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Motivation

Statistical Quantities

Goal

For a random variable (field, process) x on a probability space (2, F, P),
compute statistical information like

expected value E(x) := [ x(w) dP(w);
standard deviation  stdy := /var (x),
where var (x) := E ((x - ]E(x))z) is the variance of x;

ko values (e.g., k = 3,6) or higher order moment, where x solves a
problem described by a system of (partial or ordinary) differential
equations subject to uncertain data and/or differential operator:

L(§,w)x(§,w) =F(§,w) a.e. inQ,&€G.
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Computing Statistical Quantities

Intrusive vs. non-intrusive methods

@ non-intrusive methods use a standard solver for the deterministic
problem resulting from using a particular realization of the random
variable,

@ intrusive methods use special codes based on simultaneous
discretization w.r.t. to random and spatial variables, require new
solvers, often better convergence properties.

Basic methods for computing statistical quantities:
and variants,

'

stochastic Galerkin.
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Computing Statistical Quantities

Intrusive vs. non-intrusive methods

@ non-intrusive methods use a standard solver for the deterministic
problem resulting from using a particular realization of the random
variable,

@ intrusive methods use special codes based on simultaneous
discretization w.r.t. to random and spatial variables, require new
solvers, often better convergence properties.

Basic methods for computing statistical quantities:
o non-intrusive: Monte Carlo (MC) and variants, stochastic
collocation,

@ intrusive: stochastic Galerkin.
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Motivation

Computing Statistical Quantities

Intrusive vs. non-intrusive methods

@ non-intrusive methods use a standard solver for the deterministic
problem resulting from using a particular realization of the random
variable,

@ intrusive methods use special codes based on simultaneous
discretization w.r.t. to random and spatial variables, require new
solvers, often better convergence properties.

Basic methods for computing statistical quantities:

o non-intrusive: Monte Carlo (MC) and variants, stochastic
collocation,

@ intrusive: stochastic Galerkin.

Here: non-intrusive methods.
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Motivating Example '

from BMBF research network MoreSim4Nano

VLSI design in the presence of inaccurate lithography

|

@ Analyze the influence of variations during the lithography or

b. Apply photoresist:
variations of the materials on the electric field. ==

@ Consider time-harmonic Maxwell’s equations ¢ Algnphotomask

-
_ . . PRm—
VX (' 'VXE)+iwocE—w ecE=iwl e
d. Exposeto UV light
with uncertain material parameters p, o, and €.

@ The (approximate) distribution of the parameters is provided -——
by industrial partners. We assume the parameters to be -
log-normally distributed, i.e., the probability density function is E_“""-'g

In(x) — 2 ) £ Etch exposed oxide
fo(x) = ———exp (—M) if x e R, x > 0. 2=
V2mopx 20} s

. Remove remaini
% PRtoresg Y

)

|
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Numerical Example

Consider a coplanar waveguide with dielectric overlay consisting of three
perfectly conducting striplines situated at a height of 10mm in a shielded
box with perfect electric conductor (PEC) boundary.

G
50 mm
air
metallic striplines
//// s «
e s ) ) )
-
-

15 mm{-" y =
10mm |/ = |/ (=

- substrate

0 discrete port
mm

Model provided by CST AG Darmstadt/TEMF, TU Darmstadt.
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Details

o Below a height of 15mm the box is filled with substrate which has
another physical behavior than the air in the rest of the box.

@ Denote the lower part of the box as sub-domain 1 and the upper
part as sub-domain 2.

@ Therefore the parameters ¢, and o have to be split in ¢!, €2, o and

o2.

@ The relative permeability 1, takes the same value for substrate and
air.

@ The system is excited with u = 1 Ampere at the front side of the
box and the voltage along the port is integrated as the output y.

@ The used frequency is w = 0.6 - 10° Hz.
o Distributions for parameters provided by industrial partner.

Model provided by CST AG Darmstadt/TEMF, TU Darmstadt.
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Discretized System

As we want to work with an affine form of the PDE, we rewrite the
system in the following way
V % ((urit0) "'V x E) + iw(o x6, + %X, )E

—w?eo(erxe +€x6)E = iwd,
which leads to the affine discretized system

A e + iw(ot At + 02 A%)e — Wi (el AL + €A% Je = Byu,

r° eop €0

y = Le,

where u (current) is the single input of the system, y (voltage) the single
output and B, C are the associated matrices.

Besides that, the matrices A" and A;  are zero on domain j # i, for
i,j=1,2.
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Numerical Results

o FEM discretization in FEniCS with Nédélec elements (18,755 dofs).

o Use stochastic collocation (Stroud and sparse grids) and basic
Monte Carlo implemented in MATLAB®.
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Numerical Results

o FEM discretization in FEniCS with Nédélec elements (18,755 dofs).

o Use stochastic collocation (Stroud and sparse grids) and basic
Monte Carlo implemented in MATLAB.

o We need 10 points for the Stroud integration and use a comparable
sparse grid with 11 points which is the Hermite-Genz-Keister level 1
for a 5-dimensional parameter space. (The sparse grid is generated
by use of the SGMGA code [BURKARDT ’10]).
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Numerical Results

o FEM discretization in FEniCS with Nédélec elements (18,755 dofs).

o Use stochastic collocation (Stroud and sparse grids) and basic
Monte Carlo implemented in MATLAB.

o We need 10 points for the Stroud integration and use a comparable
sparse grid with 11 points which is the Hermite-Genz-Keister level 1
for a 5-dimensional parameter space. (The sparse grid is generated
by use of the SGMGA code [BURKARDT ’10]).

o As reference solution, we use a Monte Carlo simulation which
operates on 1,000, 000 realizations of the parameter vector.
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Numerical Results

We compute the maximum relative error for Stroud

re

erra%it) = maxceq(|(Stroud — MC)/MC|) = 6.6901 - 10~°,

The relative error is shown in the following picture.

u Magnitud:
5.0e-06

3.8e-06

2.5e-06

1.3e-06

0.0e+00
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Numerical Results

We compute the maximum relative error for Stroud

erra%it) = maxceq(|(Stroud — MC)/MC|) = 6.6901 - 10~°,

re

The relative error on the right half of the box is shown in the following
picture.

u Magnitud:
5.0e-06

3.8e-06

2.5e-06

1.3e-06

0.0e+00
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Motivation
Model Reduction for UQ?

Both, MC or SC require repeated solution of
wrAue + iw(alA1 + 02A2)e - wz(e}Aio + efAio)e = Bju, y=Le,

given a realization of the parameter vector p = [, 0%, 0%, €5, ¢3]7.
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Motivation
Model Reduction for UQ?

Both, MC or SC require repeated solution of
rAe +iw(o At + 0P A%Ye — Wi (AL + A2 )e = Byu, y = Le,

given a realization of the parameter vector p = [, o', o2, ¢, e ]T. Computing
the quantity of interest y for a given (scaled) frequency w and input u can be
interpreted as evaluating

y(w, p) = G(iw, p)u(w, p)
with the rational transfer function

—1
G(s,p) =L <s2(elA10 +EA) + s(0 A + 2A%) + p,Auo) B,.
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Motivation
Model Reduction for UQ?

Both, MC or SC require repeated solution of
rAe +iw(o At + 0P A%Ye — Wi (AL + A2 )e = Byu, y = Le,

given a realization of the parameter vector p = [, o', o2, ¢, e ]T. Computing
the quantity of interest y for a given (scaled) frequency w and input u can be
interpreted as evaluating

y(w, p) = G(iw, p)u(w, p)

with the rational transfer function

1
G(s,p) =L <52(eiA10 +EA) + s(0 A + 0PA?) + p,ANU) B,.

Using inverse Laplace transformation (assuming e(0) = 0), this yields a 2nd
order ODE system:

(eiAlO + EEAEO) &(t; p) + (0T A + 02 A%) e(t; p) + wrAug e(t;p) = Byu(t)
—_———— — S——
=:M(p) =:D(p) =:K(p)
y(tip) = Le(t;ip).
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Motivation
Model Reduction for UQ?
Both, MC or SC require repeated solution of

JAue + iw(ot At + 0°AYe — WP (LAl + A% Je = Byu, y = Le,
HrApg 0 0

given a realization of the parameter vector p = [p,,0%, 0%, €5, €3] Corre-
sponding rational transfer function

G(s,p)=1L (szM(p) +sD(p) + K(p))_1 B.
and 2nd order ODE system:
M(p)é(t; p) + D(p)é(t; p) + K(p) = Byu(t),  y(t;p) = Le(t;p).

Or, in 1st order formulation, setting x := [e, &]',

I, 0 I, 0
M) |© T K by | [ By ] “
(p) (p) P
=E(p) =:A(p) =B
y = [L 0]x=:Cx.
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Motivation
Model Reduction for UQ?

Both, MC or SC require repeated solution of
rAe +iw(ot At + o° A%)e — wz(e}AiO + efAio)e = Byu, y=Le,

given a realization of the parameter vector p = [p,,0%, 0%, €5, €3] Corre-
sponding rational transfer function

G(s.p) = L (M(p) + sD(p) + K(p)) By,
and 2nd order ODE system:
M(p)é(t; p) + D(p)é(t; p) + K(p) = Byu(t),  y(t;p) = Le(t;p).
Or, in 1st order formulation, setting x := [e, &]',
E(p)x = A(p)x + Bu, y=Cx.

Goal: Faster simulation/evaluation of parametric ODE system /transfer function
~+ parametric model order reduction (PMOR).
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Introduction to Model Order Reduction
Model Reduction

Dynamical Systems

[ E(tip) = Fex(tp)u(t)p), )= ()
TR S S e i s B S o

with
o (generalized) states x(t; p) € R" (E(p) € R™*"),
o inputs u(t) € R,
@ outputs y(t; p) € R, (b) is called output equation,
o p € R? is a parameter vector.

E singular = (a) is system of differential-algebraic equations (DAEs)
otherwise = (a) is system of ordinary differential equations (ODEs)

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 12/41
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Model Reductlon for Dynamical Systems

Original System Reduced- Order System

o [V (I
- y = g(t X,u p)
o states x(t; p) € R, o states X(t;p) ER’, r < n
@ inputs u(t) € R, @ inputs u(t) € R,
@ outputs y(t; p) € RY, @ outputs y(t; p) € RY,
© parameters p € R, @ parameters p € RY.

{ y ﬁ V
——————» —————»

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 13/41
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Model Reduction for Dynamical Systems

Original System Reduced-Order System

Y(p): { E(p)x = f(t,x,u,p), S(p) : { E(p);( f(t X, u,p),

y = g(t,x,u, p). = g(t, %, u, p).
o states x(t; p) € R, o states X(t;p) ER’, r < n
@ inputs u(t) € R, @ inputs u(t) € R,
@ outputs y(t; p) € RY, @ outputs y(t; p) € RY,
© parameters p € R, @ parameters p € RY.

{ y ﬁ ?
——————» —————»

[ly — ¥|| < tolerance - ||u|| for all admissible input signals and relevant
parameter settings.
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Model Reduction Basics

Simulation-Free Methods

@ Modal Truncation
@ Guyan-Reduction/Substructuring

© Padé-Approximation, Moment-Matching, and Krylov Subspace
Methods (~~ interpolatory methods)

© Balanced Truncation (~ system-theoretic methods)
© many more. ..

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 14/41
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Model Reduction Basics

Simulation-Free Methods

@ Modal Truncation
@ Guyan-Reduction/Substructuring

© Padé-Approximation, Moment-Matching, and Krylov Subspace
Methods (~~ interpolatory methods)

© Balanced Truncation (~ system-theoretic methods)

© many more. ..

Joint feature of many methods: Galerkin or Petrov-Galerkin-type
projection of state-space onto low-dimensional subspace V along W:
assume x &~ VW T x =: X, where

range (V) =V, range(W)=W, W'V =1,
Then, with £ = W7 x, we obtain x ~ V& and

[Ix =X = |Ix = V&[]

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 14/41



Linear Parametric Systems

Linear, time-invariant systems depending on parameters

E(p)x(t;p) = A(p)x(t:p) + B(p)u(t), A(p), E(p) € R™",
y(tip) = C(p)x(t;p), B(p) € R™™, C(p) € R¥*".

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 15/41



MOR
0000
Y-

Linear Parametric Systems

Linear, time-invariant systems depending on parameters

E(p)x(t; p) A(p)x(t; p) + B(p)u(t), A(p), E(p) € R™",
y(t;p) C(p)x(t; p), B(p) € R™™, C(p) € R¥*".

Laplace Transformation / Frequency Domain
Application of Laplace transformation (x(t; p) — x(s; p),
X(t; p) — sx(s; p)) to linear system with x(0) = 0:
sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(sip) = C(p)x(s; p),

yields |/O-relation in frequency domain:

y(s:p) = ( C(P)(SE(p) — A(p)*B(p) ) u(s)

::E(rsm)
G(s; p) is the parameter-dependent transfer function of X(p).

15/41
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Model Reduction for Linear Parametric Systems

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  Alp), E(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(p)k = A(p)%+B(p)u, A(p)E(p) e R,
y = C(p)x, B(p) e R™*™, C(p) € RI*",

of order r < n, such that for any feasible p,

lly =911 = ||6u = &u|| < || - GH ||| < tolerance - ||u]|.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 16/41
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Model Reduction for Linear Parametric Systems

Approximate the dynamical system

E(p)x = A(p)x+ B(p)u,  Alp), E(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system

E(p)k = A(p)%+B(p)u, A(p)E(p) e R,
y = C(p)x, B(p) e R™*™, C(p) € RI*",

of order r < n, such that for any feasible p,

lly =911 = ||6u = &u|| < || - GH ||| < tolerance - ||u]|.

~

—> Approximation problem: minorder(@)<r G — G||.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 16/41



Parametric System

(p) : { E(p)x(t:p) = Alp)x(t:p) + B(p)u(t),

y(tip) = C(p)x(t; p).

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 17/41



Model Reduction for Linear Parametric Systems

Parametric System

[ E@)(tp) = A(p)x(tip) + B(p)u(t),
ORI e

Appropriate representation:

( ) = Eo+ el(p)El +...+ GQE(p)EQE’
Alp) = Ao+ai(p)Ar+ ...+ aq(p)Ag,
(p)
(p)

= Bo+bi(p)Bi+ ...+ bas(p)Bgs
= G+ Cl(p)cl +o.F ch(p)ch7

allows easy parameter preservation for projection based model reduction.

Max Planck Institute Magdeburg

Peter Benner, PMOR for UQ 17/41
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Model Reduction for Linear Parametric Systems

| Elp)x(t:p) = Alp)x(t;p) + B(p)u(t),
Z(P)'{ y(tip) = Co)x(tip).
Applications:

o Repeated simulation for varying material or geometry parameters,
boundary conditions,

o Optimization and design.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 17/41
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Model Reduction for Linear Parametric Systems

Parametric System

[ E@)(tp) = A(p)x(tip) + B(p)u(t),
ORI e

Applications:

o Repeated simulation for varying material or geometry parameters,
boundary conditions,

o Optimization and design.

Additional model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

= . [ E(p)k(t:p)
z(p).{ y(t; p)

|
g
T O
3 %
—_
S &P
OIS
+
o>
—~

o
N—r

S
—
=

with states X(t; p) € R".

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 17/41
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Interpolatory Model Reduction

Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax+ Bu, y = Cx  with transfer
function  G(s) = C(sE — A)"'B, a reduced-order model is obtained using
truncation matrices V, W € R™" with WTV = |,

(~ (VWT)2 = VWT is projector) by computing

E=WTEV, A=W"Av, B=wW"B, C=cCV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 18/41



Interpolatory Model Reduction '

Short Introduction

Computation of reduced-order model by projection

Given a linear (descriptor) system Ex = Ax + Bu, y = Cx  with transfer
function  G(s) = C(sE — A)"'B, a reduced-order model is obtained using
truncation matrices V, W € R™" with W™V = |,
(~ (VWT)? = VW is projector) by computing

E=WTEV, A=W"Av, B=wW"B, C=cCV.

Petrov-Galerkin-type (two-sided) projection: W # V,
Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching
Choose V/, W such that
G(s)=G(s), j=1,....k

and

d’ d’

G(,)—d,G(s,) i=1,...,K, j=1,... k.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 18/41
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Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GrivME "97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)7'B,...,(skE —A)"'B} C Ran(V),
span{(le—A)‘TCT,...,(skE—A)'TCT} C Ran(W),

then

d

dsé(sj), forj=1,..., k.

6(5)=bls), <-6ls)=

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 18/41



Interpolatory Model Reduction
[ Jele}

Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GrivME "97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)7'B,...,(skE —A)"'B} C Ran(V),
span{(le—A)‘TCT,...,(skE—A)'TCT} C Ran(W),

then
d

dsé(sj), forj=1,..., k.

6(5)=bls), <-6ls)=

Remarks:
computation of V, W from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GRIMME *97],

— lterative Rational Krylov-Algo. [ANTOULAS/BEATTIE/GUGERCIN '07].

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 18/41
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Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GrivME "97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)7'B,...,(skE —A)"'B} C Ran(V),
span{(le—A)‘TCT,...,(skE—A)'TCT} C Ran(W),

then
d

6(5)=bls), <6ls) =2

G(sj), forj=1,..., k.

Remarks:
using Galerkin /one-sided projection yields G(s;) = G(s;), but in general

d d »
EG(SJ') # EG(SJ)

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 18/41



Interpolatory Model Reduction

Short Introduction

Theorem (simplified) [GrivME "97, VILLEMAGNE/SKELTON '87]

span {(s1E — A)7'B,...,(skE —A)"'B} C Ran(V),
span{(le—A)‘TCT,...,(skE—A)'TCT} C Ran(W),

then

. d d _
G(s) = G(s7), EG(Sj)Zd_G( s)), forj=1,... k.

Remarks:

k =1, standard Krylov subspace(s) of dimension K ~» moment-matching meth-
ods/Padé approximation,

dl

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 18/41



Interpolatory Model Reduction @

Notation

Parametric Systems

(p) : { E(p)x(tip) = Alp)x(t:p) + B(p)u(t)),

y(tip) = C(p)x(t;p).
Assume
E(p) = Eo+e(p)Er+...+ eq(p)Eqe,
Alp) = Ao+ ai(p)Ai+ ...+ ag.(p)Aqu
B(p) = BO + bl(p)Bl +ot qu(p)BqB)
Cp) = G+alp)G+...+ cee(p)Cyc-

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 19/41
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Interpolatory Model Reduction

Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V, W € R"*" with WTV = |,

(~ (VWWT)2 = VWT is projector), compute

il
o

N—
[

Max Planck Institute Magdeburg

WTEV +e(p)W EV +...
WT AV + ai(p)WT ALV + ...

W'By, +b(p)W'B +...

COV+

cl(p)C1V + ...

+ qu(P)WTEqE v,
+ aQA(p)WTAqA v,
+ bas (P) WTBqB?

+ cac(P)Cac V,

Peter Benner, PMOR for UQ
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Interpolatory Model Reduction

Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V, W € R"*" with WTV = |,
(~ (VWWT)2 = VWT is projector), compute

Max Planck Institute Magdeburg

Eo -+ el(p)E1 + ...
Ao+ ai(p)Ar + ...
BO a4 bl(P)Bl + ...

&0 + Cl(p)a.l —+ ...

+ e‘JE(p)EQE7
+ an(p)AqA’
+ bqs (P) qu,

+ Cac(P) CJC 0

Peter Benner, PMOR for UQ 20/41
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PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter 5§ and parameter vector p,
expand into multivariate power series about (3, p) and compute
reduced-order model, so that

G(s,p) = G(s,p) + O (Is =38 + |p = plI" +Is — 3"Ilp — BII) ,

i.e., first K, L, k+ ¢ (mostly: K =L =k~+¢) coefficients (multi-moments)
of Taylor/Laurent series coincide.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 21/41
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'PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter 5§ and parameter vector p,
expand into multivariate power series about (3, p) and compute
reduced-order model, so that

G(s,p) = G(s,p) + O (Is =38 + |p = plI" +Is — 3"Ilp — BII) ,

i.e., first K, L, k+ ¢ (mostly: K =L =k~+¢) coefficients (multi-moments)
of Taylor/Laurent series coincide.

Algorithms:
@ [DANIEL ET AL. '04]: explicit computation of moments, numerically
unstable.

@ [FARLE ET AL. "06/°07]: Krylov subspace approach, only polynomial
parameter-dependance, numerical properties not clear, but appears
to be robust.

@ [FenG/B. ’07-'10]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger as
with [FARLE ET AL.].

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 21/41



PMOR based on Multi-Moment Matching

Numerical Examples

Electro-chemical SEM:
compute cyclic voltammogram based on FEM model

Ex(t) = (Ao + p1A1 + p2A2)x(t) + Bu(t), y(t) = c'x(t),
where n = 16,912, m = 3, A;, A, diagonal.

K=L=k+{(=4 = r=26 K=L=k+(=9 = r=286

8

—— fullsimulation, n=16912
o|L.===reduced order 80

—full simulation, n=16912
——=reduced order 26

current, nA
current, nA
~

" 05 0 1 i 05 0 05 1
voltage u(t), alpha=0.5 voltage u(t), alpha=0.5
Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 22/41



PMOR based on Multi-Moment Matching

Numerical Examples

Anemometer:
FE model

Ex(t) = (Ao + p1A1)x(t) + bu(t),
where n =29,008, m=q = 1.

y(t) = cx(t),

Outputs for p=1 Output errors for p =1

10
4 4
| —eirors o1 he recuced mogel by o proposed agorim
. Pl —-ertos ofthe reduced model by nonparameic model recction
—— gl ouput ap=1 erors ofthe reduced mocel by explicity computing moment vectors
=~ ~output at =1 by nonperamerc modl reciction, ertor=de-§
a5 + output et p=" by o proposed agorim, error=8e.4
ouputatp=1 by & ors. emor=1e-2
B 1
T
by ]
%
g 2
3
15 1
1 ]
0s
. . . . 505 01 015 02 0% 03 03 04 045 05
007 002 003 004 005 006 007 008 008 01

time (seconds)

Max Planck Institute Magdeburg

parameter: p
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PMOR based on Rational Interpolation

Theory: Interpolation of the Transfer Function

Theorem 1 [BAUR/BEATTIE/B./GUGERCIN ’07/°09]

Let  G(s,p) = C(p)(sE(p) — A(p)) " B(p)
= C(p)V(sWTE(p)V — WTA(p)V) ™' W' B(p)

and suppose p = [p1. ... pu]” and 5 & C are chosen such that both
SE(p) — A(p) and § (/3) A(p) are invertible.
If
(3 E(p) — A(p)) " B(p) € Ran(V)
or

(c@)E®) - AR ™) € Ran(w),

then G(3,p) = G(5, p).

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 24/41
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Theory: Interpolation of the Transfer Function

Theorem 1 [BAUR/BEATTIE/B./GUGERCIN ’07/°09]

Let  G(s,p) = C(p)(sE(p) — A(p)) " B(p)
= C(p)V(sWTE(p)V — WTA(p)V) ™' W' B(p)

~

and suppose p = [p1, ..., pg]” and & & C are chosen such that both
SE(P) — A(p) and s E(p) — A(p) are invertible.

If
(3 E(p) — A(p)) " B(p) € Ran(V)

() EER - AN ™) € Ran(w)
then G(5,p) = G(5,p).

Note: result extends to MIMO case using tangential interpolation:
Let 0 # b € R", 0 # ¢ € RY be arbitrary.

a) If (3 E(p) — A(p)) ! B(p)b € Ran(V), then G(3, p)b = G(3, p)b;
b) If (cTC(i)) (BE(p) — A(fa))_l) T e Ran(W), then ¢” G(3, p) = ¢ G(5, p).

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 24/41
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PMOR based on Rational Interpolation

Theory: Interpolation of the Parameter Gradient

Theorem 2 [BAUR/BEATTIE/B./GUGERCIN ’07/°09]

Suppose that £(p), A(p), B(p), C(p) are C* in a neighborhood of
p = [p1,---, P4]” and that both 5 E(p) — A(p) and 3 E(p) — A(p) are

invertible. If
(3 E(p) — A()) " B(p) € Ran(V)
and
(c(p)(5E(B) —~ AB) ) € Ran(W),
then 5 5
VpG(5,P) = VpGr(8,p),  5-G(5,P)=5-G(5p)
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Theory: Interpolation of the Parameter Gradient

Theorem 2 [BAUR/BEATTIE/B./GUGERCIN ’07/°09]

Suppose that £(p), A(p), B(p), C(p) are C* in a neighborhood of
p = [p1,---, P4]” and that both 5 E(p) — A(p) and 3 E(p) — A(p) are

invertible. If
(3 E(p) — A()) " B(p) € Ran(V)
and
(c(p)(5E(B) —~ AB) ) € Ran(W),
then 5 5
VpG(5,P) = VpGr(8:p),  5-G(5,P) =G5 p)

Note: result extends to MIMO case using tangential interpolation
Let 0 # b € R™, 0 # ¢ E RY be arbitrary. If (8 E(p) — A(p)) > B(p)b € Ran(V) and
(c C(p) (RE(p) — A(B))™ ) € Ran(W), then V,c’ G(5, )b = V,c’ G(&, p)b.
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Theory: Interpolation of the Parameter Gradient

Theorem 2 [BAUR/BEATTIE/B./GUGERCIN ’07/°09]

Suppose that £(p), A(p), B(p), C(p) are C* in a neighborhood of
p = [p1,---, P4]” and that both 5 E(p) — A(p) and 3 E(p) — A(p) are

invertible. If
(3 E(p) — A()) " B(p) € Ran(V)
and
(c(p)(5E(B) —~ AB) ) € Ran(W),
then 5 5
VpG(5,P) = VpGr(8,p),  5-G(5,P)=5-G(5p)

@ Assertion of theorem satisfies necessary conditions for surrogate models in trust
region methods [ALEXANDROV/DENNIS/LEWIS/ TORCZON '98].

@ Approximation of gradient allows use of reduced-order model for sensitivity
analysis.
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PMOR based on Rational Interpolation

Algorithm
Generic implementation of interpolatory PMOR

Define A(s, p) := sE(p) — A(p).
@ Select “frequencies” si,...,sx € C and parameter vectors

p(l), . ,p(l) e RY.
© Compute (orthonormal) basis of

v = span {A(s1,p0) 1B(pD). ... (s, o) B .

© Compute (orthonormal) basis of
W = span {A(s1, pM) =" C(pM) T, .. ,A(sk,p@)—TC(p“’)T}.

Q Set Vi=[vi,...,vie], W:=[w,...,wi], and W := W(WT V)L

(Note: r = k).
© Compute { %:\(p) =WTA(p)V, '?(P) = WTB(p)V,
C(p) = WT'C(p)V, E(p):=WTE(p)V.

Peter Benner, PMOR for UQ 26/41
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PMOR based on Rational Interpolation

Remarks

o If directional derivatives w.r.t. p are included in Ran(V), Ran(W),
then also the Hessian of G(8, p) is interpolated by the Hessian of

G(3.p).

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 27/41
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Remarks

o If directional derivatives w.r.t. p are included in Ran(V), Ran(W),
tAhen also the Hessian of G(8, p) is interpolated by the Hessian of
G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors
p%) in general is an open problem.
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PMOR based on Rational Interpolation

Remarks

o If directional derivatives w.r.t. p are included in Ran(V), Ran(W),
tAhen also the Hessian of G(8, p) is interpolated by the Hessian of
G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors
p%) in general is an open problem.

o For prescribed parameter vectors p(¥), we can use corresponding
Ho-optimal frequencies sy, { = 1,..., r, computed by IRKA, i.e.,

reduced-order systems &Ek) so that

16(-p*) = GO0, = min [6(p) = GO e

G stable

where

16, = (% /:” }!G(]w)’@dw)l/?.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 27/41
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PMOR based on Rational Interpolation

Remarks

o If directional derivatives w.r.t. p are included in Ran(V), Ran(W),
tAhen also the Hessian of G(8, p) is interpolated by the Hessian of
G(5,p).

@ Choice of optimal interpolation frequencies s, and parameter vectors
p%) in general is an open problem.

o For prescribed parameter vectors p(¥), we can use corresponding
Ho-optimal frequencies sk p, f=1,..., . r,. computed by IRKA, i.e.,

reduced-order systems G* so that
16(.p®) = &)l = min [[G(..pM) = GOl

order(G)=ry
G stable

1Glly, = (% /:” Hc(jw)Hidwy/z.

o Optimal choice of interpolation frequencies s, and parameter vectors
p¥) possible for special parameterized SISO systems.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 27/41
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PMOR based on Rational Interpolation

Numerical Example: 2D Convection-Diffusion Equation

o FD discretization (n = 400, m = g = 1) yields
X(t) = (pvo + p1A1 + p2A2)X(t) + B U(t),

where pg = diffusion coefficient; p;, i = 1,2, convection in x;
direction, p € [0,1]3.

o Parameter vectors for interpolation:

p) =(0.8,0.5,0.5), p® =(0.8,0,0.5), p® =(0.8,1,0.5),
p* =(0.1,0.5,0.5), p® =(0.1,0,1), p® =(0.1,1,1).

o Compare implementations:

— generic rational PMOR (= fix interpolation frequencies),
— IRKA-based rational PMOR (= optimize interpolation frequencies).

o Reduced-order model: n =n=rn=3, n=rn=r=4=r=21.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 28/41



PMOR based on Rational Interpolation

Numerical Example: 2D Convection-Diffusion Equation

Relative H, Error for p

Relative H, error for p = 0.1

\
H

s

T
T
T
3
8

log (ITH = H_1I, /1T HI)

IS

IRKA, 5 steps

Max Planck Institute Magdeburg

Relative H, error for p = 0.1

generic

Peter Benner, PMOR for UQ 29/41



atory Mo eduction

000000800

PMOR based on Rational Interpolation

Numerical Example: 2D Convection-Diffusion Equation

Relative H ., Error for pg

Relative H, error for p = 0.5 Relative H, error for py = 0.1

log (1H—H_1I_ /Il H1l)

IRKA, 5 steps generic
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PMOR based on Rational Interpolation

Numerical Example: Thermal Conduction in a Semiconductor Chip

@ Important requirement for a compact model of thermal conduction is
boundary condition independence.

@ The thermal problem is modeled by the heat equation, where heat
exchange through device interfaces is modeled by convection boundary
conditions containing film coefficients {p;}3_;, to describe the heat
exchange at the ith interface.

@ Spatial semi-discretization leads to
Ex(t) = Ao+2p, Dx(t) + bu(t), y(t) = c x(t),
where n = 4,257, A;, i = 1,2, 3, are diagonal.
Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal

modeling phenomena, IEEE. Trans. Components and Packaging Technologies,
Vol. 24, No. 4, pp. 559-565, 2001.

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 31/41
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PMOR based on Rational Interpolation

Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 2 interpolation points for parameters ( “important” configurations), 8/7
interpolation frequencies are picked H, optimal by IRKA. —= k=2,¢=28,7,
hence r = 15.

ps =1, p1,ps € [1,10%].

Relative H_ error for py=1

L
IS

L
>

-18

4

=H I ZITHI

log (IlH

log (p,) oo log (p,)
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MOR for LPV Systems

Model Reduction for Linear Parameter-Varying Systems

LPV Systems

Linear parameter-varying (LPV) systems = linear parametric systems
with time-dependent parameters:

x(t) = Aox(t) + Z pi(t)Aix(t) + Bou(t),

y(t) = Cx(t), x(0) = xo,

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 33/41



MOR for LPV Systems

Model Reduction for Linear Parameter-Varying Systems
LPV Systems: A Special Class of Bilinear Systems

Note that LPV systems

X(t) = Aox(t) + > pi(t)Aix(t) + Bouo(t), y = Cx,

i=1

can be incorporated into the class of bilinear systems

x(t) = Ax(t) + ZA;x(t)u;(t) + Bu(t),

y(t) = Cx(t), x(0) = x,
where A; € R™", B € R™™, C € RP*".

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 34/41
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Model Reduction for Linear Parameter-Varying Systems
LPV Systems: A Special Class of Bilinear Systems

Note that LPV systems

X(t) = Aox(t) + > pi(t)Aix(t) + Bouo(t), y = Cx,

i=1

can be incorporated into the class of bilinear systems

x(t) = Ax(t) + > Aix(t)ui(t) + Bu(t),

i=1

y(t) = &(t),  x(0) = x,

where A; € R™", B € R™*™, C € RP*". For this, the parameter dependent
terms p;i(t) are interpreted as additional inputs, resulting in a MIMO bilinear
system with g 4+ k input variables:

u(t):= [p(0) . palt) wo(2)],
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Model Reduction for Linear Parameter-Varying Systems
LPV Systems: A Special Class of Bilinear Systems

Note that LPV systems

X(t) = Aox(t) + > pi(t)Aix(t) + Bouo(t), y = Cx,

i=1

can be incorporated into the class of bilinear systems

X(t) = Ax(t) + > Aix(t)ui(t) + Bu(t),

i-1
y(t) = Cx(t), x(0) = xo,
where A; € R™", B € R™*™, C € RP*". For this, the parameter dependent

terms p;i(t) are interpreted as additional inputs, resulting in a MIMO bilinear
system with g 4+ k input variables:

u(t):= [p(0) . palt) wo(2)],

Remark: Applying bilinear MOR, this automatically yields structure-preserving
MOR techniques for LPV systems!

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 34/41



MOR for LPV Systems

Model Reduction for Linear Parameter-Varying Systems

#H>-Norm for Bilinear Systems

Similar to the linear case, there exist generalized transfer functions, i.e.
for the SISO case:

Hi(s1,...,s1) = C(skl — Ag) tA1 - (s2] — Ag) T Ai(s1] — Ag)1B.
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Model Reduction for Linear Parameter-Varying Systems

#H>-Norm for Bilinear Systems

Similar to the linear case, there exist generalized transfer functions, i.e.
for the SISO case:

Hi(s1,...,s1) = C(skl — Ag) tA1 - (s2] — Ag) T Ai(s1] — Ag)1B.

Hence, we may define the H-norm for bilinear systems:

2 > ad ad 1 7 7« N T . .
||Z||H2 = tr E / / W Hy(iwy, ... iwe)H, (iwi, ..., iwg) |,
k=17 —o° —oo (T
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MOR for LPV Systems

Model Reduction for Linear Parameter-Varying Systems

#H>-Norm for Bilinear Systems

Similar to the linear case, there exist generalized transfer functions, i.e.
for the SISO case:

Hi(s1,...,s1) = C(skl — Ag) tA1 - (s2] — Ag) T Ai(s1] — Ag)1B.
Hence, we may define the H-norm for bilinear systems:
el e} e} 1
I3, = tr Z/ / L Hlien, o H G, k) )
k=17 =00 oo (2m)
which can be computed via the solution of the generalized Lyapunov eq.:
1=13, =cPC’

q -1
= (vec(l,))T (C ® C) <—Ao RI—1@A - A® Ak> (B ® B) vec(Im).
k=1

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 35/41



Model Reduction for Linear Parameter-Varying Systems
Interpolation-Based MOR for Bilinear Systems

Studying Hy-norm of the error system leads to an iterative procedure:

Algorithm 1 Bilinear IRKA

Input: Ay, Ay, B, C, Ag, A, B,
Output: A, A", BoPt, CoPt
1. while (changeinA>¢)do .
22 RAR'=A), B=R1'B, C=CR, Ac=R AR

m —1
3 vec(V) = (—/\ O h®A— > A® Ak> (Es ® B) vec(lm)

k=1

m —1
4 vec(W) = (—/\ ©h—hoA =S Al @ A[) (CT ® CT) vec(l,)
k=1
V =orth(V), W = orth(W)

Ao=(WTV) " WT AV, A= (WTV) " WTAV,
B=WTV)'wT'B, ¢ =cv

7: end while

8: AP = Ao, A¥ = A, B =B, C* =C

Max Planck Institute Magdeburg Peter Benner, PMOR for UQ 36/41



MOR for LPV Systems

Model Reduction for Linear Parameter-Varying Systems

Numerical Example: Cyclic Voltammogramme

2 film coefficients —

Ex(t) = (Ao + pr1A1 + p2A2)x(t) + Bu(t),

y(t) = cTx(t).

FE model: n=16,912, m = 3 inputs, A, A, diagonal.

BIRKA Results, r = 65

Current i(t)

N
— Orig. dim. [n = 16912
--- Red. dim. 2 = 65

Current i(t)

—0.5 0 0.5
Voltage u(t)

Max Planck Institute Magdeburg

— Orig. dim.|n = 16912
--- Red. dim. /i = 65

—0.5 0 0.5
Voltage u(t)
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Other Approaches

PMOR based on Rational Interpolation

e Transfer function interpolation (= output interpolation
in frequency domain) [B./BAUR 08]
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Other Approaches

PMOR based on Rational Interpolation

e Transfer function interpolation (= output interpolation
in frequency domain) [B./BAUR 08]

o Matrix interpolation [PANZER/MOHRING /EID /LOHMANN ’10]

@ Manifold interpolation [AMSALLAM/FARHAT/. .. '08]
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Other Approaches

PMOR based on Rational Interpolation

e Transfer function interpolation (= output interpolation

in frequency domain) [B./BAUR 08]
o Matrix interpolation [PANZER/MOHRING /EID /LOHMANN ’10]
@ Manifold interpolation [AMSALLAM/FARHAT/. .. '08]

o Proper orthogonal/generalized decomposition (POD/PGD)
[KuniscH/VOLKWEIN, HINZE, WILLCOX, NoUy, ...]
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Other Approaches

PMOR based on Rational Interpolation

e Transfer function interpolation (= output interpolation
in frequency domain) [B./BAUR 08]
o Matrix interpolation [PANZER/MOHRING /EID /LOHMANN ’10]
@ Manifold interpolation [AMSALLAM/FARHAT/. .. '08]
o Proper orthogonal/generalized decomposition (POD/PGD)
[KuniscH/VOLKWEIN, HINZE, WILLCOX, NoUy, ...]
o Reduced basis method (RBM)

[HAASDONK, MADAY, PATERA, PRUD’HOMME, R0OzzA, URBAN, ...]
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Other Approaches

Reduced basis method

Numerical Example: Coplanar Waveguide

FEM (Nédélec) approximation of time-harmonic Maxwell equations, n =
18, 755.

Coplanar waveguide

G

metallc stripines
.

/ substrate

discrete port

15mm

10mm |

S
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Other Approaches

Reduced basis method

Numerical Example: Coplanar Waveguide

FEM (Nédélec) approximation of time-harmonic Maxwell equations, n =

18, 755.
Coplanar waveguide Relative errors for r = 5

G

15mml-

10mm |

/ 0.0000
substrate 2

discrete port

Reference: basic MC(1,000,000)

Basic MC using RB model & 2min (vs. 10 days for FEM model).
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Other Approaches

Reduced basis method

Numerical Example: Coplanar Waveguide

FEM (Nédélec) approximation of time-harmonic Maxwell equations, n =

18, 755.
Coplanar waveguide Relative errors for r = 10

G

u Magnift
10

15mmf-

10mm |

/ 0.0000
substrate 2

discrete port

Reference: basic MC(1,000,000)

Basic MC using RB model & 2min (vs. 10 days for FEM model).
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Other Approaches

Reduced basis method

Numerical Example: Coplanar Waveguide

FEM (Nédélec) approximation of time-harmonic Maxwell equations, n =

18, 755.
Coplanar waveguide Relative errors for r = 20

G

u Magnift
10

15mmf-

10mm |

/ 0.0000
substrate 2

discrete port

Reference: basic MC(1,000,000)

Basic MC using RB model & 2min (vs. 10 days for FEM model).
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Conclusions and Outlook Re

Conclusions and Outlook

@ A variety of interpolatory and other PMOR methods can be used for
standard forward uncertainty propagation problems if the model involves a
number of uncertain parameters.

o Efficiency of parametric model reduction methods can be enhanced when
combined with sparse grid ideas.

@ Scaling with respect to number of parameters not well analyzed; so far,
not all methods are applicable to problems with a large number of
parameters, resulting, e.g., from Karhunen-Loéve and/or polynomial chaos
expansion of random fields/processes.

@ Wide variety of algorithmic possibilities, further need for optimization of
interpolation point selection and error bounds, numerous possible
applications.

@ Combination with low-rank tensor techniques promising.
@ Extension to nonlinear systems possible for most approaches.

@ Currently working on stochastic RB method for Maxwell equations with
uncertain geometry.
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