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Linear Systems

LTI Systems

Σ :

{
ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t),

with

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,

state vector x(t) ∈ Rn,

input vector u(t) ∈ Rm,

output vector y(t) ∈ Rp.

ẋ(t) = Ax(t) + Bu(t)

y (t) = Cx(t) + Du(t)

u(t) y (t)

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 4/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

Stability and Controllability

Definitions
The system Σ is called

(asymptotically) stable if limt→∞ x(t) = 0 for u ≡ 0;

controllable if for all x1 ∈ Rn there exist t1 > 0 and an input signal
u(t) such that x(t1) = x1.

observable if y(t) ≡ 0 implies x(t) ≡ 0 (assuming u(t) ≡ 0).

Equivalent Conditions

The system Σ is

(asymptotically) stable ⇐⇒ all eigenvalues of A are in the open left
half-plane;

controllable ⇐⇒ rank
[
λIn − A B

]
= n for all λ ∈ C.

observable ⇐⇒ rank
[
λIn − AT CT

]
= n for all λ ∈ C.

minimal if it is controllable and observable.
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Frequency Domain Analysis

Laplace transform

L{f }(s) :=

∫ ∞
0

e−st f (t)dt

Transfer function

Assume x(0) = 0. Then

Then

L{y}(s) = C (sIn − A)−1B︸ ︷︷ ︸
=:G(s)

L{u}(s).

The transfer function G (s) maps inputs to outputs in the frequency
domain.
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Dissipative Systems

Definition [Scherer, Weiland ’05]

A dynamical system Σ is called dissipative with respect to a supply
function s : Rp × Rm −→ R if there exists a storage function
V : Rn −→ R such that the dissipation inequality

V (x(t1)) ≤ V (x(0)) +

∫ t1

0

s(y(t), u(t))dt

is fulfilled for all 0 ≤ t1.

Interpretation∫ t1

0

s(y(t), u(t))dt can be seen as the energy supplied to the system

in the time interval [0, t1].

s(y(t), u(t)) is a measure for the power at time t.

V (x(t)) is the internal energy at time t.
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Quadratic Supply Functions

Often, we consider

s(y(t), u(t)) =

[
y(t)
u(t)

]T [
W S
ST R

] [
y(t)
u(t)

]
with W = W T , R = RT

=

[
Cx(t) + Du(t)

u(t)

]T [
W S
ST R

] [
Cx(t) + Du(t)

u(t)

]
=

[
x(t)
u(t)

]T [
CTWC CTWD + CTS

DTWC + STC DTWD + DTS + STD + R

] [
x(t)
u(t)

]
=:

[
x(t)
u(t)

]T [
W̃ S̃

S̃T R̃

] [
x(t)
u(t)

]
=: s̃(x(t), u(t)).
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Special Cases

Passivity

s(y(t), u(t)) =

[
y(t)
u(t)

]T [
0 Im
Im 0

] [
y(t)
u(t)

]
,

s̃(x(t), u(t)) =

[
x(t)
u(t)

]T [
0 CT

C D + DT

] [
x(t)
u(t)

]
.

Contractivity

s(y(t), u(t)) =

[
y(t)
u(t)

]T [−Ip 0
0 Im

] [
y(t)
u(t)

]
,

s̃(x(t), u(t)) =

[
x(t)
u(t)

]T [−CTC −CTD
−DTC Im − DTD

] [
x(t)
u(t)

]
.
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Dissipativity in the Frequency Domain

Definition: Popov function

Φ(s) =

[
(sIn − A)−1B

Im

]H [
W S
ST R

] [
(sIn − A)−1B

Im

]

Theorem
Let Σ be controllable. Then, Σ is dissipative with respect to

s̃(x(t), u(t)) =

[
x(t)
u(t)

]T [
W S
ST R

] [
x(t)
u(t)

]
if and only if Φ(iω) < 0 holds

for all iω ∈ iR\Λ(A).
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Special Cases

Passivity and positive realness

A dynamical system is passive if and only its transfer function G is
positive real, i.e.,

G (s) + GH(s) < 0 ∀s ∈ C+.

Contractivity and bounded realness

A dynamical system is contractive if and only its transfer function G is
bounded real, i.e.,

Im − GH(s)G (s) < 0 ∀s ∈ C+.

Remark
In contrast to general dissipativity, positive and bounded realness are
properties of Φ(s) in the whole open right half-plane. It can be shown
that for these cases V (x(t)) = x(t)TXx(t) for an X = XT < 0.
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Relations to H∞ Optimal Control

Problem setting [Green, Limebeer ’95]

P

w z

K

u y

Plant P, dynamic compensator K,

noise w , estimation error z .

Goal: Find K that stabilizes the system
and minimizes the influence of w on z!
( = minimizing the H∞-norm of
closed-loop transfer function)

H∞-spaces

Hp×m
∞ (iω) = Banach space of p ×m matrix-valued functions which are

analytic and bounded in the open right half-plane.

H∞-norm (in this setting)

‖G‖H∞ = sup
s∈C+

σmax(G (s)) = sup
ω∈R

σmax(G (iω))

= inf
γ≥0

{
γ2Im − GH(iω)G (iω) < 0 ∀ω ∈ R

}
.
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Algebraic Characterizations

Dissipativity can be characterized by properties of various algebraic
structures such as

linear matrix inequalities,

quadratic matrix inequalities,

algebraic matrix equations (Riccati equations, Lur’e equations),

(structured matrices and matrix pencils).
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Kalman-Yakubovich-Popov(-Anderson) Lemma

Consider again the dissipation inequality (in differential form):

s̃(x(t),u(t)) =

[
x(t)
u(t)

]T [
W S
ST R

] [
x(t)
u(t)

]
≥ V̇ (x(t))ẋ(t)

(set V (x(t)) = x(t)TXx(t) with X = XT )

= 2x(t)TX (Ax(t) + Bu(t))

= x(t)TXAx(t) + x(t)TXBu(t) + x(t)TATXx(t) + u(t)TBTXx(t)

=

[
x(t)
u(t)

]T [
ATX + XA XB

BTX 0

] [
x(t)
u(t)

]
.

This obviously holds if there exists X = XT such that[
W S
ST R

]
≥
[
ATX + XA XB

BTX 0

]
.
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x(t)
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BTX 0
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x(t)
u(t)

]
.

This obviously holds if there exists X = XT such that[
W S
ST R

]
≥
[
ATX + XA XB

BTX 0

]
.
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Kalman-Yakubovich-Popov(-Anderson) Lemma

Theorem [Willems ’72]

Let Σ be controllable. Then Σ is dissipative with respect to s(x(t), u(t))
(or equivalently Φ(iω) < 0 ∀iω ∈ iR\Λ(A)) if and only if there exists a
symmetric matrix X such that the linear matrix inequality (LMI)[

ATX + XA−W XB − S
BTX − ST −R

]
4 0

is fulfilled.

History

’61: Popov’s criterion for stability of a feedback system with a
memoryless nonlinearity.

’62/’63: Original version of the lemma by Kalman and Yakubovich.

’67: Anderson’s positive real lemma for multivariate transfer
functions.

until today: Many generalizations and extensions.
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Special Cases

Positive real lemma

Let Σ be controllable. Then Σ is passive (or equivalently G (s) is positive
real) if and only if there exists X = XT < 0 such that the LMI[

ATX + XA XB − CT

BTX − C −(D + D)T

]
4 0

is fulfilled.

Bounded real lemma

Let Σ be controllable. Then Σ is contractive (or equivalently G (s) is
bounded real) if and only if there exists X = XT < 0 such that the LMI[

ATX + XA + CTC XB + CTD
BTX + DTC DTD − Im

]
4 0

is fulfilled.
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Other Algebraic Characterizations — R nonsingular

Linear Matrix Inequality[
ATX + XA−W XB − S

BTX − ST −R

]
4 0, X = XT solvable.

m

Quadratic Matrix Inequality

ATX +XA−W +(XB − S) R−1
(
BTX − ST

)
4 0, X = XT solvable.

m

Algebraic Riccati Equation

ATX +XA−W +(XB − S) R−1
(
BTX − ST

)
= 0, X = XT solvable.
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Other Algebraic Characterizations — R singular

Linear Matrix Inequality[
ATX + XA−W XB − S

BTX − ST −R

]
4 0, X = XT solvable.
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Other Algebraic Characterizations — R singular

Linear Matrix Inequality[
ATX + XA−W XB − S

BTX − ST −R

]
4 0, X = XT solvable.

m

Quadratic Matrix Inequality

ATX + XA−W + (XB − S) R−1
(
BTX − ST

)
4 0, X = XT

cannot be formulated!
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Other Algebraic Characterizations — R singular

Linear Matrix Inequality[
ATX + XA−W XB − S

BTX − ST −R

]
4 0, X = XT solvable.

m

Lur’e Equation

ATX + XA−W = −KTK ,

XB − S = −KTL,

−R = −LTL,

X = XT

solvable for (X ,K , L) ∈ Rn×n ×Rp×n ×Rp×m and p as small as possible.
first formulated in [Lur’e ’57]

More on KYP and Lur’e equations in M. Voigt’s talk on Wednesday!
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Some Remarks on Numerical Aspects

In the control literature, one often finds statements:
We have reduced the problem to an LMI =⇒ problem solved!

Good reference for LMI formulaion of control problems:
V. Balakrishnan, L. Vandenberghe, ”Semidefinite programming duality and linear

time-invariant systems”, IEEE TAC, 2003.

True for small dimensions, say n < 10.

But: numerical solution of LMIs requires Semidefinite Programming
(SDP) methods, this requires generically O(n6) floating point
operations (flops), with some tricks and exploiting structures
O(n4.5).

Methods based on Lyapunov or Riccati equations, invariant
subspaces of Hamiltonian matrices or even pencils generically require
only O(n3) flops, and can be implemented in O(nmp) flops for some
large-scale problems with sparse state matrix A.
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Some Remarks on Numerical Aspects
Complexity of Numerical Linear Algebra (NLA) and SDP Solutions to Control Problems
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Model Reduction for LTI Systems
Balanced truncation for linear systems

Idea

Σ :

(
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, AT Q + QA + CT C = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

„»
A11 A12

A21 A22

–
,

»
B1

B2

–
,
ˆ

C1 C2

˜
,D

«
.

Truncation  (Â, B̂, Ĉ , D̂) = (A11,B1,C1,D).
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ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, AT Q + QA + CT C = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

„»
A11 A12

A21 A22

–
,

»
B1

B2

–
,
ˆ

C1 C2

˜
,D

«
.
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Model Reduction for LTI Systems
Balanced truncation for linear systems

Motivation:
HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”
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HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

In balanced coordinates, energy transfer from u− to y+ is

E := sup
u∈L2(−∞,0]

x(0)=x0

∞R
0

y(t)T y(t) dt

0R
−∞

u(t)T u(t) dt

=
1

||x0||2

nX
j=1

σ2
j x2

0,j .

”engineer’s point of view”
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Model Reduction for LTI Systems
Balanced truncation for linear systems

Motivation:
HSV are system invariants: they are preserved under T and determine
the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

”functional analyst’s point of view”

In balanced coordinates, energy transfer from u− to y+ is

E := sup
u∈L2(−∞,0]

x(0)=x0

∞R
0

y(t)T y(t) dt

0R
−∞

u(t)T u(t) dt

=
1

||x0||2

nX
j=1

σ2
j x2

0,j .

”engineer’s point of view” =⇒ Truncate states corresponding to “small” HSVs

=⇒ analogy to best approximation via SVD, therefore
balancing-related methods are sometimes called SVD methods.
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Model Reduction for LTI Systems
Balanced truncation for linear systems

Implementation: SR Method
1 Compute (Cholesky) factors of the solutions of the Lyapunov

equations,
P = STS , Q = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
, V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ).
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Implementation: SR Method
1 Compute (Cholesky) factors of the solutions of the Lyapunov

equations,
P = STS , Q = RTR.

2 Compute SVD

SRT = [ U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 Set
W = RTV1Σ

−1/2
1 , V = STU1Σ

−1/2
1 .

4 Reduced model is (W TAV ,W TB,CV ).

Note: T := Σ−
1
2 V T R yields balancing state-space transformation with

T−1 = ST UΣ−
1
2 , so that T =

»
W T

∗

–
and T−1 =

ˆ
V ∗

˜
.
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Model Reduction for LTI Systems
Balanced truncation for linear systems

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

||y − ŷ ||2 ≤
(

2
∑n

k=r+1
σk

)
︸ ︷︷ ︸

=:δ

||u||2 .
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Model Reduction for LTI Systems
Balanced truncation for linear systems

Relation to KYP
Structural properties of reduced-order models can be proved using KYP.

Error bound can be proved using KYP as follows:

E(s) =
ˆ
C −Ĉ

˜„
sIn+r −

»
A

Â

–«−1 »
B

B̂

–
=: C̃

“
sIn+r − Ã

”−1

B̃.

is a stable transfer function, i.e., E ∈ H∞.
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sIn+r −

»
A

Â

–«−1 »
B

B̂

–
=: C̃

“
sIn+r − Ã

”−1

B̃.

is a stable transfer function, i.e., E ∈ H∞. Hence,

‖E‖H∞ < δ ⇐⇒ Φδ(iω) < 0 ∀ω

for Popov function

Φδ(s) =

»
(sIn+r − Ã)−1B̃

Im

–H »−C̃T C̃ 0
0 δ2Im

– »
(sIn+r − Ã)−1B̃

Im

–
.
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Using KYP and properties of balanced realizations, one can prove
existence of symmetric solution of corresponding LMI.
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Motivation

Disadvantages of Balanced Truncation
Global error bound can be pessimistic in relevant frequency bands, e.g., in
mechanical systems, often only frequencies 0 ≤ 2πω ≤ 1000 (in Hz) are
relevant, in VLSI design only an operating frequency, e.g., 2.6 GHz, may be of
interest.

Remedies

1 Frequency-weighted BT (FWBT): aim at minimizing ‖Go(G − Ĝ)Gi‖H∞ ,
where Gi ,Go are rational transfer functions, e.g., lowpass/highpass filters.

2 Use Frequency-limited Gramians:
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where Gi ,Go are rational transfer functions, e.g., lowpass/highpass filters.

2 Use Frequency-limited Gramians: recall that the Gramians of stable
systems satisfy

AP + PAT + BBT = 0

AT Q + QA + CT C = 0
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Both approaches yield good local approximation properties, but error bounds
are still global and stability preservation often requires some modifications!

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 25/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma

Theorem [Iwasaki/Hara ’05]

Consider G (ω) = C (ωI − A)−1B + D, $ ∈ R such that $ is not a
pole of G , and let Π = ΠT ∈ Rn×n. Then TFAE:

a)

[
G ($)

I

]∗
Π

[
G ($)

I

]
4 0.

b) There exist symmetric matrices P and Q � 0 of appropriate
dimensions, satisfying[

A I
C 0

] [
−Q P + $Q

P − $Q −$2Q

] [
A I
C 0

]T

+

[
B 0
D I

]
Π

[
B 0
D I

]T

4 0.

Note: in standard KYP, we used −Π =

"
W S

ST R

#
.
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The Frequency-dependent KYP Lemma
A family of frequency-dependent systems

Given ε,$ ∈ R, we define

ẋ(t) = A$x(t) + B$u(t),

y(t) = C$x(t) + D$u(t),

by

A$ := $I − ε((ε+ $)I − A)−1($I − A),

B$ := ε((ε+ $)I − A)−1B,

C$ := εC ((ε+ $)I − A)−1,

D$ := D + C ((ε+ $I )− A)−1B.

The associated transfer function is

G$(ω) = C$(ωI − A$)−1B$ + D$.
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The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 1

a) G stable =⇒ G$ is stable for all ε > 0.

b) If G is unstable, then G$ is stable for 0 < ε < ε̂$, where

ε̂$ = min
λu∈Λ (A)∩C+

0

{
($ −=(λu))2

<(λu)
+ <(λu)

}
.

c) (A,B) controllable =⇒ (A$,B$) controllable.

d) (A,C ) observable =⇒ (A$,C$) observable.

e) (A,B,C ,D) is a minimal realization of G =⇒
(A$,B$,C$,D$) is a minimal realization of G$.

f) G$($) = G ($).

g) ‖G‖H∞ ≤ γ =⇒ ‖G$‖H∞ ≤ γ.

h) ‖G$‖H∞ ≤ γ$ =⇒ σmax (G ($)) ≤ γ$.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 28/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 1

a) G stable =⇒ G$ is stable for all ε > 0.

b) If G is unstable, then G$ is stable for 0 < ε < ε̂$, where

ε̂$ = min
λu∈Λ (A)∩C+

0

{
($ −=(λu))2

<(λu)
+ <(λu)

}
.

c) (A,B) controllable =⇒ (A$,B$) controllable.

d) (A,C ) observable =⇒ (A$,C$) observable.

e) (A,B,C ,D) is a minimal realization of G =⇒
(A$,B$,C$,D$) is a minimal realization of G$.

f) G$($) = G ($).

g) ‖G‖H∞ ≤ γ =⇒ ‖G$‖H∞ ≤ γ.

h) ‖G$‖H∞ ≤ γ$ =⇒ σmax (G ($)) ≤ γ$.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 28/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 1

a) G stable =⇒ G$ is stable for all ε > 0.

b) If G is unstable, then G$ is stable for 0 < ε < ε̂$, where

ε̂$ = min
λu∈Λ (A)∩C+

0

{
($ −=(λu))2

<(λu)
+ <(λu)

}
.

c) (A,B) controllable =⇒ (A$,B$) controllable.

d) (A,C ) observable =⇒ (A$,C$) observable.

e) (A,B,C ,D) is a minimal realization of G =⇒
(A$,B$,C$,D$) is a minimal realization of G$.

f) G$($) = G ($).

g) ‖G‖H∞ ≤ γ =⇒ ‖G$‖H∞ ≤ γ.

h) ‖G$‖H∞ ≤ γ$ =⇒ σmax (G ($)) ≤ γ$.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 28/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 1

a) G stable =⇒ G$ is stable for all ε > 0.

b) If G is unstable, then G$ is stable for 0 < ε < ε̂$, where

ε̂$ = min
λu∈Λ (A)∩C+

0

{
($ −=(λu))2

<(λu)
+ <(λu)

}
.

c) (A,B) controllable =⇒ (A$,B$) controllable.

d) (A,C ) observable =⇒ (A$,C$) observable.

e) (A,B,C ,D) is a minimal realization of G =⇒
(A$,B$,C$,D$) is a minimal realization of G$.

f) G$($) = G ($).

g) ‖G‖H∞ ≤ γ =⇒ ‖G$‖H∞ ≤ γ.

h) ‖G$‖H∞ ≤ γ$ =⇒ σmax (G ($)) ≤ γ$.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 28/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 1

a) G stable =⇒ G$ is stable for all ε > 0.

b) If G is unstable, then G$ is stable for 0 < ε < ε̂$, where

ε̂$ = min
λu∈Λ (A)∩C+

0

{
($ −=(λu))2

<(λu)
+ <(λu)

}
.

c) (A,B) controllable =⇒ (A$,B$) controllable.

d) (A,C ) observable =⇒ (A$,C$) observable.

e) (A,B,C ,D) is a minimal realization of G =⇒
(A$,B$,C$,D$) is a minimal realization of G$.

f) G$($) = G ($).

g) ‖G‖H∞ ≤ γ =⇒ ‖G$‖H∞ ≤ γ.

h) ‖G$‖H∞ ≤ γ$ =⇒ σmax (G ($)) ≤ γ$.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 28/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 1

a) G stable =⇒ G$ is stable for all ε > 0.

b) If G is unstable, then G$ is stable for 0 < ε < ε̂$, where

ε̂$ = min
λu∈Λ (A)∩C+

0

{
($ −=(λu))2

<(λu)
+ <(λu)

}
.

c) (A,B) controllable =⇒ (A$,B$) controllable.

d) (A,C ) observable =⇒ (A$,C$) observable.

e) (A,B,C ,D) is a minimal realization of G =⇒
(A$,B$,C$,D$) is a minimal realization of G$.

f) G$($) = G ($).

g) ‖G‖H∞ ≤ γ =⇒ ‖G$‖H∞ ≤ γ.

h) ‖G$‖H∞ ≤ γ$ =⇒ σmax (G ($)) ≤ γ$.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 28/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 1

a) G stable =⇒ G$ is stable for all ε > 0.

b) If G is unstable, then G$ is stable for 0 < ε < ε̂$, where

ε̂$ = min
λu∈Λ (A)∩C+

0

{
($ −=(λu))2

<(λu)
+ <(λu)

}
.

c) (A,B) controllable =⇒ (A$,B$) controllable.

d) (A,C ) observable =⇒ (A$,C$) observable.

e) (A,B,C ,D) is a minimal realization of G =⇒
(A$,B$,C$,D$) is a minimal realization of G$.

f) G$($) = G ($).

g) ‖G‖H∞ ≤ γ =⇒ ‖G$‖H∞ ≤ γ.

h) ‖G$‖H∞ ≤ γ$ =⇒ σmax (G ($)) ≤ γ$.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 28/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

The Frequency-dependent KYP Lemma
Properties of the frequency-dependent systems

Theorem 2

Suppose the LTI system (A,B,C ,D) is Hurwitz and minimal, and denote
its controllability, observability, and balanced Gramians as P,Q,Σ, then
for any $-dependent extended system (A$,B$,C$,D$) with Gramians
P$,Q$,Σ$:

a) P � P$, Q � Q$, Σ � Σ$.

b) limε→0 P$ = 0, limε→0 Q$ = 0, limε→0 Σ$ = 0.

c) limε→∞ P$ = P, limε→∞Q$ = Q, limε→∞ Σ$ = Σ.
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Frequency-dependent Balanced Truncation (FDBT)

Apply the generic balancing procedure to (A$,B$,C$,D$), i.e., solve

A$P$ + P$AH
$ + B$BH

$ = 0, AH
$Q$ + Q$A$ + CH

$C$ = 0,

and compute the balancing transformation T$ so that

T$P$T H
$ = T−H

$ Q$T−1
$ = Σ$ = diag (σ$,1, . . . , σ$,n), with σ$,k ≥ σ$,k+1.

Max Planck Institute Magdeburg Peter Benner, KYP and Balanced Truncation 30/35



Basics Dissipativity KYP Lemma Model Reduction for LTI Systems FD-KYP Numerical Examples Conclusions References

Frequency-dependent Balanced Truncation (FDBT)

Apply the generic balancing procedure to (A$,B$,C$,D$), i.e., solve

A$P$ + P$AH
$ + B$BH
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$C$ = 0,

and compute the balancing transformation T$ so that

T$P$T H
$ = T−H

$ Q$T−1
$ = Σ$ = diag (σ$,1, . . . , σ$,n), with σ$,k ≥ σ$,k+1.

Balance the system:

(T$A$T−1
$ ,T$B$,C$T−1

$ ,D$)

=

„»
A$,11 A$,12

A$,21 A$,22

–
,

»
B$,1
B$,2

–
,
ˆ

C$,1 C$,2
˜
,D$

«
.
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Balance the system:

(T$A$T−1
$ ,T$B$,C$T−1

$ ,D$)

=

„»
A$,11 A$,12

A$,21 A$,22

–
,

»
B$,1
B$,2

–
,
ˆ

C$,1 C$,2
˜
,D$

«
.

Reduced-order model is then obtained by truncation and back transformation:
select r such that σ$,r > σ$,r+1 and set

Â = $Ir − ε($Ir − A$,11) ((ε− $)Ir + A$,11)−1 ,

B̂ =
1

ε
((ε+ $)Ir − Â)B$,1,

Ĉ =
1

ε
C$,1((ε+ $)Ir − Â),

D̂ = D$ −
1

ε2
C$,1((ε+ $)Ir − Â)B$,1.
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1

ε2
C$,1((ε+ $)Ir − Â)B$,1.

Theorem 3 (Local Error Bound)

The reduced-order transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂ + D̂ satisfies:

σmax

(
G ($)− Ĝ ($)

)
≤ 2

n∑
k=r+1

σ$,k .

Proof: use proof for BT error bound based on FD-KYP instead of KYP.
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Numerical Examples
RLC ladder network

Simple example of electronic circuit from [Sorensen ’05]

input ≡ voltage u, output ≡ current y ,

scaled inductances, capacities, and resistance:
Lj = 1, Cj = 1 for all j ; R1 = 0.5 , R2 = 0.2.

n = 5, m = p = 1.
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Numerical Examples
RLC ladder network

Comparison of FDBT and BT (ω̄ = 0, ε = 1)

r FDBT BT
bound true error bound true error

4 1.2201× 10−7 1.2201× 10−7 0.0006 0.0006
3 8.7426× 10−5 8.7182× 10−5 0.1752 0.1740
2 5.5028× 10−4 3.7568× 10−4 0.3914 0.0421
1 0.0584 0.0582 0.6311 0.1975
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Numerical Examples
RLC ladder network

Comparison of FDBT and BT (ω̄ = 0, varying ε)
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Numerical Examples
Butterworth filter

Bandstop filter [A,B,C,D]= butter(50,[90 110],stop,s)

Hankel singular values
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Numerical Examples
Butterworth filter

Bandstop filter [A,B,C,D]= butter(50,[90 110],stop,s)

Transfer functions
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Conclusions and Future Work

Summary:

Relations of KYP lemma to balanced truncation.

Frequency-dependent KYP lemma suggests new
frequency-dependent balanced truncation (FDBT) method.

FDBT offers alternative to interpolation-based method if good local
approximation quality is desired.

Continuous- and discrete-time FDBT derived.

FDBT is stability preserving and has local error bound, which is
often much better than global BT bound.

Future work:

Details for non-minimal systems.

Large-scale implementation and testing.

Computational feasible method for frequency bands.

Extension to descriptor systems.
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