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Introduction

Introduction

Nonlinear Model Reduction

Given a large-scale control-affine nonlinear control system of the form

x(t) = f(x(¢)) + bu(t),
y(t) = cTx(t), x(0) =,

with f : R” — R” nonlinear and b,c € R", x e R", u,y € R.
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Nonlinear Model Reduction

Given a large-scale control-affine nonlinear control system of the form

' {)’((t) F(x(t)) + bu(t),
() =cTx(2), x(0) = xo,

with f : R” — R” nonlinear and b,c € R", x e R", u,y € R.

o Optimization, control and simulation cannot be done efficiently!

with f: R? — R? and b,é € R? x € R" u € R and
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Nonlinear Model Reduction

Given a large-scale control-affine nonlinear control system of the form

c. {)’((t) F(x(t)) + bu(t),
() =cTx(2), x(0) = xo,

with f : R” — R” nonlinear and b,c € R", x e R", u,y € R.

o Optimization, control and simulation cannot be done efficiently!

with f : R” - R" and b, e R", xe R, ue Rand y~yecR, A< n.
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Common Reduction Techniques

Proper Orthogonal Decomposition (POD)
o Take computed or experimental 'snapshots’ of full model:
[x(t1), x(t2), ..., x(tn)] =: X,
o perform SVD of snapshot matrix: X = VSWT ~ V,;S;W,].
o Reduction by POD-Galerkin projection: % = V. f(Va%) + V] Bu.
@ Requires evaluation of f
~~ discrete empirical interpolation [Sorensen/Chaturantabut '09].
@ Input dependency due to 'snapshots’!
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Introduction

Common Reduction Techniques

Proper Orthogonal Decomposition (POD)

o Take computed or experimental 'snapshots’ of full model:
[x(t1), x(t2), ..., x(tn)] =: X,
perform SVD of snapshot matrix: X = VSWT ~ V;S;W,T.
Reduction by POD-Galerkin projection: % = VT f(V4%) + V| Bu.
Requires evaluation of f
~~ discrete empirical interpolation [Sorensen/Chaturantabut '09].

(]

Input dependency due to 'snapshots’!

Trajectory Piecewise Linear (TPWL)
o Linearize f along trajectory,
@ reduce resulting linear systems,
@ construct reduced model by weighted sum of linear systems.

@ Requires simulation of original model and several linear reduction
steps, many heuristics.
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Introduction

Linear System Norms

Let us start with linear systems, i.e. f(x) = Ax.

Two common system norms for measuring approximation quality:
1

o Hp-norm, ||X||, = (% 027T tr (H*(—iw)H(iw)) dw)é,
0 Hoo-norm, ||X||x., = sup omax (H(iw)),
w€ER

where
H(s)=C(sl —A)'B

denotes the corresponding transfer function of the linear system.
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Introduction

Linear System Norms

Let us start with linear systems, i.e. f(x) = Ax.

Two common system norms for measuring approximation quality:
1

o Hp-norm, ||X||y, = (% 027T tr (H*(—iw)H(iw)) dw)z,
0 Hoo-norm, ||X||x., = sup omax (H(iw)),
w€ER

where
H(s)=C(sl —A)'B

denotes the corresponding transfer function of the linear system.

We focus on the first one ~~ interpolation-based model reduction
approaches.
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Introduction
Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an H,-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=[c -C].
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Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an H,-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=[c -C].

~ first-order necessary H,-optimality conditions (SISO)

H(=\i) = A(=X;),
H' (=) = H'(=X\),

where )\; are the poles of the reduced system 5.
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Introduction
Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an H,-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=[c -C].

~~ first-order necessary H,-optimality conditions (MIMO)

H(=X)B:i = A(=X))B;, fori=1,...,A,
CTH(=X) = CTA(-N), fori=1,...,A,
CTH (=\)Bi = CTH (-\)B; fori=1,...,A,

where A = RAR™ T~is the spectral decomposition of the reduced system
and B=BTR™T, C=CR.
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Introduction
Error system and H>-Optimality [Meier/Luenberger '67]

In order to find an H,-optimal reduced system, consider the error system
H(s) — H(s) which can be realized by

err __ A0 err __ B err __ A
A _[o 2\]’ B _[é], cr=[c -C].

~~ first-order necessary H,-optimality conditions (MIMO)

H(=X)Bi = A(=X))B;, fori=1,...,A,
CTH(=X) = CTA(-N), fori=1,...,A,
CTH (=\)Bi = CTH (-\)B; fori=1,...,A,

vec (1,)" (eje,-T ® C) (-A@ 1, — I, @ A)! (BT ® B) vec (Im)

T T o A AN (BT o B
= vec(l,) (eje,- ® C) (—/\ Rl — I ® A) (B ® B) vec (Im),
fori=1,...,A4and j=1,...,p.
P. Benner, MOR for Nonlinear Systems 6/33
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Interpolation of the Transfer Function [GRIMME 97]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

A(s) = CV (sl - WTAV) " WTB,
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Construct reduced transfer function by Petrov-Galerkin projection
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where V' and W are given as
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Introduction

Introduction

Interpolation of the Transfer Function [GRIMME 97]

Construct reduced transfer function by Petrov-Galerkin projection
P=VWT ie.

A(s) = CV (sl - WTAV) " WTB,
where V and W are given as

V=[(o1/ —A)'B,....(c:] — A)7'B],
W = [(o1] = AT)ICT, ... (o, = AT)TICT].
Then ) )
H(O’,') = H(U,‘) and H/(O',') = H/(O','),
fori=1,...,r.

~~ iterative algorithms (IRKA/MIRIAm) that yield H,-optimal models.

[GUGERCIN ET AL. ’08], [BUNSE-GERSTNER ET AL. '07],
[VAN DOOREN ET AL. '08]
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Bilinear Control Systems

Now consider x = Ax + g(x, u) with
g(x,u) = Bu+ [Nl, ceey Nm] (Im ® x) u,

i.e. bilinear control systems:

X(t) = Ax(t) + > Nix(t)ui(t) + Bu(t),

y() = Cx(t), x(0) = x.

where A, N; e R™" B € R™™ C e RP*".

3
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Bilinear Control Systems

Now consider x = Ax + g(x, u) with
g(x,u) = Bu+ [Nl, ceey Nm] (Im ® x) u,

i.e. bilinear control systems:

X(t) = Ax(t) + > Nix(t)ui(t) + Bu(t),

y() = Cx(t), x(0) = x.

where A, N; e R™" B € R™™ C e RP*".

3

@ Approximation of weakly nonlinear systems ~~ Carleman
linearization.

@ A lot of linear concepts can be extended, e.g. transfer functions,
Gramians, Lyapunov equations, ...

@ An equivalent structure arises for some stochastic control systems.

Max-Planck-Institute Magdeburg
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H,-Model Reduction for Bilinear Systems ‘

Some Basic Facts

Output Characterization (SISO): Volterra series

> t ety te—1
y(t) :Z/O /O /0 K(t1,...,tk)u(t—h—...—tk)~~~u(t—tk)dtk-~-dt1,
k=1

with kernels K(t1, ..., tx) = Ce”™ Ny --- A2 N et B.
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H>-Model Reduction for Bilinear Systems (

Some Basic Facts

Output Characterization (SISO): Volterra series

// / K(tr, ... t)u(t—ti—. .. —tx) - - u(t—tx)dtx - - - dta,

with kernels K(t1, ..., tx) = Ce”™ Ny --- A2 N et B.

Multivariate Laplace-transform (SISO):

Hi(si,...,s6) = C(sil — A)7INy - (s2] — A) "INy (s11 — A) LB,

Bilinear Ha-norm (MIMO):

1

15 2, = <tr <Z/ / o )k Hk(,wl,.4.,iwk)H[(;w1,...,iwk)>> 4

[ZHANG /LAM. ’02]
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H>-Model Reduction for Bilinear Systems

Ho-Norm Computation

[B./BREITEN ’11]

Let X denote a bilinear system. Then, the Hy-norm is given as:

m —il
||):||%_L2 = (vec(lp))T (C®C) <—A® I—1®A-— Z N; ® N;) (B ® B) vec(Im).
i=1

In order to find an H,-optimal reduced system, define the error system
Y =% — ) as follows:

Aerr — |:A 0:| ’ Nierr _ |:NI 9:| ) Berr — |:€:| , Cerr — [C _é] .

0 A 0 N

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 10/33



#.2-Model Reduction for Bilinear Systems

H->-Model Reduction

7H>-Optimality Conditions

~

Let us assume X is given by its eigenvalue decomposition:

A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.
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Let us assume X is given by its eigenvalue decomposition:
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Using A, N, B, C as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:
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H--Model Reduction

7H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.

Using A, N, B, C as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) (—/\ @h—lh @A~ zm: N; @ N;) B (é ® B) vec(Im)
i=1

= (vec(lq))T (eje[ ® C) <—/\ Q= Iz A— 2”’: N; @ N;) - (é ® é) vec(Im).
i=1
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H--Model Reduction

7H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.

Using A, N, B, C as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) (—/\ @h—lh @A~ zm: N; @ N;) B (é ® B) vec(Im)
i=1

= (vec(lg))T (eje[ ® C’) <—/\ Qb — ;@A - 2”’: N; ® N;) - (é ® é) vec(Im).

Where is the connection to the interpolation of transfer functions?
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7H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.

Using A, N, B, C as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:

(vec(l))T (eje[ ® c) <—/\ DIy — Iy @ A— zm: i ® N-) - (é ® B) vec(lm)
= (vec(lg))T (eje[ ® C’) <—/\ ® I — i: ) vec(lm)

(vec(ly))" (ejeg ® C) (-A@ b — ly® A} ( ) vec(Im)

&
= (vec(lg))" (eje[ ® C) (—/\ QIh—1h® A) ( ) vec(Im).
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7H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.
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H--Model Reduction

7H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.

Using A, N, B, C as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) (—/\ @h—lh @A~ zm: N; @ N;) B (é ® B) vec(Im)
i=1

= (vec(lq))T (eje[ ® C) <—/\ Q= Iz A— 2”’: N; @ N;) - (é ® A) vec(Im).

“Al— A ' /BB]
(vec(lg) (e¢/ @ €) :
Xl — A BB
Ml — A - /BB]
T T o A
= (vec(l))" (e¢] @ €) :
—Xal — A BB]
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H--Model Reduction

7H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.

Using A, N, B, C as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) (—/\ @h—lh @A~ zm: N; @ N;) B (é ® B) vec(Im)
i=1
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H(=Xe)B] = A(—X)B/

~~ tangential interpolation at mirror images of reduced system poles

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 11/33



H--Model Reduction

7H>-Optimality Conditions

Let us assume 3 is given by its eigenvalue decomposition:
A=RAR™Y, N,=R'WR, B=R'B, C=¢CR.

Using A, N, B, C as optimization parameters, we can derive necessary
conditions for H»-optimality, e.g.:

(vec(lg))T (eje[ ® c) (—/\ @h—lh @A~ zm: N; @ N;) B (é ® B) vec(Im)
i=1

= (vec(lg))T (eje[ ® C’) <—/\ Qb — ;@A - 2”’: N; ® N;) - (é ® é) vec(Im).

H(=X\)B] = A(-X0)B/
~~ tangential interpolation at mirror images of reduced system poles

Note: [FLaGG 2011] shows equivalence to interpolating the Volterra series!
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A First Iterative Approach (€5

Algorithm 1 Bilinear IRKA

Input: A, N;, B, C, A, N;, B, C

Output: A%t NP* Bopt, Copt

1: while (change in A > ¢€) do L )

22 RAR'=A B=R'B,C=CR N;=R'W,R

-1
m
3 vec(V) = (—/\ Rh—lh®A=Y N @ N,-) (é ® B) vec(lm)

i=1
m —1

4 vee(W)=[-A&l,— /ﬁ®AT—ZNiT®NiT> (C ® C7) vec(ly)
i=1

5.V =orth(V), W = orth(W)

6 A= (WTV)TWTAV, = (WTV) "WV,

B=(WTV)'WTB, ¢ =cV
7: end while R
8 A%t — A NP = N, BPt = B, Cot = €

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 12/33



Introduction # o-Model Reduction for Bilinear Systems lonlinear Model Reductior Numerical Example:

H>-Model Reduction for Bilinear Systems

A Heat Transfer Model

o 2-dimensional heat distribution

[B./SAAK *05] 1P
o Boundary control by spraying oo o2 03
intensities of a cooling fluid
X10 X11 X12 X13 X14
2=(0,1) x (0,1),
X = Ax in €, r X20 X21 X22 x23 X24 r
n-Vx=c-up3(x—1) onTly,l,,I3, 1 4
X =l on ly. X30 x31 X32 X33 X34
o Spatial discretization k x k-grid
3 X41 X42 X43
:>>'<:¢:A1X—I—ZN,~XU,-—|—BU
i=1 I-3
= A, =0.

1
o Output: y = 5 [1

K
Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 13/33



H>-Model Reduction for Bilinear Systems

A Heat Transfer Model

Comparison of relative Hj-error for n = 10.000

10° ]
5 i —— Balanced Truncation | |
5 107t E —o— Bilinear IRKA E
5 ; —+ Linear IRKA ]
o - i
2 i i
< 1072F E
oz B ]

-3 \ \ \ | |

10 5 10 15 20 25 30
Reduced system dimension
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H o-Model Reduction for Bilinear Systems lonlinear

H>-Model Reduction for Bilinear Systems

Fokker-Planck Equation

As a second example, we consider a dragged Brownian particle whose
one-dimensional motion is given by

dX, = —VV(X,, t)dt + V20dW,,

with o =2 and V(x,u) = W(x,t) + ®(x, ur) = (x> — 1) — xu — x.
Alternatively, one can consider ([HARTMANN ET AL. ’10]) ,

p(x, t)dx = P [X; € [x,x + dx)]

which is described by the Fokker-Planck equation

W moBpt V(YY) (B e(-22) % (0.T],
0=0Vp+pVB, (x,t) € {-2,2} x [0, T],
po = p, (x,t) € (—2,2) x 0.

Output C discrete characteristic function of the interval [0.95,1.05].
P. Benner, MOR for Nonlinear Systems 14/33



H>-Model Reduction for Bilinear Systems

Fokker-Planck Equation

Comparison of relative Hy-error for n = 500

100 = T L E
?*_H\'_"\,\K —+— Balanced Truncation |
- —o— Bilinear IRKA :
| |
v 10
£ z
v
= i i
< 1072f
= B
10-3 \ \ \ \ \

5 10 15 20 25 30

Reduced system dimension

4
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Nonlinear Model Reduction
Quadratic-Bilinear Differential Algebraic Equations (QBDAEs)

Coming back to the more general case with nonlinear f(x), we consider
the class of quadratic-bilinear differential algebraic equations

Ex(t) = Aix(t) + Axx(t) @ x(t) + Nx(t)u(t) + Bu(t),

0= o). x(0) =,

where E, A;, N € R"™" A, € R’ (Hessian tensor), B, CT€ R" are
quite helpful.

o A large class of smooth nonlinear control-affine systems can be
transformed into the above type of control system.

@ The transformation is exact, but a slight increase of the state
dimension has to be accepted.

o Input-output behavior can be characterized by generalized transfer
functions ~» enables us to use Krylov-based reduction techniques.

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 15/33



Nonlinear Model Reduction

Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgr(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.
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Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgr(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp=exp(—x) - V/x2+1, x=-x+u
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Nonlinear Model Reduction

Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgr(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp=exp(—x) - V/x2+1, x=-x+u

0 71 := exp(—x),
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Nonlinear Model Reduction

Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgr(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp=exp(—x) - V/x2+1, x=-x+u
o z1 :=exp(—x), 2z:=+x2+1.
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Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgr(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp=exp(—x) - V/x2+1, x=-x+u
o z1 :=exp(—x), 2z:=+x2+1.
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Nonlinear Model Reduction

Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgr(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp=exp(—x) - V/x2+1, x=-x+u
o z1 :=exp(—x), 2z:=+x2+1.
o X1 =2z - 2o, X0 = —Xo + U, Z1 = —21-(—X2+U),

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 16/33



Nonlinear Model Reduction
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Transformation via McCormick Relaxation

Theorem [Gu'09]

Assume that the state equation of a nonlinear system X is given by

x = apx + a181(x) + ... + akgr(x) + Bu,

where g;(x) : R” — R" are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, & can be transformed into a system of QBDAEs.

o xp=exp(—x) - V/x2+1, x=-x+u
A R 2
0 z1 :=exp(—x2), 2z :=+/x{+1.
o X1 =2z - 2o, X0 = —Xo + U, Z1 = —21-(—X2+U),
s 2:X1:Z1°Z .
Zy = B X1°21.

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 16/33



Nonlinear Model Reduction

Nonlinear Model Reduction

Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
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Nonlinear Model Reduction

Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
o consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + aPxo(t) + x3(t) + .. ..
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Nonlinear Model Reduction

Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
o consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + aPxo(t) + x3(t) + .. ..

@ comparison of terms a/,i = 1,2, ... leads to series of systems
Ex; = Aixy + Bu,
Exy = Aixo + Aoxiy ® x1 + Nxqu,
Exs = Aixzs + Ax (x1 ® xo + x2 ® x1) + Nxou
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Nonlinear Model Reduction

Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:
o consider input of the form au(t),
@ nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = axi(t) + aPxo(t) + x3(t) + .. ..

@ comparison of terms a/,i = 1,2, ... leads to series of systems
Ex; = Aixy + Bu,
Exo = A1xo + Aox1 ® x1 + Nxqu,
Exs = Aixzs + Ax (x1 ® xo + x2 ® x1) + Nxou

@ although i-th subsystem is coupled nonlinearly to preceding systems,
linear systems are obtained if terms x;, j < i, are interpreted as
pseudo-inputs.
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Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:
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Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

H1(51) = C(SlE — Al)_lB,
| —

Gl(sl)
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Nonlinear Model Reduction

Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

Hi(s1) = C(s1E — A)) 7B,
T
Hy(s1,%) = %C ((s1 4 )E — A1) H [N (Gy(s1) + Gi(s2))
+A2 (Gi(s1) ® Gi(s2) + Gi(s2) @ Gi(s1))],
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Nonlinear Model Reduction

Nonlinear Model Reduction

Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

Hi(s1) = C(s1E — A)) 7B,
Gi(=)
Hals1,%2) = 5 C (51 + 2)E — A1) [N (Gi(s1) + Ga(2))
+A; (Gi(s1) ® Gi(52) + Gu(52) ® Guls1))] .
Hs(s1,52,83) = %C ((s1+ s+ s3)E— Al)_1
[M%%@+®@&H®M@»

+ A2(Gi(s51) ® Ga(s2,53) + Gi(s2) ® Go(s1,3)
+ Gi(s3) ® Ga(s1,53) + Ga(s2, 53) ® Gy(s1)

+ Go(s1,83) ® Gi($2) + Go(51, %) ® G1(53))}-
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Nonlinear Model Reduction

Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For Hi(s1),
choosing o and making use of the Neumann lemma leads to

Hy(s1) = Z C (A —0E)E) (AL —0E) "B (s1— o).

i
Mg o
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Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For Hi(s1),
choosing o and making use of the Neumann lemma leads to

Hy(s1) = Z C (AL — 0E)E) (AL — 0E) 1B (s; — o)’

i
Mg o

Similarly, specifying an expansion point (7, &) yields

h(s1,%2) 2ZC(A1 T+§)E)—IE)i(A1—(T+£)E)—1 (sl—|—52—7_§)i.

(z RRE SERED SIS w0 )+N(zm51, +zm;;,g)]
p=0
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Nonlinear Model Reduction

Constructing the Projection Matrix

Goal:

1 1
Construct the following sequence of nested Krylov subspaces

,llfll(a), 8,mHz(a'a') almHz(O'O‘) I+m<gq-—1.
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Constructing the Projection Matrix

,llfll(a), a,mHz(UrJ') almHz(O'O‘) I+m<gq-—1.

. _8
Goal: e

1 1
Construct the following sequence of nested Krylov subspaces

Vi =Kq ((AL — 0E)'E, (AL — 0E)7'b)

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 20/33



Nonlinear Model Reduction

Nonlinear Model Reduction

Constructing the Projection Matrix

. _8
Goal: e

1 1
Construct the following sequence of nested Krylov subspaces

Hi(o) = 2= F(0), a/mf"z(UU) 8lmH2(UU) I+m<q-—1.

Vi =Kq ((AL — 0E)'E, (AL — 0E)7'b)

fori=1:¢q
Vs = Kg—is1 (AL — 20E)1E, (A1 — 20E) TINVA(:, 1)),
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Nonlinear Model Reduction

Constructing the Projection Matrix

Goal: 3 ?71 Hi(o) = 65?71 Ai(o), 7 , Py o] mH2(0' o), l+m<q-—1.
1 1
Construct the following sequence of nested Krylov subspaces
Vi =Kq ((AL — 0E)'E, (AL — 0E)7'b)
fori=1:¢q
Vs = Kg—is1 (AL — 20E)1E, (A1 — 20E) TINVA(:, 1)),
for j=1:min(g—i+1,i)
Vil = Kqoicjia (A1 — 20E)1E, (AL — 20E) T A VA (s, ) @ VA(4)))

Hy(o,0) =

Vi(:, i) denoting the i-th column of V.
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Nonlinear Model Reduction :

Constructing the Projection Matrix

Goal: 5 f,l Hi (o) = 65?,1 A (o), e / o 7s l E
Construct the following sequence of nested Krylov subspaces
Vi =Kq ((AL — 0E)'E, (AL — 0E)7'b)
fori=1:¢q
Vs = Kg—is1 (AL — 20E)1E, (A1 — 20E) TINVA(:, 1)),
for j=1:min(g—i+1,i)
V37 = Kqoizjia (AL — 20E)7LE, (A1 — 20E) Ao VA (s, 1) @ VA, J))

Hy(o,0) = Ay(o,0), I+m<q—1.

Vi(:, i) denotlng the i-th column of V4. Set V = orth [V4, Vi, V3’J] and
construct 3 by the Galerkin-Projection P = VY-

Ap =VTAY e R A, = VT AV @ V) € R*H
N=VINYeR™ [h=yTpheR" &7 =cTyeR"
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Nonlinear Model Reduction

Nonlinear Model Reduction

Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]

A tensor is a vector
(A)ier € R®

indexed by a product index set

I:le---xl'd, #l'j:nj.
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Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]

A tensor is a vector
(A)ier € R®

indexed by a product index set
I:le---xl'd, #l'j:nj.
For a given tensor A, the t-matricization A(*) is defined as

Tex Ly (t) — .
AW e RFXT AL e = A Ei= (L AN
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Nonlinear Model Reduction

Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]

A tensor is a vector
(A)ier € R®

indexed by a product index set
I:le---xl'd, #l'j:nj.
For a given tensor A, the t-matricization A(*) is defined as

Ty X Ty (1) =
AD R Al et et = Ao

t={1,...,d}\t.
Example: For a given 3-tensor A(;, j, iy with i1, i2, i3 € {1,2}, we have:

A(1):[A(1,1,1) Aaz1) A A(1,2,2):|
Az Ae21 Ael2) Aee2)]’

A(2):|:A(1,1,1) Aty A A(2,1,2)]
Aazy Ae2y Az Ae22
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Nonlinear Model Reduction

Nonlinear Model Reduction
Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]
For a given tensor A, the t-matricization A(*) is defined as

T XLy (t) — —
A ¢ RTxTw A et Gner = Alnis £ = {1 d)\t.

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure: Slices of a 3rd-order tensor. [Courtesy of Tammy Kolda]
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Nonlinear Model Reduction

Nonlinear Model Reduction
Tensors and Matricizations: A Short Excursion [KoLpa/BADER 09, GRASEDYCK '10]
For a given tensor A, the t-matricization A(*) is defined as

T XLy (t) — —
A ¢ RTxTw A et Gner = Alnis £ = {1 d)\t.

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure: Slices of a 3rd-order tensor. [Courtesy of Tammy Kolda]

~> Allows to compute matrix products more efficiently.
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Nonlinear Model Reduction @
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.
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Nonlinear Model Reduction

Nonlinear Model Reduction
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.

Interpreting A now as the 2-matricization of the Hessian 3-tensor
corresponding to A,, one can show that the dual Krylov spaces have to
be constructed as follows

Wy =K, ((A1 —20E)"TET (A — 2aE)*Tc)
fori=1:q
Wi = Kq_in1 ((A1 —0E)"TET (A — 0E)"TNTWA(, i)) ,
for j=1:min(qg—i+1,i)
WsY = Kq—imji2 ((Al —oE) TET, (AL —0E) TAP V(1) ® Wl(zvj)) ;
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Nonlinear Model Reduction
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.

Interpreting A now as the 2-matricization of the Hessian 3-tensor
corresponding to A,, one can show that the dual Krylov spaces have to
be constructed as follows

Wy =K, ((A1 —20E)"TET (A — 2aE)*Tc)
fori=1:q
Wi = Kq_in1 ((A1 —0E)"TET (A — 0E)"TNTWA(, i)) ,
for j=1:min(qg—i+1,i)
WsY = Kq—imji2 ((Al —oE) TET, (AL —0E) TAP V(1) ® Wl(zvj)) ;

Note: Due to the symmetry of the Hessian tensor, the 3-matricization
A®) coincides with A®?).
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Nonlinear Model Reduction

Multimoment matching

@ X = (E, A1, A N, b,c) original QBDAE system.
@ Reduced system by Petrov-Galerkin projection P = VW7 with
Vi = Kq (E, A1, b,0), Wi =Kq (ET,A{,C, 20')

fori=1:q
Vo = Kq,— i1 (E, A1, NVA(, i), 20)
W = Kq,_is1 (ET,AlT, NT WA, i),cr)
for j=1:min(q2 —i+1,i)
Vs = Kgy_i_js2 (E, AL, A VA(:, 1) @ VA (s, ), 20)
Wi = Kgp—i—ji2 (ET,AlT,A(z) Vi(, i) ® Wl(:,j),cr) .

Then, it holds:
8"H1 8 H1 o' H1 o' H1 .
6'() ()7 ( )7 (O’), 1=0,...,q1 =1,
S
9iti ai+j
o,0 Ay (o, 0 i+j<2q— 1.
8515’ He(:0) = les’ (2, 9); :
v
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_——

:=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.
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Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_——

:=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.
o Consider initial and boundary conditions

V2 V2

ux(x,y,0) = > uy(x,y,0) = - for (x,y) € Q1 :=(0,0.5],
UX(XaYaO) =0, uy(x,y,O) =0, for (va) € Q\QI)
u, =0, u, =0, for (x,y) € 00.
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Numerical Examples ;

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_——

:=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.
o Consider initial and boundary conditions

2 2
ux(x,y,0) = \/7_, uy(x,y,0) = \/7_, for (x,y) € Q1 :=(0,0.5],
UX(XaYaO):07 Uy(X,y,O):O, for (Xay) eQ\Qly
uy =0, u, =0, for (x,y) € 00.

o Spatial discretization ~~ QBDAE system with nonzero |.C. and
N = 0 ~~ reformulate as system with zero I.C. and constant input.
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.
o Consider initial and boundary conditions

2 2
Ux(x,y,0) = % uy(x,y,0) = \/7— for (x,y) € Q1 :=(0,0.5],
UX(X7y70):O, Uy(Xuy’O):Ov for (va)EQ\le
u, =0, u, =0, for (x,y) € 0Q.

@ Spatial discretization ~» QBDAE system with nonzero I.C. and
N = 0 ~ reformulate as system with zero I.C. and constant input.

@ Output C chosen to be average x-velocity.
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Numerical Examples

Two-Dimensional Burgers Equation

Comparison of relative time-domain error for n = 1600

s 1073 - E
o i §
2 104 /
[y B -
qu) 10_5 3 l_Sidedr q = 47 Q2 = 23 =06 E
——2-sided, g1 =4,00=2,1=6 | |
1076 F ---1l-sided, g1 = 6,90 =0, =6 | 4
§ - -~ 2-sided, g1 = 6,0 =0,A=6 | |
10~ : ‘ : :
0 0.1 0.2 0.3 0.4 0.5
Time t
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Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_——

:=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.
@ Now consider initial and boundary conditions

UX(X’y,O):Ov Uy(X,y,O):O, for vaEQ’
ux = cos(mt),  u, = cos(2rt), for (x,y) € {0,1} x (0,1),
u, =sin(wt),  u, = sin(2~wt), for (x,y) €(0,1) x {0,1}.
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Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
—_——

:=Q
up=—(u-V)u+vAu

with u(x,y,t) € R? describing the motion of a compressible fluid.
@ Now consider initial and boundary conditions

UX(X’y,O):Ov Uy(X,y,O):O, for vaEQ»
ux = cos(mt),  u, = cos(2rt), for (x,y) € {0,1} x (0,1),
u, =sin(wt),  u, =sin(27t), for (x,y) €(0,1) x {0,1}.

@ Spatial discretization ~~ QBDAE system with zero |.C. and 4 inputs
B e RnX4, N1, No, N3, Ny, ROM with g1=5g=2,0=0,A=52.
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Numerical Examples

Numerical Examples

Two-Dimensional Burgers Equation

o 2D-Burgers equation on (0,1) x (0,1) x[0, T]
|
=Q
up=—(u-V)u+vAu
with u(x,y,t) € R? describing the motion of a compressible fluid.

@ Now consider initial and boundary conditions

ux(x,y,0) =0, u,(x,y,0)=0, for x,y € Q,
ux = cos(mt),  u, = cos(2rt), for (x,y) € {0,1} x (0,1),
u, =sin(wt),  u, =sin(27t), for (x,y) € (0,1) x {0,1}.
@ Spatial discretization ~~ QBDAE system with zero |.C. and 4 inputs
B e RnX4, N1, No, N3, Ny, ROM with g1=5g=2,0=0,A=52.
o State reconstruction by reduced model x ~ VX, max. rel. err < 3%.
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Numerical Examples
The Chafee-Infante equation

o Consider PDE with a cubic nonlinearity:

Ve +v3 = v + v, in (0,1) x (0, T),
v(0,) = u(t), in (0, T),

v(1,:) =0, in (0, T),

v(x,0) = vw(x), in (0,1)

@ original state dimension n = 500, QBDAE dimension N = 2 - 500,
reduced QBDAE dimension r =9
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The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 5 cos (t))

v
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Numerical Examples

Numerical Examples

The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 50sin (t))

—— FOM, n =500
POD, A=9

1-si =0 ||
2-sided MM, A

0 2 4 6 8 10

v
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Numerical Examples

Numerical Examples
The FitzHugh-Nagumo System

o FitzHugh-Nagumo system modeling a neuron
[CHATURANTABUT, SORENSEN ’09]

Evi’(X7 t) = 62VXX(Xa t) + f(V(Xa t)) - W(X7 t) + &,
Wt(X7 t) = hV(X7 t) - ’YW(X7 t) + &,
with f(v) = v(v — 0.1)(1 — v) and initial and boundary conditions
v(x,0) =0, w(x,0) =0, x € [0,1],
vi (0, t) = —io(t), vi(1,t) =0, t>0,

where
€=0.015, h=05, y=2, g =0.05, ip(t) =5 10*t3 exp(—15t)

@ original state dimension n = 2 - 1000, QBDAE dimension
N = 3-1000, reduced QBDAE dimension r = 20
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Numerical Examples
The FitzHugh-Nagumo System
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Numerical Examples
The FitzHugh-Nagumo System

POD via moment-matching (training input)
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POD via moment-matching (varying input)

(6]

V.
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Conclusions and Outlook

@ Many nonlinear dynamics can be expressed by a system of
quadratic-bilinear differential algebraic equations.

o For this type of systems, a frequency domain analysis leads to
certain generalized transfer functions.

@ There exist Krylov subspace methods that extend the concept of
moment-matching ~» using basic tools from tensor theory allows for
better approximations.

@ In contrast to other methods like TPWL and POD, the reduction
process is independent of the control input.

Max-Planck-Institute Magdeburg P. Benner, MOR for Nonlinear Systems 32/33



Conclusions and Outlook

Conclusions and Outlook

@ Many nonlinear dynamics can be expressed by a system of
quadratic-bilinear differential algebraic equations.

o For this type of systems, a frequency domain analysis leads to
certain generalized transfer functions.

@ There exist Krylov subspace methods that extend the concept of
moment-matching ~» using basic tools from tensor theory allows for
better approximations.

@ In contrast to other methods like TPWL and POD, the reduction
process is independent of the control input.

@ Optimal choice of interpolation points?

Stability /index-preserving reduction possible?
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