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Introduction
Dynamical Systems

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

Applications:

Repeated simulation for varying material or geometry parameters,
boundary conditions,

control, optimization and design.
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Linear Parametric Systems

Linear, time-invariant (parametric) systems

E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t), A(p),E (p) ∈ Rn×n,

y(t; p) = C (p)x(t; p), B(p) ∈ Rn×m,C (p) ∈ Rq×n.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) 7→ x(s; p), ẋ(t; p) 7→ sx(s; p))
to linear system with x(0) = 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(s; p) = C(p)x(s; p),

yields I/O-relation in frequency domain:

y(s; p) =
(
C(p)(sE(p)− A(p))−1B(p)︸ ︷︷ ︸

=:H(s;p)

)
u(s).

H(s; p) is the parameter-dependent transfer function of Σ(p).

Goal: Fast evaluation of mapping (u, p) → y(s; p).
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E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t), A(p),E (p) ∈ Rn×n,

y(t; p) = C (p)x(t; p), B(p) ∈ Rn×m,C (p) ∈ Rq×n.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) 7→ x(s; p), ẋ(t; p) 7→ sx(s; p))
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Introduction
Model Order Reduction (MOR) Problem

Problem
Approximate the dynamical system

E (p)ẋ = A(p)x + B(p)u, E (p),A(p) ∈ Rn×n,
y = C (p)x , B(p) ∈ Rn×m,C (p) ∈ Rq×n,

by reduced-order system

Ê (p) ˙̂x = Â(p)x̂ + B̂(p)u, Ê (p), Â(p) ∈ Rr×r ,

ŷ = Ĉ (p)x̂ , B̂(p) ∈ Rr×m, Ĉ (p) ∈ Rq×r ,

of order r � n, such that

‖y − ŷ‖ = ‖Hu − Ĥu‖ ≤ ‖H − Ĥ‖ · ‖u‖ < tolerance · ‖u‖ ∀ p ∈ Ω.

=⇒ Approximation problem: min
order (Ĥ)≤r

‖H − Ĥ‖.
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‖H − Ĥ‖.
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Introduction to Model Order Reduction
Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ni ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.
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Introduction to Model Order Reduction
Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ni ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.

Key Observation: Regarding parameter dependencies as additional
inputs, a linear parametric system

ẋ(t) = Ax(t) +

mp∑
i=1

ai (p)Aix(t) + B0u0(t), y(t) = Cx(t)

with B0 ∈ Rn×m0 can be interpreted as bilinear system (with Ni ≡ Ai ):

u(t) :=
[
a1(p) . . . amp (p) u0(t)

]T
,

B :=
[
0 . . . 0 B0

]
∈ Rn×m, m = mp + m0.
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Balanced truncation for linear systems

Idea (for simplicity, E = In)

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1,TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

])
.

Truncation  (Â, B̂, Ĉ) = (A11,B1,C1).
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Balanced truncation for linear systems

Motivation:
HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”
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Motivation:
HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

In balanced coordinates, energy transfer from u− to y+ is

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j .

”engineer’s point of view”
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Balanced truncation for linear systems

Motivation:
HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

In balanced coordinates, energy transfer from u− to y+ is

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j .

”engineer’s point of view” =⇒ Truncate states corresponding to “small” HSVs

=⇒ analogy to best approximation via SVD, therefore
balancing-related methods are sometimes called SVD methods.
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Balanced truncation for linear systems

Implementation: SR Method
1 Compute (Cholesky) factors of the solutions of the Lyapunov

equations,
P = STS , Q = RTR.

2 Compute SVD

SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T
1

V T
2

]
.

3 Set
, V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ).
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Balanced truncation for linear systems

Implementation: SR Method
1 Compute (Cholesky) factors of the solutions of the Lyapunov

equations,
P = STS , Q = RTR.

2 Compute SVD

SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T
1

V T
2

]
.

3 Set
W = RTV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ).

Note: T := Σ−
1
2V TR yields balancing state-space transformation with

T−1 = STUΣ−
1
2 , so that W T = T (1 : r , :) and V = T−1(:, 1 : r).
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Balanced truncation for linear systems

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2.
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LQG Balanced Truncation

Instead of system Gramians P,Q, use solutions of algebraic Riccati
equations (AREs)

0 = AP + PAT − PCTCP + BBT ,

0 = ATQ + QA− QBBTQ + CTC ,

related to linear-quadratic Gaussian (LQG) control design.
Properties:

Applicable to unstable systems.

When factorizations P = STS , Q = RTR are available,
construction of reduced-order model exactly as in SR method for
balanced truncation.

Error bound: ”‖H − Ĥ‖L∞” ≤ 2
n∑

j=r+1

γj√
1 + γ2j

, where

{γ1, . . . , γn} = Λ (PQ)
1
2 , γ1 ≥ . . . γn ≥ 0.
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Summary of Introduction

Balancing-based MOR of linear systems requires the efficient numerical
solution of either linear or nonlinear matrix equations:
Balanced truncation: Lyapunov equations

0 = AP + PAT + BBT = L(P),
0 = ATQ + QA + CTC = L∗(Q).

LQG Balanced truncation: algebraic Riccati equations

0 = AP + PAT − PCTCP + BBT = L(P)− PCTCP,
0 = ATQ + QA− QBBTQ + CTC = L∗(Q)− QBBTQ.

Numerous mature methods exist, e.g.,

for Lyapunov equations: (rational) Krylov subspace methods,
low-rank ADI, Riemannian optimization, . . .

for AREs: (rational) Krylov subspace methods, Newton-ADI,
Chandrasekhar iteration, . . .
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Bilinear Lyapunov Equations
Bilinear Control Systems — Theory and Background

Bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ni ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.

Properties:

Approximation of (weakly) nonlinear systems by Carleman linearization
yields bilinear systems.

Appear naturally in boundary control problems, control via coefficients of
PDEs, Fokker-Planck equations, . . .

Due to the close relation to linear systems, a lot of successful concepts can
be extended, e.g. transfer functions, Gramians, Lyapunov equations, . . .

Linear stochastic control systems possess an equivalent structure and can
be treated alike [B./Damm ’11].
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Bilinear Lyapunov Equations
Balanced truncation for bilinear systems

The concept of balanced truncation can be generalized to the case of
bilinear systems, where we need the solutions of the generalized
Lyapunov equations:

AP + PAT +
m∑
i=1

NiPA
T
i + BBT = 0,

ATQ + QAT +
m∑
i=1

NT
i QAi + CTC = 0.

Due to its approximation quality, first method of choice for
medium-size systems.

These equations also appear for stochastic control systems, see
[B./Damm ’11].

For an iterative full-rank solver, see [Damm ’08].
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Bilinear Lyapunov Equations
Some basic facts and assumptions

AX + XAT +
m∑
i=1

NiXN
T
i + BBT = 0. (1)

Need a positive semi-definite symmetric solution X .

In standard Lyapunov case, existence and uniqueness guaranteed if A
stable (Λ (A) ⊂ C−); this is not sufficient here: (1) is equivalent to(

In ⊗ A + A⊗ In +
m∑
i=1

Ni ⊗ Ni

)
vec(X ) = − vec(BBT ).

One sufficient condition for stable A is smallness of Ni (related to stability
radius of A)

 bounded-input bounded-output (BIBO) stability of bilinear systems.

This will be assumed from here on, hence: existence and uniqueness of
positive semi-definite solution X = XT .

Want: solution methods for large scale problems, i.e., only matrix-matrix
multiplication with A,Nj , solves with (shifted) A allowed!

Requires to compute data-sparse approximation to generally dense X ;
here: X ≈ ZZT with Z ∈ Rn×nZ , nZ � n!
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One sufficient condition for stable A is smallness of Ni (related to stability
radius of A)

 bounded-input bounded-output (BIBO) stability of bilinear systems.

This will be assumed from here on, hence: existence and uniqueness of
positive semi-definite solution X = XT .

Want: solution methods for large scale problems, i.e., only matrix-matrix
multiplication with A,Nj , solves with (shifted) A allowed!

Requires to compute data-sparse approximation to generally dense X ;
here: X ≈ ZZT with Z ∈ Rn×nZ , nZ � n!
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

Apply

M−1 = −
∫ ∞
0

exp(tM)dt

to A and approximate the integral via (sinc) quadrature ⇒

A−1 ≈ −
k∑

i=−k

ωi exp(tkA),

with error ∼ exp(−
√
k) (exp(−k) if A = AT ), then an approximate Lyapunov

solution is given by

vec(X ) ≈ vec(Xk) =
k∑

i=−k

ωi exp(tiA) vec(BBT ).
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

vec(X ) ≈ vec(Xk) =
k∑

i=−k

ωi exp(tiA) vec(BBT ).

Now observe that

exp(tiA) = exp (ti (In ⊗ A + A⊗ In)) ≡ exp(tiA)⊗ exp(tiA).
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Standard Lyapunov case: [Grasedyck ’04]

AX + XAT + BBT = 0 ⇐⇒ (In ⊗ A + A⊗ In)︸ ︷︷ ︸
=:A

vec(X ) = − vec(BBT ).

Hence,

vec(Xk) =
k∑

i=−k

ωi (exp(tiA)⊗ exp(tiA)) vec(BBT )

=⇒ Xk =
k∑

i=−k

ωi exp(tiA)BBT exp(tiA
T ) ≡

k∑
i=−k

ωiBiB
T
i ,

so that rank (Xk) ≤ (2k + 1)m with

‖X − Xk‖2 . exp(−
√
k) ( exp(−k) for A = AT )!
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Problem: in general,

exp

ti (I ⊗ A+ A⊗+
m∑
j=1

Nj ⊗ Nj )

 6= (exp (tiA)⊗ exp (tiA)) exp

ti (
m∑
j=1

Nj ⊗ Nj )

.
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Assume that m = 1 and N1 = UV T with U,V ∈ Rn×r and consider

( In ⊗ A + A⊗ In︸ ︷︷ ︸
=A

+N1 ⊗ N1 ) vec(X ) = − vec(BBT )︸ ︷︷ ︸
=:y

.
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Assume that m = 1 and N1 = UV T with U,V ∈ Rn×r and consider

( In ⊗ A + A⊗ In︸ ︷︷ ︸
=A

+N1 ⊗ N1 ) vec(X ) = − vec(BBT )︸ ︷︷ ︸
=:y

.

Sherman-Morrison-Woodbury =⇒(
Ir ⊗ Ir + (V T ⊗ V T )A−1(U ⊗ U)

)
w = (V T ⊗ V T )A−1y ,

A vec(X ) = y − (U ⊗ U)w .
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0 ?

Assume that m = 1 and N1 = UV T with U,V ∈ Rn×r and consider

( In ⊗ A + A⊗ In︸ ︷︷ ︸
=A

+N1 ⊗ N1 ) vec(X ) = − vec(BBT )︸ ︷︷ ︸
=:y

.

Sherman-Morrison-Woodbury =⇒(
Ir ⊗ Ir + (V T ⊗ V T )A−1(U ⊗ U)

)
w = (V T ⊗ V T )A−1y ,

A vec(X ) = y − (U ⊗ U)w .

Matrix representation of r.h.s., −BBT−U vec−1 (w)UT has rank ≤ r+1!
 Apply results for linear Lyapunov equations with r.h.s of rank r + 1.
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Bilinear Lyapunov Equations
Existence of low-rank approximations

Theorem [B./Breiten 2012]

Assume existence and uniqueness assumption with stable A and
Nj = UjV

T
j , with Uj ,Vj ∈ Rn×rj . Set r =

∑m
j=1 rj .

Then the solution X of

AX + XAT +
m∑
j=1

NjXN
T
j + BBT = 0

can be approximated by Xk of rank (2k + 1)(m + r), with an error
satisfying

‖X − Xk‖2 . exp(−
√
k).

Max Planck Institute Magdeburg P. Benner, Matrix Equations in Model Reduction 14/27



MOR Bilinear Lyapunov Equations Application to Parametric MOR Stochastic Systems Conclusions and Outlook

Bilinear Lyapunov Equations
Generalized alternating directions iteration (ADI)

Let us again consider the generalized Lyapunov equation

AP + PAT + NPNT + BBT = 0.

Max Planck Institute Magdeburg P. Benner, Matrix Equations in Model Reduction 15/27



MOR Bilinear Lyapunov Equations Application to Parametric MOR Stochastic Systems Conclusions and Outlook

Bilinear Lyapunov Equations
Generalized alternating directions iteration (ADI)

Let us again consider the generalized Lyapunov equation

AP + PAT + NPNT + BBT = 0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT =
1

2p

(
(A + pI )P(A + pI )T − (A− pI )P(A− pI )T

)
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Bilinear Lyapunov Equations
Generalized alternating directions iteration (ADI)

Let us again consider the generalized Lyapunov equation

AP + PAT + NPNT + BBT = 0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT =
1

2p

(
(A + pI )P(A + pI )T − (A− pI )P(A− pI )T

)
leading to the fix point iteration [Damm ’08]

Pj = (A− pI )−1(A + pI )Pj−1(A + pI )T (A− pI )−T

+ 2p(A− pI )−1(NPj−1N
T + BBT )(A− pI )−T .
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Bilinear Lyapunov Equations
Generalized alternating directions iteration (ADI)

Let us again consider the generalized Lyapunov equation

AP + PAT + NPNT + BBT = 0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT =
1

2p

(
(A + pI )P(A + pI )T − (A− pI )P(A− pI )T

)
leading to the fix point iteration [Damm ’08]

Pj = (A− pI )−1(A + pI )Pj−1(A + pI )T (A− pI )−T

+ 2p(A− pI )−1(NPj−1N
T + BBT )(A− pI )−T .

Pj ≈ ZjZ
T
j (rank (Zj)� n)  factored iteration

ZjZ
T
j = (A− pI )−1(A + pI )Zj−1Z

T
j−1(A + pI )T (A− pI )−T

+ 2p(A− pI )−1(NZj−1Z
T
j−1N

T + BBT ).

Max Planck Institute Magdeburg P. Benner, Matrix Equations in Model Reduction 15/27



MOR Bilinear Lyapunov Equations Application to Parametric MOR Stochastic Systems Conclusions and Outlook

Bilinear Lyapunov Equations
Generalized alternating directions iteration (ADI)

Hence, for a given sequence of shift parameters {p1, . . . , pq}, we can
extend the linear ADI iteration as follows:

Z1 =
√

2p1 (A− p1I )
−1 B,

Zj = (A− pj I )
−1 [(A + pj I )Zj−1

√
2pjB

√
2pjNZj−1

]
, j ≤ q.
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Bilinear Lyapunov Equations
Generalized alternating directions iteration (ADI)

Hence, for a given sequence of shift parameters {p1, . . . , pq}, we can
extend the linear ADI iteration as follows:

Z1 =
√

2p1 (A− p1I )
−1 B,

Zj = (A− pj I )
−1 [(A + pj I )Zj−1

√
2pjB

√
2pjNZj−1

]
, j ≤ q.

Problems:

A and N in general do not commute  we have to operate on full
preceding subspace Zj−1 in each step.

Rapid increase of rank (Zj) perform some kind of column
compression.

Choice of shift parameters?  No obvious generalization of
minimax problem.
Here, we will use shifts minimizing a certain H2-optimization
problem, see [B./Breiten ’11].
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Generalized alternating directions iteration (ADI)
Numerical Example: A Heat Transfer Model with Uncertainty

2-dimensional heat distribution
motivated by [Benner/Saak ’05]

boundary control by a cooling
fluid with an uncertain spraying
intensity

Ω = (0, 1)× (0, 1)

xt = ∆x in Ω

n · ∇x = (0.5 + dω1)x on Γ1

x = u on Γ2

x = 0 on Γ3, Γ4

spatial discretization k × k-grid

⇒ dx ≈ Axdt + Nxdωi + Budt

output: C =
1

k2

[
1 . . . 1

]

Γ1

Γ3

Γ4

Γ2

x10

x20

x30

x01 x02 x03

x14

x24

x34

x41 x42 x43

x11

x21

x31

x12

x22

x32

x13

x23

x33
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Generalized alternating directions iteration (ADI)
Numerical Example: A Heat Transfer Model with Uncertainty

Conv. history for bilinear low-rank ADI method (n = 40, 000)
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Bilinear Lyapunov Equations
Generalizing the Extended Krylov Subspace Method (EKSM) [Simoncini ’07]

Low-rank solutions of the generalized Lyapunov equation now may be
obtained by projecting the original equation onto a suitable smaller
subspace V = span(V ), V ∈ Rn×k , with V TV = I .

In more detail, solve(
V TAV

)
X̂ + X̂

(
V TATV

)
+
(
V TNV

)
X̂
(
V TNTV

)
+
(
V TB

) (
BTV

)
= 0

and prolongate X ≈ V X̂V T .

For this, one might use the extended Krylov subspace method (EKSM)
algorithm in the following way:

V1 =
[
B A−1B

]
,

Vr =
[
AVr−1 A−1Vr−1 NVr−1

]
, r = 2, 3, . . .

However, criteria like dissipativity of A for the linear case which ensure
solvability of the projected equation have to be further investigated.
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Bilinear EKSM
Residual computation in O(k3)

Theorem

Let Vi ∈ Rn×ki be the extendend Krylov matrix after i generalized EKSM steps.
Denote the residual associated with the approximate solution Xi = Vi X̂iV

T
i by

Ri := AXi + XiA
T + NXiN

T + BBT ,

where X̂i is the solution of the reduced bilinear Lyapunov equation

V T
i AVi X̂i + X̂iV

T
i ATVi + V T

i NVi X̂iV
T
i NTVi + V T

i BBTVi = 0.

Then:

range (Ri ) ⊂ range (Vi+1),

‖Ri‖ = ‖V T
i+1RiVi+1‖ for the Frobenius and spectral norms.

Remarks:

Residual evaluation only requires quantities needed in i + 1st projection
step plus O(k3

i+1) operations.

No Hessenberg structure of reduced system matrix that allows to simplify
residual expression as in standard Lyapunov case!
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Bilinear EKSM
Numerical Example: A Heat Transfer Model with Uncertainty

Convergence history for bilinear EKSM variant (n = 6, 400)
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Bilinear Lyapunov Equations
Tensorized Krylov subspace methods

Another possibility is to iteratively solve the linear system

(In ⊗ A + A⊗ In + N ⊗ N) vec(P) = − vec(BBT ),

with a fixed number of ADI iteration steps used as a preconditioner M

M−1 (In ⊗ A + A⊗ In + A1 ⊗ A1) vec(P) = −M−1 vec(BBT ).

We implemented this approach for PCG and BiCGstab.

Updates like Xk+1 ← Xk + ωkPk require truncation operator to preserve
low-order structure.

Note, that the low-rank factorization X ≈ ZZT has to be replaced by
X ≈ ZDZT , D possibly indefinite.

Similar to more general tensorized Krylov solvers, see [Kressner/Tobler ’10/’12].
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Tensorized Krylov subspace methods
Vanilla implementation of tensor-PCG for bilinear matrix equations

Algorithm 1 Preconditioned CG method for A(X )− B
Input: Matrix functions A,M : Rn×n → Rn×n, low rank factor B of right-hand side
B = −BBT . Truncation operator T w.r.t. relative accuracy εrel .

Output: Low rank approximation X = LDLT with ||A(X )− B||F ≤ tol.
1: X0 = 0, R0 = B, Z0 =M−1(R0), P0 = Z0, Q0 = A(P0), ξ0 = 〈P0,Q0〉, k = 0
2: while ||Rk ||F > tol do

3: ωk = 〈Rk ,Pk〉
ξk

4: Xk+1 = Xk + ωkPk , Xk+1 ← T (Xk+1)
5: Rk+1 = B −A(Xk+1), Optionally: Rk+1 ← T (Rk+1)
6: Zk+1 =M−1(Rk+1)

7: βk = − 〈Zk+1,Qk〉
ξk

8: Pk+1 = Zk+1 + βkPk , Pk+1 ← T (Pk+1)
9: Qk+1 = A(Pk+1), Optionally: Qk+1 ← T (Qk+1)
10: ξk+1 = 〈Pk+1,Qk+1〉
11: k = k + 1
12: end while
13: X = Xk

Here, A : X → AX + XAT + NXNT , M: ` steps of (bilinear) ADI, both in
low-rank (”ZDZT” format).
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Comparison of methods
Heat equation with boundary control

Comparison of low rank solution methods for n = 562, 500.
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Comparison of methods
Fokker-Planck equation

Comparison of low rank solution methods for n = 10, 000.
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Comparison of methods
RC circuit simulation

Comparison of low rank solution methods for n = 250, 000.
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Comparison of methods

Comparison of CPU times

Heat equation RC circuit Fokker-Planck

Bilin. ADI 2 H2 shifts - - 1.733 (1.578)

Bilin. ADI 6 H2 shifts 144,065 (2,274) 20,900 (3091) -

Bilin. ADI 8 H2 shifts 135,711 (3,177) - -

Bilin. ADI 10 H2 shifts 33,051 (4,652) - -

Bilin. ADI 2 Wachspress shifts - - 6.617 (4.562)

Bilin. ADI 4 Wachspress shifts 41,883 (2,500) 18,046 (308) -

CG (Bilin. ADI precond.) 15,640 - -

BiCG (Bilin. ADI precond.) - 16,131 11.581

BiCG (Linear ADI precond.) - 12,652 9.680

EKSM 7,093 19,778 8.555

Numbers in brackets: computation of shift parameters.
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Application to Parametric MOR
Fast simulation of cyclic voltammogramms [Feng/Koziol/Rudnyi/Korvink ’06]

Eẋ(t) = (A + p1(t)A1 + p2(t)A2)x(t) + B,

y(t) = Cx(t), x(0) = x0 6= 0,

Rewrite as system with zero initial
condition,

FE model: n = 16, 912, m = 3, q = 1,

pj ∈ [0, 109] time-varying voltage
functions,

transfer function H(iω, p1, p2),

reduced system dimension r = 67,

max
ω∈{ωmin,...,ωmax}
pj∈{pmin,...,pmax}

||H−Ĥ||2
||H||2

< 6 · 10−4,

evaluation times: FOM 4.5h, ROM 38s
 speed-up factor ≈ 426.

Figure: [Feng et al. ’06]
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Application to Parametric MOR
Fast simulation of cyclic voltammogramms [Feng/Koziol/Rudnyi/Korvink ’06]

Original. . . and reduced-order model.
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Application to Parametric MOR
Fast simulation of cyclic voltammogramms [Feng/Koziol/Rudnyi/Korvink ’06]

Convergence history for bilinear ADI iteration
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Application to Parametric MOR
Fast simulation of cyclic voltammogramms [Feng/Koziol/Rudnyi/Korvink ’06]

Rank increase for bilinear ADI iteration
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Application to Parametric MOR
2D model of an anemometer [Baur et al. ’10]

SenL Heater SenR

FlowProfile

Figure: [Baur et al. ’10]

Consider an anemometer, a flow sensing device located on a membrane
used in context of minimizing heat dissipation.

Eẋ(t) = (A + pA1)x(t) + Bu(t), y(t) = Cx(t), x(0) = 0,

FE model: n = 29, 008, m = 1, q = 3,

p1 ∈ [0, 1] fluid velocity,

transfer function H(iω, p1), reduced system dimension r = 146,

max
ω∈{ωmin,...,ωmax}
p1∈{pmin,...,pmax}

‖H(ω,p)−Ĥ(ω,p)‖2
‖H(ω,p)‖2 < 3 · 10−5,

evaluation times: FOM 51min, ROM 21s.
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Application to Parametric MOR
2D model of an anemometer [Baur et al. ’10]

Convergence history for preconditioned BiCGstab
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Application to Parametric MOR
2D model of an anemometer [Baur et al. ’10]

Rank increase for preconditioned BiCGstab
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Stochastic Systems

Itô-type linear stochastic differential equations (SDE):

Σ :

{
dx(t) = Ax(t)dt + Nx(t)dω(t) + Bu(t)dt,

y(t) = Cx(t), x(0) = x0.

Here, A,N ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n and dω(t) are white noise processes
associated with a Wiener process ω(t).

The SDE formalism is merely a notation for

x(t) = x(0) +

∫ t

0

Ax(τ)dτ +

∫ t

0

Nx(τ)dω +

∫ t

0

Bu(τ)dτ,

with dωi denoting the Itô integral.
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Stochastic Systems

Itô-type linear stochastic differential equations (SDE):

Σ :

{
dx(t) = Ax(t)dt + Nx(t)dω(t) + Bu(t)dt,

y(t) = Cx(t), x(0) = x0.

Balanced truncation for linear SDEs requires the same steps as for deterministic
systems, instead of standard Lyapunov equations need to solve again

AP + PAT + NPNT + BBT = 0,

ATQ + QAT + NTQN + CTC = 0.
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y(t) = Cx(t), x(0) = x0.

Balanced truncation for linear SDEs requires the same steps as for deterministic
systems, instead of standard Lyapunov equations need to solve again

AP + PAT + NPNT + BBT = 0,

ATQ + QAT + NTQN + CTC = 0.

Can show stability preservation under certain assumptions, but no error bound!
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Stochastic Systems

Itô-type linear stochastic differential equations (SDE):

Σ :

{
dx(t) = Ax(t)dt + Nx(t)dω(t) + Bu(t)dt,

y(t) = Cx(t), x(0) = x0.

Balanced truncation for linear SDEs requires the same steps as for deterministic
systems, instead of standard Lyapunov equations need to solve again

AP + PAT + NPNT + BBT = 0,

ATQ + QAT + NTQN + CTC = 0.

Can show stability preservation under certain assumptions, but no error bound!
Alternative: Applying balanced truncation using P̃ and Q, where

AP̃ + P̃AT + P̃NP̃−1NT P̃ + BBT = 0,

we obtain desired error bound ‖y−ŷ‖L2ω ≤ 2
(∑n

j=r+1 σj

)
‖u‖L2ω [B./Damm ’12].
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Stochastic Systems

Itô-type linear stochastic differential equations (SDE):

Σ :

{
dx(t) = Ax(t)dt + Nx(t)dω(t) + Bu(t)dt,

y(t) = Cx(t), x(0) = x0.

Balanced truncation for linear SDEs requires the same steps as for deterministic
systems, instead of standard Lyapunov equations need to solve again

AP + PAT + NPNT + BBT = 0,

ATQ + QAT + NTQN + CTC = 0.

Can show stability preservation under certain assumptions, but no error bound!
Alternative: Applying balanced truncation using P̃ and Q, where

AP̃ + P̃AT + P̃NP̃−1NT P̃ + BBT = 0,

we obtain desired error bound ‖y−ŷ‖L2ω ≤ 2
(∑n

j=r+1 σj

)
‖u‖L2ω [B./Damm ’12].

Problem: no satisfactory solution method for new nonlinear matrix equation!
Note: using P̂ := P̃−1, we obtain an algebraic Bernoulli equation:

P̂A + AT P̂ + NP̂NT + P̂BBT P̂ = 0.
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Stochastic Systems

Itô-type linear stochastic differential equations (SDE):

Σ :

{
dx(t) = Ax(t)dt + Nx(t)dω(t) + Bu(t)dt,

y(t) = Cx(t), x(0) = x0.

In analogy to LGQ BT for deterministic systems, could use solutions of stochastic
LQG equations [Wonham ’68]:

0 = AP + PAT + NQNT − PCTCP + BBT ,

0 = ATQ + QA + NTQN − QBBTQ + CTC .

Solution for large-scale problems using Newton-ADI or Newton-EKSM
[B./Breiten ILAS 2011].

No results regarding properties of reduced-order model.

Might also use these equations for ”LQG BT” for bilinear systems, but:
these are not LQG equations from LQG design for bilinear systems; there,
P,Q are state-dependent as, e.g., B → B + Nx!
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Conclusions and Outlook

Model reduction for bilinear and stochastic systems leads to the
solution of generalized (”bilinear”) Lyapunov equations.

Special versions of balanced truncation for stochastic systems lead
to nonlinear matrix equations.

We have established a connection between special linear parametric
and bilinear systems that automatically yields structure-preserving
model reduction techniques for linear parametric systems.

Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of generalized Lyapunov equations.

Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ∼ 500, 000 in MATLAB R©.

Optimal choice of shift parameters for ADI is a nontrivial task.

What about the singular value decay in case of N being full rank?
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