GAMM Annual Meeting 2013 Novi Sad, March 18–22, 2013

THE SYMPLECTIC LANCZOS PROCESS FOR HAMILTONIAN-POSITIVE MATRICES

(Symplectic Lanczos for Hamiltonian-positive matrices encounters no serious breakdown!)

Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg, Germany

> TU Chemnitz Mathematics in Industry and Technology Chemnitz, Germany

Joint work with Ahmed Salam (ULCO, Calais)

● ○ ○○		
Introduction		Ø
Hamiltonian Eigenprol	blems	<u> </u>

Definition

Let
$$J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$
, then $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian if $(HJ)^T = HJ$.

Note: $J^{-1} = J^T = -J$.

Explicit block form of Hamiltonian matrices

$$\begin{bmatrix} A & B \\ C & -A^T \end{bmatrix}, \text{ where } A, B, C \in \mathbb{R}^{n \times n} \text{ and } B = B^T, C = C^T.$$

● ○ ○○		
Introduction		Ø
Hamiltonian Eigenprol	blems	0

Definition

Let
$$J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$
, then $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian if $(HJ)^T = HJ$.

Note: $J^{-1} = J^T = -J$.

Explicit block form of Hamiltonian matrices

$$\left[\begin{array}{cc}A & B\\C & -A^{T}\end{array}\right], \quad \text{where } A, B, C \in \mathbb{R}^{n \times n} \quad \text{and } B = B^{T}, \ C = C^{T}.$$

0000		
Introduction Spectral Properties		Ø
	-• .	

Hamiltonian Eigensymmetry

Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then $\overline{\lambda}, -\lambda, -\overline{\lambda}$ are eigenvalues of H, too.

000	00000	00	
Introduct	ion ies		
Hamiltoni	ian Eigensymmetry		

Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then $\overline{\lambda}, -\lambda, -\overline{\lambda}$ are eigenvalues of H, too.

Typical Hamiltonian spectrum

Hamiltonian Eigenproblems

Goal

Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of H, then $\overline{\tilde{\lambda}}, -\tilde{\lambda}, -\overline{\tilde{\lambda}}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the ${\rm QR}/{\rm QZ},$ Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition

 $V \in \mathbb{R}^{2n \times 2n}$ is symplectic if $V^T J V = J$, i.e., $V^{-1} = J^T V^T J$. $V_k \in \mathbb{R}^{2n \times 2k}$ is symplectic or a J-isometry if $V_k^T J_n V_k = J_k$.

emma

If H is Hamiltonian and V is symplectic, then $V^{-1}HV$ is Hamiltonian, too.

Hamiltonian Eigenproblems

Goal

Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of H, then $\overline{\tilde{\lambda}}, -\tilde{\lambda}, -\overline{\tilde{\lambda}}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition

$$\begin{split} &V \in \mathbb{R}^{2n \times 2n} \text{ is symplectic if } \quad V^T J V = J, \quad \text{i.e., } V^{-1} = J^T V^T J. \\ &V_k \in \mathbb{R}^{2n \times 2k} \text{ is symplectic or a J-isometry if } \quad V_k^T J_n V_k = J_k. \end{split}$$

emma

If H is Hamiltonian and V is symplectic, then $V^{-1}HV$ is Hamiltonian, too.

Hamiltonian Eigenproblems

Goal

Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of H, then $\overline{\tilde{\lambda}}, -\tilde{\lambda}, -\overline{\tilde{\lambda}}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition

 $V \in \mathbb{R}^{2n \times 2n}$ is symplectic if $V^T J V = J$, i.e., $V^{-1} = J^T V^T J$. $V_k \in \mathbb{R}^{2n \times 2k}$ is symplectic or a J-isometry if $V_k^T J_n V_k = J_k$.

Lemma

If H is Hamiltonian and V is symplectic, then $V^{-1}HV$ is Hamiltonian, too.

Introduction

Applications

Hamiltonian eigenproblems arise in many different applications, e.g.:

- Systems and control:
 - Solution methods for algebraic and differential Riccati equations.
 - Design of LQR/LQG/ H_2/H_∞ controllers and filters for continuous-time linear control systems.
 - Stability radii and system norm computations; optimization of system norms.
 - Passivity-preserving model reduction based on balancing.
 - Reduced-order control for infinite-dimensional systems based on inertial manifolds.
- Computational physics:

exponential integrators for Hamiltonian dynamics.

[EIROLA '03, LOPEZ/SIMONCINI '06, B./MEISTER '13]

• Quantum chemistry:

computing excitation energies in many-particle systems using random phase approximation (RPA).

- Quadratic eigenvalue problems:
 - in particular, gyroscopic systems.

The Symplectic Lanczos Algorithm

Symplectic Lanczos Algorithm for Hamiltonian operators ${\boldsymbol{H}}$

• is based on transpose-free unsymmetric Lanczos process

[Freund '94];

- computes partial *J*-tridiagonalization;
- provides a symplectic (*J*-orthogonal) Lanczos basis V_k ∈ ℝ^{2n×2k},
 i.e., V_k^T J_nV_k = J_k;
- was derived in several variants: [FREUND/MEHRMANN '94, FERNG/LIN/WANG '97, B./FASSBENDER '97, WATKINS '04];
- requires re-*J*-orthogonalization using, e.g., modified symplectic Gram-Schmidt;
- can be restarted implicitly using implicit SR steps [B./FASSBENDER '97] or Krylov-Schur restarting [B./FASSBENDER/STOLL '11] which allows easy locking & purging procedure;
- does not provide an orthogonal Lanczos basis and is prone to serious breakdown.

Symplectic Lanc

Hamiltonian-positiv

References

The Hamiltonian *J*-Tridiagonal Form

or Hamiltonian J-Hessenberg Form

- can be computed by symplectic similarity $T_n = V^{-1}HV$ for almost (serious breakdown!) any $V_1 = V(:, 1)$,
- is computed partially by symplectic Lanczos process, based on symplectic Lanczos recursion

$$HV_{k} = V_{k}T_{k} + \zeta_{k+1}v_{k+1}e_{2k}^{T}, \qquad V_{k} = [V(:, 1:k), V(:, n+1:n+k)].$$

The Symplectic Lanczos Algorithm

Algorithm based on symplectic Lanczos recursion $HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{2k}^T$

 $H \in \mathbb{R}^{2n \times 2n}$, $k \in \mathbb{N}$, and start vector $\tilde{v}_1 \neq 0 \in \mathbb{R}^{2n}$. INPUT: OUTPUT: $T_k \in \mathbb{R}^{2k \times 2k}$, $V_k \in \mathbb{R}^{2n \times 2k}$, ζ_{k+1} , and v_{k+1} . **a** $v_1 = \frac{1}{\zeta_1} \tilde{v}_1$ **Solution** FOR m = 1, 2, ..., k(a) $t = Hv_m$ (b) $\delta_m = \langle t, v_m \rangle$ % B./Faßbender '97: $\delta_m = 1$, Watkins '04: $\delta_m = 0$. (c) $\tilde{w}_m = t - \delta_m v_m$ (d) $\nu_m = \langle t, v_m \rangle_J$ (e) $w_m = \frac{1}{v} \tilde{w}_m$ (f) $u = Hw_m$ (g) $\beta_m = -\langle u, w_m \rangle_I$ (h) $\tilde{v}_{m+1} = u - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m$ (i) $\zeta_{m+1} = \|\tilde{v}_{m+1}\|_2$ (j) $v_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$ ENDFOR

Note: 3(b) yields orthogonality of v_k , w_k [FERNG/LIN/WANG '97] and optimal conditioning of Lanczos basis [B. '03] if $||v||_2 = 1$ is forced.

The Symplectic Lanczos Algorithm

Algorithm based on symplectic Lanczos recursion $HV_k = V_k T_k + \zeta_{k+1} v_{k+1} e_{2k}^T$

 $H \in \mathbb{R}^{2n \times 2n}$, $k \in \mathbb{N}$, and start vector $\tilde{v}_1 \neq 0 \in \mathbb{R}^{2n}$. INPUT: OUTPUT: $T_k \in \mathbb{R}^{2k \times 2k}$, $V_k \in \mathbb{R}^{2n \times 2k}$, ζ_{k+1} , and v_{k+1} . **a** $v_1 = \frac{1}{\zeta_1} \tilde{v}_1$ **Solution** FOR m = 1, 2, ..., k(a) $t = Hv_m$ (b) $\delta_m = \langle t, v_m \rangle$ % B./Faßbender '97: $\delta_m = 1$, Watkins '04: $\delta_m = 0$. (c) $\tilde{w}_m = t - \delta_m v_m$ (d) $\nu_m = \langle t, v_m \rangle_I$ (e) $w_m = \frac{1}{v} \tilde{w}_m$ (f) $u = Hw_m$ (g) $\beta_m = -\langle u, w_m \rangle_I$ (h) $\tilde{v}_{m+1} = u - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m$ (i) $\zeta_{m+1} = \|\tilde{v}_{m+1}\|_2$ (j) $v_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$ ENDFOR

Note: 3(b) yields orthogonality of v_k , w_k [FERNG/LIN/WANG '97] and optimal conditioning of Lanczos basis [B. '03] if $||v||_2 = 1$ is forced.

Hamiltonian-positiv

The Symplectic Lanczos Algorithm

Numerical example: rolling tire

Results from [B./FASSBENDER/STOLL '08/'11]

- Modeling the noise of rolling tires requires to determine the transient vibrations, [NACKENHORST/VON ESTORFF '01].
- FEM model of a deformable wheel rolling on a rigid plane surface results in a gyroscopic system of order n = 124,992
 [NACKENHORST '04].
- Here, use reduced-order model of size *n* = 2,635 computed by AMLS [Elssel/Voss '06].

The Symplectic Lanczos Algorithm

Numerical example: rolling tire

Results from [B./FASSBENDER/STOLL '08/'11]

- Compare eigs and symplectic Lanczos with Krylov-Schur restarting (HKS) applied to H^{-1} to compute the 12 smallest eigenvalues.
- eigs needs 8, HKS 6 iterations.
- max(cond(SR)) = 331.
- Eigenvalues scaled by 1,000.

eigs	HKS		
Eigenvalue	Residual	Eigenvalue	Residual
$4 \cdot 10^{-12} + 1.73705142673i$	$2 \cdot 10^{-14}$	1.73705142671 <i>i</i>	$5\cdot10^{-17}$
$-3 \cdot 10^{-12} + 1.66795405953i$	$8\cdot10^{-15}$	1.66795405955 <i>i</i>	$2\cdot 10^{-15}$
$2 \cdot 10^{-13} + 1.66552788164i$	$2\cdot 10^{-15}$	1.66552788164 <i>i</i>	$1\cdot 10^{-16}$
$4 \cdot 10^{-14} + 1.58209209804\imath$	$1\cdot 10^{-16}$	1.582092098041	$5\cdot10^{-17}$
$-1 \cdot 10^{-14} + 1.13657108578\imath$	$8\cdot10^{-17}$	1.136571085781	$7\cdot10^{-18}$
$1 \cdot 10^{-14} + 0.80560062107i$	$1\cdot 10^{-16}$	0.805600621071	$6\cdot 10^{-18}$

 Compare eigs and HKS applied to H⁻¹ to compute the 180 smallest eigenvalues.

Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Hamiltonian-positive Matrices

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Lemma

[Amodio 2003]

All eigenvalues of Hamiltonian-positive matrices are purely imaginary, i.e., $\Lambda(H) \subset \mathfrak{J}\mathbb{R}$.

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Comparison of spectra of spd generator and its Hamiltonian

Hamiltonian-positive Matrices

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Example: weakly coupled Hamiltonian systems

$$\dot{p} = \mathcal{H}_{q}, \ \dot{q} = -\mathcal{H}_{p}, \quad ext{ for Hamiltonian } \mathcal{H}(p,q) = rac{1}{2} \left(p^{\mathsf{T}} p + q^{\mathsf{T}} \mathsf{K} q + 2 p^{\mathsf{T}} \mathsf{W} q
ight)$$

with kinetic energy determined by $K = K^T > 0$ and weak coupling, i.e., ||W|| "small" \rightsquigarrow

$$S = J^T H = \begin{bmatrix} I_n & W \\ W^T & K \end{bmatrix} > 0$$
 if $||W||$ "small" enough.

Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

 $H \in \mathbb{R}^{2n \times 2n}$, $k \in \mathbb{N}$, and start vector $\tilde{v}_1 \neq 0 \in \mathbb{R}^{2n}$. INPUT: OUTPUT: $T_k \in \mathbb{R}^{2k \times 2k}$, $V_k \in \mathbb{R}^{2n \times 2k}$, ζ_{k+1} , and v_{k+1} . $\int \zeta_1 = \|\tilde{v}_1\|_2$ **a** $v_1 = \frac{1}{\zeta_1} \tilde{v}_1$ **Solution** FOR m = 1, 2, ..., k(a) $t = Hv_m$ (b) $\delta_m = \langle t, v_m \rangle$ % B./Faßbender '97: $\delta_m = 1$, Watkins '04: $\delta_m = 0$. (c) $\tilde{w}_m = t - \delta_m v_m$ (d) $\nu_m = \langle t, v_m \rangle_J$ (e) $W_m = \frac{1}{n} \tilde{W}_m$ (f) $u = Hw_m$ (g) $\beta_m = -\langle u, w_m \rangle_I$ (h) $\tilde{v}_{m+1} = u - \zeta_m v_{m-1} - \beta_m v_m + \delta_m w_m$ (i) $\zeta_{m+1} = \|\tilde{v}_{m+1}\|_2$ (j) $v_{m+1} = \frac{1}{\zeta_{m+1}} \tilde{v}_{m+1}$ ENDFOR

Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If $v_m = 0 \implies$ benign breakdown, else

$$\nu_m = \langle H v_m, v_m \rangle_J$$

Hamiltonian-positive Matrices

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If $v_m = 0 \implies$ benign breakdown, else

$$\nu_m = \langle Hv_m, v_m \rangle_J = v_m^T H^T J v_m = v_m^T J^T H v_m$$

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If $v_m = 0 \implies$ benign breakdown, else

$$\begin{aligned}
\nu_m &= \langle Hv_m, v_m \rangle_J \\
&= v_m^T H^T J v_m = v_m^T J^T H v_m \\
&= v_m^T S v_m > 0. \qquad \checkmark
\end{aligned}$$

Hamiltonian-positive Matrices

Definition

A Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ is called Hamiltonian-positive if its symmetric generator $S = J^T H$ is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for Hamiltonian-positive matrices.

Proof. If $v_m = 0 \implies$ benign breakdown, else

$$\nu_m = \langle Hv_m, v_m \rangle_J$$

= $v_m^T H^T J v_m = v_m^T J^T H v_m$
= $v_m^T S v_m > 0. \qquad \checkmark$

Remark: Hamiltonian-positiveness of T_k can be enforced; $\beta_m = -\langle u, w_m \rangle_J = -u^T S u < 0.$

Max-Planck-Institut Magdeburg

Haw Aba	t Summlastia Annaldi	2	(C)
	it Symplectic Arnoldi	:	Les Contraction of the second s

Hamiltonian-positive Matrices

Symplectic Arnoldi recursion

$$HV_k = V_k H_k + \zeta_k v_{k+1},$$

where V_k is symplectic and orthogonal, H_k is in Hamiltonian Hessenberg form:

$$H_{k} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & -H_{11}^{T} \end{bmatrix} \text{ with } H_{11} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \ H_{12} = H_{12}^{T}, \ H_{21} = h_{k+1,k}e_{k}e_{k}^{T}.$$

	t Symplectic Arnoldi	7	(C)
HOW ADOL	it Symplectic Amoun	•	63

Hamiltonian-positive Matrices

Symplectic Arnoldi recursion

$$HV_k = V_k H_k + \zeta_k v_{k+1},$$

where V_k is symplectic and orthogonal, H_k is in Hamiltonian Hessenberg form:

$$H_{k} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & -H_{11}^{T} \end{bmatrix} \text{ with } H_{11} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \ H_{12} = H_{12}^{T}, \ H_{21} = h_{k+1,k}e_{k}e_{k}^{T}.$$

Theorem

[Ammar/Mehrmann '91]

There exists a symplectic Arnoldi reduction with H_n unreduced, i.e., $h_{j+1,j} \neq 0$, if and only if $\exists x$ with

$$x^{T}JH^{2k-1}x = 0$$
 (k = 1, 2, ..., n - 1), $x^{T}x = 1$,

that is not contained in an H-invariant subspace of dimension $\leq n$.

For *H* Hamiltonian-positive, no such vector exists!

(Already observed in [Ammar/Mehrmann '91, page 65].)

Max-Planck-Institut Magdeburg

