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Introduction

Hamiltonian Eigenproblems

Definition

0 I,
Let J = 10

(HJ)T = HJ.

|

], then H € R27%2n is called Hamiltonian if

Note: J~1 = JT = —J.
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Let J = 10

(HJ)T = HJ.
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], then H € R27%2n is called Hamiltonian if

Note: J~1 = JT = —J.

Explicit block form of Hamiltonian matrices
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Introduction

Spectral Properties

Hamiltonian Eigensymmetry

Hamiltonian matrices exhibit the Hamiltonian eigensymmetry:
if A is a finite eigenvalue of H, then A\, —\, —\ are eigenvalues of H, too.
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Introduction

Spectral Properties

Hamiltonian Eigensymmetry

Hamiltonian matrices exhibit the Hamiltonian eigensymmetry:
if A is a finite eigenvalue of H, then A\, —\, —\ are eigenvalues of H, too.

Typical Hamiltonian spectrum
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Hamiltonian Eigenproblems

Goal

Structure-preserving algorithm, i.e., if A is a computed eigenvalue of H,

then X, —\, —\ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix
pencils like the QR/QZ, Lanczos, Arnoldi algorithms!
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Structure-preserving algorithm, i.e., if X is a computed eigenvalue of H,
then X, —\, —\ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix
pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved
if the Hamiltonian structure is preserved.

Definition

V € R2"2" is symplectic if VTJV =J, e, V1=JTVTJ

Vi € R?2"%2k is symplectic or a J-isometry if VkTJ,, Vi = Jk.
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Hamiltonian Eigenproblems

Goal

Structure-preserving algorithm, i.e., if X is a computed eigenvalue of H,
then X, —\, —\ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix
pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved
if the Hamiltonian structure is preserved.

Definition

V € R2"2" is symplectic if VTJV =J, e, V1=JTVTJ

Vi € R?2"%2k is symplectic or a J-isometry if VkTJ,, Vi = Jk.

Lemma

If H is Hamiltonian and V is symplectic, then V~'HV is Hamiltonian,
too.
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Introduction

Applications

Hamiltonian-positi

Hamiltonian eigenproblems arise in many different applications, e.g.:
@ Systems and control:
o Solution methods for algebraic and differential Riccati equations.
o Design of LQR/LQG/H>/Hs controllers and filters for
continuous-time linear control systems.
o Stability radii and system norm computations; optimization of
system norms.
o Passivity-preserving model reduction based on balancing.
o Reduced-order control for infinite-dimensional systems based on
inertial manifolds.
o Computational physics:
exponential integrators for Hamiltonian dynamics.
[ErROLA ’03, LOPEZ/SIMONCINI ’06, B./MEISTER ’13]
@ Quantum chemistry:
computing excitation energies in many-particle systems using
random phase approximation (RPA).
@ Quadratic eigenvalue problems:
in particular, gyroscopic systems.
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The Symplectic Lanczos Algorithm

Symplectic Lanczos E
©0000

Symplectic Lanczos Algorithm for Hamiltonian operators H

@ is based on transpose-free unsymmetric Lanczos process
[FREUND '94];

computes partial J-tridiagonalization;

provides a symplectic (J-orthogonal) Lanczos basis Vj € R27*2k,
i.e., VkTJ,, Vk = Jk;

was derived in several variants: [FREUND/MEHRMANN 94,
FERNG/LIN/WANG ’97, B./FASSBENDER ’97, WATKINS ’04];

requires re-J-orthogonalization using, e.g., modified symplectic
Gram-Schmidt;

can be restarted implicitly using implicit SR steps [B./FAsSBENDER ’97]
or Krylov-Schur restarting [B./Fasssexper/SToLL "11] which allows
easy locking & purging procedure;

does not provide an orthogonal Lanczos basis and is prone to serious
breakdown.
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Symplectic Lanczos
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The Hamiltonian J-Tridiagonal Form

or Hamiltonian J-Hessenberg Form

[ o1 B1 ¢ 7
02 ¢ B2 €]
03 €]
G
Th = 5,, Cn Bn c R2n><2n,
141 _51
1%} —62
v3 —33
L Vn —on

@ can be computed by symplectic similarity T, = V~1HV for almost (serious
breakdown!) any V; = V/(:, 1),

@ is computed partially by symplectic Lanczos process, based on symplectic
Lanczos recursion

HVi = Vi Tic + Gepaviriedg, Vi =[V(;1: k), V(;,n+1:n+K)].
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The Symplectic Lanczos Algorithm

Algorithm based on symplectic Lanczos recursion HV) = Vi T\ + (k41 vk+1e2Tk

INPUT: H € R?™2" [ ¢ N, and start vector # # 0 € R>",
OUTPUT: Ty € R¥**% Vv € R?™2 (441, and Viys.
QG= ||Vl||2
Qu=_;n
Q@ FORm=1,2,... k
(a) t = Hvm
(b) dm = (t, vm) % B./FaBbender ’97: §, =1, Watkins ’04: J, =0.
(€) Wm=1t—0mVm
(d) vm = (t, vim)y
() Wm = ;- Wm
(f) u= Hwnm
(8) Bm = —(u, W),
(h) Vmt1 = u—CmVm—1 — BmVm + OmWn
(i) Cmr1 = [[ma]l2
(J) Vm+1 = ﬁDerl
ENDFOR
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The Symplectic Lanczos Algorithm

Algorithm based on symplectic Lanczos recursion HV) = Vi T\ + (k41 vk+1e2Tk

INPUT: H € R?™2" [ ¢ N, and start vector # # 0 € R>",
OUTPUT: Ty € R¥**% Vv € R?™2 (441, and Viys.
QG= ||Vl||2
Qu=_;n
Q@ FORm=1,2,... k
(a) t = Hvm
(b) dm = (t, vm) % B./FaBbender ’97: §, =1, Watkins ’04: J, =0.
(€) Wm=1t—0mVm
(d) vm = (t, vim)y
() Wm = ;- Wm
(f) u= Hwnm
(8) Bm = —(u, W),
(h) Vmt1 = u—CmVm—1 — BmVm + OmWn
(i) Cmr1 = [[ma]l2
(J) Vm+1 = ﬁpmﬂ
ENDFOR

Note: 3(b) yields orthogonality of vi, wi [FERNG/LIN/WANG *97] and optimal
conditioning of Lanczos basis [B. *03] if ||v||2 = 1 is forced.
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The Symplectic Lanczos Algorithm

Numerical example: rolling tire Results from [B./FASSBENDER/STOLL ’08/’11]

@ Modeling the noise of rolling tires requires to determine the transient
vibrations, [NACKENHORST/VON ESTORFF '01].

o FEM model of a deformable wheel rolling on a rigid plane surface
results in a gyroscopic system of order n = 124,992

[NACKENHORST ’04].

o Here, use reduced-order model of size n = 2,635 computed by
AMLS [ELSSEL/Voss 06].
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The Symplectic Lanczos Algorithm

Numerical example: rolling tire Results from [B./FASSBENDER/STOLL ’08/’11]

o Compare eigs and symplectic Lanczos with Krylov-Schur restarting
(HKS) applied to H~! to compute the 12 smallest eigenvalues.

o eigs needs 8, HKS 6 iterations.
e max(cond (SR)) = 331.
o Eigenvalues scaled by 1,000.

eigs HKS

Eigenvalue Residual Eigenvalue Residual

4.107'2 4+ 1.73705142673: | 2-107% || 1.737051426712 | 5-10~ Y7
—3-107" +1.66795405953: | 8-107"° || 1.66795405955: | 2-10™°
2-107'% 4+ 1.66552788164: | 2-1071° || 1.66552788164: | 1-1071°
4.107" + 1.58209209804: | 1-107'® || 1.58209209804: | 5107
—1-107'* 4+ 1.13657108578: | 81071 || 1.13657108578: | 7-10718
1-107* 4 0.805600621072 | 1-107* || 0.80560062107z | 6-10~'®
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Symplectic Lanczos
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The Symplectic Lanczos Algorithm

Numerical example: rolling tire Results from [B./FASSBENDER/STOLL 08/’ 11]

o Compare eigs and HKS applied to H~! to compute the 180
smallest eigenvalues.
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Lemma [AMODIO 2003]

All eigenvalues of Hamiltonian-positive matrices are purely imaginary, i.e.,
A(H) C JR.
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Comparison of spectra of spd generator and its Hamiltonian
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Example: weakly coupled Hamiltonian systems

p i Haq, for Hamiltonian H(p, q) = 1 (pr+ q"Kg+ 2pTWq)
q = _HP: 2
with kinetic energy determined by K = K > 0 and weak coupling, i.e., |W/||
"small” ~
., W
S=J'H= >0 if [|[W]| "small” enough.
wh K
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Symplectic Lanczos for Hamiltonian-positive Matrices
Hamiltonian-positive Matrices

Definition
A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for
Hamiltonian-positive matrices.
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

INPUT: H € R?™2" [k ¢ N, and start vector # # 0 € R>".
OUTPUT: Ty € R¥**% Vv e R?™2¢ (11, and Viys.
Q G =l
Q wv= ?1101
@ FORm=1,2,...,k
(a) t = Hvm
(b) 6m = (t, vm) % B./Fafibender ’97: &m =1, Watkins ’04: §, =0.

(€) Wm=1t—0mVm
(d) vm = (t,Vm)y
() wm= imv"vm

v,

(f) u= Hwn

(g) B’" = _<u7 Wm>J

(h) Vmi1 = U — Cme—l - /Bme + 6mWm
(i) Cmt1 = [[Vmsall2

(J) Vm+1 = ﬁvmu

ENDFOR
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

Definition
A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for
Hamiltonian-positive matrices.

Proof. If v,, = 0 = benign breakdown, else

Vm = <HVman>J
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

Definition
A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for
Hamiltonian-positive matrices.

Proof. If v,, = 0 = benign breakdown, else

Um = (HVm, Vi)
= v H" W, =v] I Hy,
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

Definition
A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for
Hamiltonian-positive matrices.

Proof. If v,, = 0 = benign breakdown, else

Vm = <HVm7 Vm>J
= v H" Wy, = v I Hy,
= v]Sv, > 0. v
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Symplectic Lanczos for Hamiltonian-positive Matrices

Hamiltonian-positive Matrices

Definition
A Hamiltonian matrix H € R?"%2" is called Hamiltonian-positive if its
symmetric generator S = JT H is positive definite.

Theorem

There is no serious breakdown in symplectic Lanczos for
Hamiltonian-positive matrices.

Proof. If v,, = 0 = benign breakdown, else

Vm = <HVm7 Vm>J
= v H" Wy, = v I Hy,
= v,)Sv, > 0. vV

Remark: Hamiltonian-positiveness of T, can be enforced,;
Bm = —(u, W)y = —uSu < 0.
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How About Symplectic Arnoldi?

Hamiltonian-positive Matrices

Symplectic Arnoldi recursion

HVi = VieHk + Ckvi+a,

where Vi is symplectic and orthogonal, Hi is in Hamiltonian Hessenberg form:

with Hi; = [Q] , Hix = le, Hx = hk+1,kekelz-'

Hll H12

H, =
Ha  —HY)
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How About Symplectic Arnoldi?

Hamiltonian-positive Matrices

Symplectic Arnoldi recursion

HVi = VieHk + Ckvi+a,

where V/ is symplectic and orthogonal, Hi is in Hamiltonian Hessenberg form:

with Hi; = [Q] 5 Hyp = Hf;, Hy = hk+1,kekekT.

Hll H12

He =
Hxn —HE

Theorem [AMMAR/MEHRMANN ’91]

There exists a symplectic Arnoldi reduction with H, unreduced, i.e., hj11; # 0,
if and only if 3 x with

xTJH* 'x=0(k=1,2,...,n—1), x'x=1,
that is not contained in an H-invariant subspace of dimension < n.

For H Hamiltonian-positive, no such vector exists!
(Already observed in [AMMAR/MEHRMANN 91, page 65].)
Peter Benner, Symplectic Lanczos for Hamiltonian-positive matrices 12/13
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