Anal. Appl. 17 (1996), 165-186.

Applies the variable ADI scheme to the image restoration problem.

Calvetti, D.; Levenberg, N.; Reichel, L., Iterative methods for X − AXB = C. J.
Comput. Appl. Math. 86 (1997), 73-101.

Analyzes the variable ADI scheme for the special Sylvester equation arising in
image restoration.

Calvetti, D.; Lewis, B.; Reichel, L., On the solution of large Sylvester-observer
equations. Numer. Linear Algebra Appl. 8 (2001), 435-451.

Analyzes a method to solve the Sylvester-observer equation suggested by Y.
Saad and B. Datta, leading to suggestions for parameter choices.

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 4/26
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Large-Scale Sylvester Equations
Problem Setting

Sylvester Equations

Find X ∈ Rn×m solving

AX − XB = FGT ,

where A ∈ Rn×n, B ∈ Rm×m, F ∈ Rn×r , G ∈ Rm×r .

Applications (just for now):

control theory (e.g., Luenberger observer, model reduction, . . . ),

image restoration,

fluid queue models, solving transport equations (Newton step for
solving nonsymmetric Riccati equations)

. . .

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 5/26
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Large-Scale Sylvester Equations
Properties & Algorithms

Sylvester Equations

AX − XB = FGT

Unique solvability ensured if

Λ(A) ∩ Λ(B) = ∅.

Reduces to Lyapunov equation if B = AT , G = F .

Algorithms for small to moderately sized problems based on

Schur, spectral, or Hessenberg decompositions of A and B
(Bartels-Stewart,. . . ),
sign function iteration (Roberts,. . . ),
alternating directions implicit (ADI) iteration (Wachspress,. . . ).

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 6/26
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Large-Scale Sylvester Equations
Low-rank Phenomena

Sylvester Equations

AX − XB = FGT

In this talk:

both A ∈ Rn×n and B ∈ Rm×m large and sparse,

F ∈ Rn×r , G ∈ Rm×r with r � n,m.

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 7/26
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Large-Scale Sylvester Equations
Low-rank Phenomena

Sylvester Equations

AX − XB = FGT

In this talk:

both A ∈ Rn×n and B ∈ Rm×m large and sparse,

F ∈ Rn×r , G ∈ Rm×r with r � n,m.

Plot of singular values of solution X for artificial example with n = 1600,
m = 900 and r = 4.
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Large-Scale Sylvester Equations
Low-rank Phenomena

Sylvester Equations

AX − XB = FGT

In this talk:

both A ∈ Rn×n and B ∈ Rm×m large and sparse,

F ∈ Rn×r , G ∈ Rm×r with r � n,m.

Observation: X has small numerical rank
[Penzl ’99, Ant./Sor./Zhou ’02, Grasedyck ’04]

rank(X , τ) = f � min(n,m)

 Compute low-rank solution factors Z ∈ Rn×f , Y ∈ Rm×f ,
D ∈ Rf×f , f � min(n,m) such that X ≈ ZDY T .

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 7/26



20 Years of ETNA 60 Years of Lothar Lothar and Sylvester Equations Sylvester Equations Low-rank Sylvester ADI Optimal Low-Rank Solutions

Large-Scale Sylvester Equations
Low-rank Phenomena & methods

As for Lyapunov equations, there are mainly three classes of methods for
computing Z , Y , D

1 (Petrov-)Galerkin-projection methods based on (rational) Krylov
subspaces, e.g.,

span {Z} ⊆ K(A,F , k), span {Y } ⊆ K(B,G , k)

and D solves (ZTAZ )D − D(Y TBY ) = (ZTF )(GTY ).

[Jbilou et al ’02,. . .]

2 iterative Krylov subspace methods for equivalent linear system(
In ⊗ A− BT ⊗ Im

)
vec(X ) = vec(FGT ).

3 Smith & alternating directions implicit (ADI) type methods.
[B./Li/Truhar ’09]

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 8/26
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Low-rank Sylvester ADI
Derivation

Continuous and discrete time Sylvester equations

Let α 6= β with α /∈ Λ(B), β /∈ Λ(A), then

AX − XB = FGT︸ ︷︷ ︸
cont.-time Sylv. Eq.

⇔ X = AXB + (β − α)FGH︸ ︷︷ ︸
disc.-time Sylv. Eq.

,

where

A := (A− βIn)−1(A− αIn),

B := (B − αIm)−1(B − βIm),

F := (A− βIn)−1F ,

G := (B − αIm)−HG .

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 9/26
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Low-rank Sylvester ADI
Derivation

The equivalent discrete-time Sylvester equation

X = AXB + (β − α)FGH

motivates the

ADI

iteration for k ≥ 1

[Wachspress ’88]

Xk = AkXk−1Bk + (βk − αk)FkGHk ,

where

Ak := (A− βk In)−1(A− αk In),

Bk := (B − αk Im)−1(B − βk Im),

Fk := (A− βk In)−1F ,

Gk := (B − αk Im)−HG .

for αk 6= βk with αk /∈ Λ(B), βk /∈ Λ(A), X0 ∈ Rn×m.

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 10/26



20 Years of ETNA 60 Years of Lothar Lothar and Sylvester Equations Sylvester Equations Low-rank Sylvester ADI Optimal Low-Rank Solutions

Low-rank Sylvester ADI
Derivation

The equivalent discrete-time Sylvester equation

X = AXB + (β − α)FGH

motivates the ADI iteration for k ≥ 1 [Wachspress ’88]

Xk = AkXk−1Bk + (βk − αk)FkGHk ,

where

Ak := (A− βk In)−1(A− αk In),

Bk := (B − αk Im)−1(B − βk Im),

Fk := (A− βk In)−1F ,

Gk := (B − αk Im)−HG .

for αk 6= βk with αk /∈ Λ(B), βk /∈ Λ(A), X0 ∈ Rn×m.

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 10/26



20 Years of ETNA 60 Years of Lothar Lothar and Sylvester Equations Sylvester Equations Low-rank Sylvester ADI Optimal Low-Rank Solutions

Low-rank Sylvester ADI
Derivation

Sylvester ADI iteration

Xk = AkXk−1Bk + (βk − αk)FkGHk

Now set X0 = 0, Xk = ZkDkY
H
k , and observe

X1 = A1X0B1 + (β1 − α1)F1GH1

⇒ Z1 = (A− β1In)−1F , Y1 = (B − α1Im)−HG , D1 = (β1 − α1)Ir .
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Low-rank Sylvester ADI
Derivation

Sylvester ADI iteration

Xk = AkXk−1Bk + (βk − αk)FkGHk

Now set X0 = 0, Xk = ZkDkY
H
k , and observe

X2 = A2X1B2 + (β2 − α2)F2GH2

× GT (B − α1Im)−1(B − β1Im)(B − α2Im)−1

+ (β1 − α1)(A− β1In)−1FGT (B − α1Im)−1

= (β2 − α2) (A− α1In)(A− β2In)−1Z1︸ ︷︷ ︸
=:V2

×

× Y H
1 (B − α2Im)−1(B − β1Im)︸ ︷︷ ︸

=:W H
2

+ (β1 − α1)Z1Y
H
1

⇒ Z2 = [Z1,V2], Y2 = [Y1,W2], D = diag (D1, (β2 − α2)Ir )
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Low-rank Sylvester ADI
Algorithm [B. ’05, Li/Truhar ’08, B./Li/Truhar ’09]

Algorithm 1 Low-rank Sylvester ADI (factored ADI)

Input: Matrices defining AX − XB = FGT and shift parameters
{α1, . . . , αkmax}, {β1, . . . , βkmax}.

Output: Z , Y , D such that ZDY H ≈ X .
1: Z1 = V1 = (A− β1In)−1F
2: Y1 = W1 = (B − α1Im)−HG
3: D1 = (β1 − α1)Ir
4: for k = 2, . . . , kmax do
5: Vk = Vk−1 + (βk − αk−1)(A− βk In)−1Vk−1.

6: Wk = Wk−1 + (αk − βk−1)(B − αk In)−HWk−1.
7: end for
8: Update solution factors

Zk = [Zk−1,Vk ], Yk = [Yk−1,Wk ], Dk = diag (Dk−1, (βk − αk)Ir ) .

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 12/26
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Low-rank Sylvester ADI
The Residual

Sylvester ADI iteration

Xk = AkXk−1Bk + (βk − αk)FkGHk

yields

Xk − X = Ak(Xk−1 − X )Bk =
[ k∏
j=1

Aj

]
(X0 − X )

[ k∏
j=1

Bj
]
.

Hence, the Sylvester residual is given by

S(Xk) = AXk − XkB − FGT = A(Xk − X )− (Xk − X )B

=
[ k∏
j=1

Aj

]
S(X0)

[ k∏
j=1

Bj
]
.

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 13/26
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Low-rank Sylvester ADI
The Residual

For X0 = 0 (as in the low-rank Sylvester ADI) we have

S(Xk) = AXk − XkB − FGT = −V̂kŴk ,

V̂k :=
[ k∏
j=1

Aj

]
F , Ŵk :=

[ k∏
j=1

Bj
]H

G .

Lemma

rank(S(Xk)) ≤ r (and semidefinite in the Lyapunov case).

Moreover,
Vk = (A− αk−1In)(A− βk In)−1Vk−1

= (A− βk In)−1(A− αk−1In)(A− αk−2In)(A− βk−1In)−1Vk−2

= (A− βk In)−1Ak−1(A− αk−2In)Vk−2

= . . . = (A− βk In)−1
[ k−1∏

j=1

Aj

]
F ⇒ V̂k = (A− αk In)Vk .

Max Planck Institute Magdeburg P. Benner, ADI for Sylvester Equations Lothars Contributions and New Results 14/26



20 Years of ETNA 60 Years of Lothar Lothar and Sylvester Equations Sylvester Equations Low-rank Sylvester ADI Optimal Low-Rank Solutions

Low-rank Sylvester ADI
The Residual

For X0 = 0 (as in the low-rank Sylvester ADI) we have

S(Xk) = AXk − XkB − FGT = −V̂kŴk ,
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Low-rank Sylvester ADI
The Residual

Furthermore,

Vk = (A− βk In)−1
[ k−1∏

j=1

Aj

]
F

= (A− βk In)−1V̂k−1,

V̂k = (A− αk In)Vk =
[ k∏
j=1

Aj

]
F

= (A− αk In)(A− βk In)−1V̂k−1 = V̂k−1 + (βk − αk)Vk ,

Wk = (B − αk Im)−HŴk−1,

Ŵk = Ŵk−1 − (βk − αk)Wk ,

where V̂0 = F , Ŵ0 = G .

(Generalization of Lyapunov case discussed in [B./Saak/Kürschner ’13].)
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Low-rank Sylvester ADI
Low-rank Sylvester ADI Reloaded [B./Kürschner ’13]

Algorithm 2 Reformulated Factored ADI iteration (fADI 2.0)

Input: A, B, F , G defining the Sylvester equation and shift parameters
{α1, . . . , αkmax}, {β1, . . . , βkmax}, tolerance τ > 0.

Output: Zkmax ∈ Cn×rkmax , Ykmax ∈ Cm×rkmax , Dkmax ∈ Crkmax×rkmax such that
ZkmaxDkmaxY

H
kmax
≈ X .

1: V̂0 = F , Ŵ0 = G , k = 0
2: while ‖Ŵ T

k V̂k‖F ≥ τ‖GTF‖F do
3: γk = βk − αk

4: Vk = (A− βk In)−1V̂k−1, Wk = (B − αk Im)−HŴk−1

5: V̂k = V̂k−1 + γkVk , Ŵk = Ŵk−1 − γkWk

6: Update solution factors

Zk = [Zk−1,Vk ], Yk = [Yk−1,Wk ], Dk = diag (Dk−1, γk Ir )

7: k++
8: end while
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Low-rank Sylvester ADI
Some further improvements [B./Kürschner ’13]

Non-symm. A,B usually lead to complex shifts  complex iterates.
Can be avoided, only one linear system per complex conjugate pair
of shifts necessary  acceleration of factor 2.

Self-tuning of shifts by selecting Ritz values corresponding to current
rational Krylov bases Vk , Wk  acceleration factor 1–4.
In summary, accelerated ADI iteration for Sylvester equation by
factor between 2 and 10.
Special variants for special types of Sylvester equations:

– Generalized Sylvester equations:

AXC − EXB = FGT .

– Cross-Gramian Sylvester equation:

AXE + EXA = −FGT .

– Discrete-time Lyapunov equation (Stein equation):

AXAT − EXET = −FFT .

– Discrete time Sylvester equation:

AXB − EXC = −FGT .
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Optimal Low-Rank Solutions
Rank-1 right hand side [B./Breiten ’12/’13]

Let us consider the generalized Sylvester equation

AXD + CXB − uvT = 0,

with A,C ∈ Rn×n, B,D ∈ Rm×m, u ∈ Rn, v ∈ Rm.

Assume that A = AT ,B = BT ,C = CT ,D = DT � 0.

Hence, the generalized Sylvester operator

LS = D ⊗ A + B ⊗ C

naturally defines an inner product 〈·, ·〉LS
via

Rn×m × Rn×m 7→ R, (Y1,Y2)→ 〈Y1,Y2〉LS
:= 〈LS vec (Y1) , vec (Y2)〉.

Goal: Find a rank-n approximation Xn̂ that is optimal w.r.t.

||X − Xn̂||LS
:=
√
〈X − Xn̂,X − Xn̂〉LS

.
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Optimal Low-Rank Solutions
An objective function and the error set [B./Breiten ’12/’13]

Let
Σ = (A,B,C ,D, u, v)

denote a generalized Sylvester equation with solution X .

Define an objective function f (Σ) = uTXv and the error set Σerr as

A =

[
−A 0

0 Â

]
, B =

[
−B 0

0 B̂

]
, C =

[
−C 0

0 Ĉ

]
,

E =

[
−E 0

0 Ê

]
, U =

[
u
û

]
, V =

[
v
v̂

]
,

where the reduced set is given as

Â = V TAV , Ĉ = V TCV , û = V Tu,

B̂ = W TBW , D̂ = W TDW , v̂ = W T v ,

with orthonormal matrices V ∈ Rn×n̂ and W ∈ Rm×n̂.
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Optimal Low-Rank Solutions
An auxiliary result and optimality conditions [B./Breiten ’12/’13]

Deriving first-order optimality conditions for f (SISO) now leads to

H(−λi ) = Ĥ(−λi ),
H ′(−λi ) = Ĥ ′(−λi ),

with H(s) = vT (sD − B)−1 v and λi denoting the eigenvalues of (Â, Ĉ).

Lemma

Σ = (A,B,C ,D, u, v) symmetric set of matrices.

Σ̂ = (Â, B̂, Ĉ , D̂, û, v̂) reduced set of matrices obtained by V , W .

X , X̂ solutions of associated Sylvester equations.

⇒ f (Σerr ) ≤ f (Σ)− f (Σ̂).

⇒ f (Σerr ) = f (Σ)− f (Σ̂)⇔ Σ̂ fulfills optimality conditions.
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Optimal Low-Rank Solutions
The main result

Theorem

Σ = (A,B,C ,D, u, v) symmetric set of matrices.

Σ̂ = (Â, B̂, Ĉ , D̂, û, v̂) reduced set of matrices obtained by V , W .

X , X̂ solutions of associated Sylvester equations.

⇒
∣∣∣∣∣∣X − V X̂W T

∣∣∣∣∣∣
LS

≥ f (Σerr ).

⇒
∣∣∣∣∣∣X − V X̂W T

∣∣∣∣∣∣
LS

= f (Σerr )⇔ Σ̂ fulfills optimality conditions.

Consequence: f -optimality of Σ̂ implies LS -optimality of V X̂W T .

Goal: Find a local minimizer of f (Σerr )!
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Optimal Low-Rank Solutions
An iterative algorithm [B./Breiten ’12/’13]

Algorithm 3 IRKA for symmetric Sylvester equations ((Sy)2IRKA)

Input: Interpolation points σi and µi for i = 1, . . . , n̂
Output: Xn̂ = V X̂W T locally minimizing the LS -norm
1: while relative change in {σi , µi} > tol do
2: V = span{(σ1C − A)−1u, . . . , (σn̂C − A)−1u}, V TV = I .
3: W = span{(µ1D − B)−1v , . . . , (µn̂D − B)−1v}, W TW = I .
4: Â = V TAV , Ĉ = V TCV , B̂ = W TBW , D̂ = W TDW
5: Assign σi ← −λi (B̂, D̂) and µi ← −λi (Â, Ĉ ) for i = 1, . . . , n̂.
6: end while
7: Solve ÂX̂ D̂ + Ĉ X̂ B̂ − ûv̂T , with û = V Tu, v = W T v .
8: Set Xn̂ = V X̂W T .

Remark: Steps 2 and 3 can be replaced by solving

AXD̂ + CXB̂ − uv̂T = 0, DY Â + BY Ĉ − v ûT = 0

→ straigthforward extension to general r.h.s.
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Application: Image reconstruction
A tribute to Lothar’s ”Application of ADI . . . to restoration of noisy images”

Tikhonov regularization

x̂ = min

∣∣∣∣∣∣∣∣[HλL
]
x −

[
g
0

]∣∣∣∣∣∣∣∣2
2

.

Minimizer is given as solution of

(Hλ = HTH + λ2LTL)x̂ = HTg .

Assume H = H2 ⊗ H1 and L = L2 ⊗ L1, with H1, L1 ∈ Rn×n, H2, L2 ∈ Rm×m.

Can be written as

AX̂D + λ2CX̂B = E ,

where A = HT
1 H1,B = LT

2 L2,C = LT
1 L1,D = HT

2 H2,E = HT
1 GH2.

In the following, H1 = [hij ] is the Toeplitz matrix with
hij =

1
2r−1

, |i − j | ≤ r , r = 20.

Moreover, L1 is tridiag(1, 2, 1) and G = Ĝ + N, with Gaussian Noise

||N||F/||Ĝ ||F = 10−3, Ĝ = H1XorH2.
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Image reconstruction
The problem

An evening with Lothar

At 8 pm
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Image reconstruction
The problem

An evening with Lothar

At 9 pm
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Image reconstruction
The problem

An evening with Lothar

At 10 pm
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Image reconstruction
The problem

An evening with Lothar

At 11 pm
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Image reconstruction
The problem

An evening with Lothar

At midnight
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Image reconstruction
The solution

Early morning — who, again, was the guy I was drinking with?

(Sy)2IRKA step 1, r = 40
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Image reconstruction
The solution

Early morning — who, again, was the guy I was drinking with?

(Sy)2IRKA step 2, r = 40
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Image reconstruction
The solution

Early morning — who, again, was the guy I was drinking with?

(Sy)2IRKA step 3, r = 40
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Image reconstruction
The solution

Early morning — who, again, was the guy I was drinking with?

(Sy)2IRKA step 4, r = 40
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Image reconstruction
The solution

Early morning — who, again, was the guy I was drinking with?

(Sy)2IRKA step 5, r = 40
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Image reconstruction
The solution

Early morning — who, again, was the guy I was drinking with?

. . . well. . . recovered
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(Not) The End.

HAPPY BIRTHDAY, Lothar . . .

. . . and keep flying!

Last but not least, HAPPY BIRTHDAY, ETNA!
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