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Introduction
Model Reduction for Dynamical Systems

Dynamical Systems

Σ :

{
ẋ(t) = f (t, x(t), u(t)), x(t0) = x0,
y(t) = g(t, x(t), u(t))

with

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.
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Model Reduction for Dynamical Systems

Original System

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rq.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rq.
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Model Reduction for Dynamical Systems

Original System

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rq.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂ .
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Model Reduction for Dynamical Systems
Parameter-Dependent Dynamical Systems

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

Applications:

Repeated simulation for varying material or geometry parameters,
boundary conditions,

Control, optimization and design.

Requirement: keep parameters as symbolic quantities in ROM.
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E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

Applications:

Repeated simulation for varying material or geometry parameters,
boundary conditions,

Control, optimization and design.

Requirement: keep parameters as symbolic quantities in ROM.

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 6/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Model Reduction for Dynamical Systems
Linear Systems

Linear, Time-Invariant (LTI) Systems

Eẋ = f (t, x , u) = Ax + Bu, E ,A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 7/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Model Reduction for Dynamical Systems
Linear Systems

Linear, Time-Invariant (LTI) Systems

Eẋ = f (t, x , u) = Ax + Bu, E ,A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rq×n, D ∈ Rq×m.

Linear, Time-Invariant Parametric Systems

E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t),
y(t; p) = C (p)x(t; p) + D(p)u(t),

where A(p),E (p) ∈ Rn×n,B(p) ∈ Rn×m,C (p) ∈ Rq×n,D(p) ∈ Rq×m.
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Application Areas
Structural Mechanics / Finite Element Modeling since ∼1960ies

 

Resolving complex 3D geometries ⇒ millions of degrees of freedom.

Analysis of elastic deformations requires many simulation runs for
varying external forces.

Standard MOR techniques in structural mechanics: modal truncation,
combined with Guyan reduction (static condensation)  Craig-Bampton
method.
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Application Areas
(Optimal) Control since ∼1980ies

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n.

Practical controllers require small N (N ∼ 10, say) due to
– real-time constraints,

– increasing fragility for larger N.

=⇒ reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation
and related methods.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75) states that the number of on-chip transistors
doubles each 24 months.

 

Source: http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore’sLaw_-_2011.svg
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not
disturb signal transmission.

Intel 4004 (1971) Intel Core 2 Extreme (quad-core) (2007)

1 layer, 10µ technology 9 layers, 45nm technology
2,300 transistors > 8, 200, 000 transistors
64 kHz clock speed > 3 GHz clock speed.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Increase in packing density and multilayer technology requires modeling of
interconncet to ensure that thermic/electro-magnetic effects do not
disturb signal transmission.

Source: http://en.wikipedia.org/wiki/Image:Silicon_chip_3d.png.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

Here: mostly MOR for linear systems, they occur in micro electronics
through modified nodal analysis (MNA) for RLC networks. e.g., when

decoupling large linear subcircuits,
modeling transmission lines,
modeling pin packages in VLSI chips,
modeling circuit elements described by Maxwell’s equation using
partial element equivalent circuits (PEEC).
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

 Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.
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Application Areas
Micro Electronics/Circuit Simulation since ∼1990ies

Progressive miniaturization

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Moore’s Law (1965/75)  steady increase of describing equations, i.e.,
network topology (Kirchhoff’s laws) and characteristic element/semi-
conductor equations.

 Clear need for model reduction techniques in order to facilitate or even
enable circuit simulation for current and future VLSI design.

Standard MOR techniques in circuit simulation:
Krylov subspace / Padé approximation / rational interpolation methods.
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Application Areas

Many other disciplines in computational sciences and engineering like

computational fluid dynamics (CFD),

computational electromagnetics,

chemical process engineering,

design of MEMS/NEMS (micro/nano-electrical-mechanical
systems),

computational acoustics,

. . .
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Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Simplorer R© test circuit with 2 transistors.

Conservative thermic sub-system in Simplorer:
voltage  temperature, current  heat flow.

Original model: n = 270, 593, m = q = 2 ⇒
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

– Main computational cost for set-up data ≈ 22min.
– Computation of reduced models from set-up data: 44–49sec. (r = 20–70).
– Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system, < 1min for reduced system.
– Speed-up factor: 18 including / ≥ 450 excluding reduced model generation!
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50, 000t3 exp(−15t).

Source: http://en.wikipedia.org/wiki/Neuron
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50, 000t3 exp(−15t).

Parameter g handled as an additional input.

Original state dimension n = 2 · 400, QBDAE dimension N = 3 · 400,
reduced QBDAE dimension r = 26, chosen expansion point σ = 1.
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

FE model of second order:
N = 17.361 n = 34.722, m = 1, q = 12.

Sensor for position control based on
acceleration and rotation.

Application: inertial navigation.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: M(d)ẍ(t) + D(θ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t).
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Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model:

M(d)ẍ(t) + D(θ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t),

wobei

M(d) = M1 + dM2,

D(θ, d , α, β) = θ(D1 + dD2) + αM(d) + βT (d),

T (d) = T1 +
1

d
T2 + dT3,

with

width of bearing: d ,

angular velocity: θ,

Rayleigh damping parameters: α, β.

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 14/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Motivating Examples
Parametric MOR: Applications in Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Original. . . and reduced-order model.
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Some Background
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (”frequency response analysis”), one
takes re s = 0 and im s ≥ 0. Then ω := im s takes the role of a frequency (in
[rad/s], i.e., ω = 2πv with v measured in [Hz]).
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Some Background
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Note: for frequency domain evaluations (”frequency response analysis”), one
takes re s = 0 and im s ≥ 0. Then ω := im s takes the role of a frequency (in
[rad/s], i.e., ω = 2πv with v measured in [Hz]).

Lemma

L{ḟ (t)}(s) = sF (s).
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Some Background
The Laplace transform

Definition
The Laplace transform of a time domain function f ∈ L1,loc with
dom (f ) = R+

0 is

L : f 7→ F , F (s) := L{f (t)}(s) :=

∫ ∞
0

e−st f (t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

Lemma

L{ḟ (t)}(s) = sF (s).

Note: for ease of notation, in the following we will use lower-case letters
for both, a function and its Laplace transform!
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Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
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Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(
C(sE − A)−1B + D︸ ︷︷ ︸

=:G(s)

)
u(s).

G(s) is the transfer function of Σ.
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Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to linear
system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(0) = 0 yields:

sEx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

=⇒ I/O-relation in frequency domain:

y(s) =
(
C(sE − A)−1B + D︸ ︷︷ ︸

=:G(s)

)
u(s).

G(s) is the transfer function of Σ.

Goal: Fast evaluation of mapping u → y .
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Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

Eẋ = Ax + Bu, E ,A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Ê , Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖.
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Some Background
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system

Eẋ = Ax + Bu, E ,A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rq×n, D ∈ Rq×m,

by reduced-order system

Ê ˙̂x = Âx̂ + B̂u, Ê , Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rq×r , D̂ ∈ Rq×m

of order r � n, such that

‖y − ŷ‖ = ‖Gu − Ĝu‖ ≤ ‖G − Ĝ‖ · ‖u‖ < tolerance · ‖u‖.

=⇒ Approximation problem: min
order (Ĝ)≤r

‖G − Ĝ‖.
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Some Background
Properties of linear systems

Definition
A linear system

Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

is stable if its transfer function G (s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C− := {z ∈ C | re(z) < 0}.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the spectrum of A− λE , denoted by Λ (A,E ), satisfies
Λ (A,E ) ⊂ C−.

Note that by abuse of notation, often stable system is used for asymptotically

stable systems.
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Some Background
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 18/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Some Background
Realizations of Linear Systems (with E = In for simplicity)

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G(s) = C(sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rq×n × Rq×m is called a
realization of Σ.

Definition
The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.
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Some Background
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 19/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Some Background
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
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Some Background
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. Λ (A) ⊂ C−. Then:

Theorem

Given a stable minimal linear system Σ : (A,B,C ,D), a balanced
realization is obtained by the state-space transformation with

Tb := Σ−
1
2 V TR,

where P = STS , Q = RTR (e.g., Cholesky decompositions) and
SRT = UΣV T is the SVD of SRT .

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 19/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Some Background
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!
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Some Background
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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Some Background
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem
The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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Some Background
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Remark
For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading n̂ × n̂ submatrices equal to diag(σ1, . . . , σn̂), and

P̂Q̂ = diag(σ2
1 , . . . , σ

2
n̂, 0, . . . , 0).

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Hardy space H∞
Function space of matrix-/scalar-valued functions that are analytic and
bounded in C+.
The H∞-norm is

‖F‖∞ := sup
re s>0

σmax (F (s)) = sup
ω∈R

σmax (F (ω)) .

Stable transfer functions are in the Hardy spaces

H∞ in the SISO case (single-input, single-output, m = q = 1);

Hq×m
∞ in the MIMO case (multi-input, multi-output, m > 1, q > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the L2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function

G (s) = C (sI − A)−1 B + D

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!

H∞ approximation error

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂ + D̂.

‖y − ŷ‖2 = ‖Gu − Ĝu‖2 ≤ ‖G − Ĝ‖∞‖u‖2.

=⇒ compute reduced-order model such that ‖G − Ĝ‖∞ < tol!
Note: error bound holds in time- and frequency domain due to Paley-Wiener!
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 :=
1

2π

(
sup

reσ>0

∫ ∞
−∞
‖F (σ + ω)‖2

F dω

) 1
2

=
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

Stable transfer functions are in the Hardy spaces

H2 in the SISO case (single-input, single-output, m = q = 1);

Hq×m
2 in the MIMO case (multi-input, multi-output, m > 1, q > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 =
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

H2 approximation error for impulse response (u(t) = u0δ(t))

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂.

‖y − ŷ‖2 = ‖Gu0δ − Ĝu0δ‖2 ≤ ‖G − Ĝ‖2‖u0‖.
=⇒ compute reduced-order model such that ‖G − Ĝ‖2 < tol!
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider stable transfer function

G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic C+ and
bounded w.r.t. the H2-norm

‖F‖2 =
1

2π

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

Theorem (Practical Computation of the H2-norm)

‖F‖2
2 = tr

(
BTQB

)
= tr

(
CPCT

)
,

where P,Q are the controllability and observability Gramians of the
corresponding LTI system.
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Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ‖G − Ĝ‖2‖u‖2 =⇒ ‖G − Ĝ‖2 < tol
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Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

Output errors in time-domain

‖y − ŷ‖2 ≤ ‖G − Ĝ‖∞‖u‖2 =⇒ ‖G − Ĝ‖∞ < tol

‖y − ŷ‖∞ ≤ ‖G − Ĝ‖2‖u‖2 =⇒ ‖G − Ĝ‖2 < tol

H∞-norm best approximation problem for given reduced order r in
general open; balanced truncation yields suboptimal solu-
tion with computable H∞-norm bound.

H2-norm necessary conditions for best approximation known; (local)
optimizer computable with iterative rational Krylov algo-
rithm (IRKA)

Hankel-norm
‖G‖H := σmax

optimal Hankel norm approximation (AAK theory).
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Introduction
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e.,
want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−),
– minimum phase (zeroes of G in C−),
– passivity∫ t

−∞
u(τ)T y(τ) dτ ≥ 0 ∀t ∈ R, ∀u ∈ L2(R,Rm).

(“system does not generate energy”).
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Model Reduction by Projection
Projection Basics

Definition 3.1 (Projector)

A projector is a matrix P ∈ Rn×n with P2 = P. Let V = range (P), then P is
projector onto V.
If P = PT , then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector (aka: Petrov-Galerkin projection).
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Model Reduction by Projection
Projection Basics

Definition 3.1 (Projector)

A projector is a matrix P ∈ Rn×n with P2 = P. Let V = range (P), then P is
projector onto V.
If P = PT , then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector (aka: Petrov-Galerkin projection).

Lemma 3.2 (Projector Properties)

If {v1, . . . , vr} is a basis of V and V = [ v1, . . . , vr ], then
P = V (V TV )−1V T is an orthogonal projector onto V.

Let W ⊂ Rn be another r -dimensional subspace and W = [w1, . . . ,wr ]
be a basis matrix for W, then P = V (W TV )−1W T is an oblique
projector onto V along W.
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otherwise an oblique projector (aka: Petrov-Galerkin projection).

Lemma 3.2 (Projector Properties)

If {v1, . . . , vr} is a basis of V and V = [ v1, . . . , vr ], then
P = V (V TV )−1V T is an orthogonal projector onto V.

Let W ⊂ Rn be another r -dimensional subspace and W = [w1, . . . ,wr ]
be a basis matrix for W, then P = V (W TV )−1W T is an oblique
projector onto V along W.
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Model Reduction by Projection
Projection Methods

Methods:

1 Modal Truncation

2 Rational Interpolation (Padé-Approximation and (rational) Krylov
Subspace Methods)

3 Balanced Truncation

4 many more. . .

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
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Model Reduction by Projection
Projection Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , where

range (V ) = V, range (W ) =W, W TV = Ir .

Then, with x̂ = W T x , we obtain x ≈ V x̂ so that

‖x − x̃‖ = ‖x − V x̂‖,

and the reduced-order model is

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).
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Model Reduction by Projection
Projection Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(
VW T ẋ − AVW T x − Bu

)
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Model Reduction by Projection
Projection Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(
VW T ẋ − AVW T x − Bu

)
= W T ẋ︸ ︷︷ ︸

˙̂x

−W TAV︸ ︷︷ ︸
=Â

W T x︸ ︷︷ ︸
=x̂

−W TB︸ ︷︷ ︸
=B̂

u
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Model Reduction by Projection
Projection Methods

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus,
use Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(
VW T ẋ − AVW T x − Bu

)
= W T ẋ︸ ︷︷ ︸

˙̂x

−W TAV︸ ︷︷ ︸
=Â

W T x︸ ︷︷ ︸
=x̂

−W TB︸ ︷︷ ︸
=B̂

u

= ˙̂x − Âx̂ − B̂u = 0.
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Model Reduction by Projection
Projection and Rational Interpolation

Projection  Rational Interpolation
Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G(s)− Ĝ(s) =
(
C(sIn − A)−1B + D

)
−
(
Ĉ(sIr − Â)−1B̂ + D̂

)
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Model Reduction by Projection
Projection and Rational Interpolation

Projection  Rational Interpolation
Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G(s)− Ĝ(s) =
(
C(sIn − A)−1B + D

)
−
(
Ĉ(sIr − Â)−1B̂ + D̂

)
= C

(
(sIn − A)−1 − V (sIr − Â)−1W T

)
B
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Model Reduction by Projection
Projection and Rational Interpolation

Projection  Rational Interpolation
Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G(s)− Ĝ(s) =
(
C(sIn − A)−1B + D

)
−
(
Ĉ(sIr − Â)−1B̂ + D̂

)
= C

(
(sIn − A)−1 − V (sIr − Â)−1W T

)
B

= C
(
In − V (sIr − Â)−1W T (sIn − A)︸ ︷︷ ︸

=:P(s)

)
(sIn − A)−1B.
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Model Reduction by Projection
Projection and Rational Interpolation

Projection  Rational Interpolation
Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G(s)− Ĝ(s) =
(
C(sIn − A)−1B + D

)
−
(
Ĉ(sIr − Â)−1B̂ + D̂

)
= C

(
(sIn − A)−1 − V (sIr − Â)−1W T

)
B

= C
(
In − V (sIr − Â)−1W T (sIn − A)︸ ︷︷ ︸

=:P(s)

)
(sIn − A)−1B.

If s∗ ∈ C \ (Λ (A) ∪ Λ (Â)), then P(s∗) is a projector onto V =⇒

if (s∗In − A)−1B ∈ V, then (In − P(s∗))(s∗In − A)−1B = 0,

Hence

G(s∗)− Ĝ(s∗) = 0 ⇒ G(s∗) = Ĝ(s∗), i.e., Ĝ interpolates G in s∗!
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Model Reduction by Projection
Projection and Rational Interpolation

Projection  Rational Interpolation
Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G(s)− Ĝ(s) =
(
C(sIn − A)−1B + D

)
−
(
Ĉ(sIr − Â)−1B̂ + D̂

)
Analogously, = C(sIn − A)−1(In − (sIn − A)V (sIr − Â)−1W T︸ ︷︷ ︸

=:Q(s)

)
B.

If s∗ ∈ C \ (Λ (A) ∪ Λ (Â)), then Q(s)H is a projector onto W =⇒

if (s∗In − A)−∗CT ∈ W, then C(s∗In − A)−1(In − Q(s∗)) = 0.

Hence

G(s∗)− Ĝ(s∗) = 0 ⇒ G(s∗) = Ĝ(s∗), i.e., Ĝ interpolates G in s∗!
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Model Reduction by Projection
Projection and Rational Interpolation

Theorem [Grimme ’97, Villemagne/Skelton ’87]

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

and s∗ ∈ C \ (Λ (A) ∪ Λ (Â)), if either

(s∗In − A)−1B ∈ range (V ), or

(s∗In − A)−∗CT ∈ range (W ),

then the interpolation condition

G (s∗) = Ĝ (s∗).

in s∗ holds.

Note: extension to Hermite interpolation conditions later!
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Modal Truncation

Basic method:

Assume A is diagonalizable, T−1AT = DA, project state-space onto A-invariant
subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V = T (:, 1 : r) = [ t1, . . . , tr ], W̃ H = T−1(1 : r , :), W = W̃ (V HW̃ )−1,

reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.
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Modal Truncation

Basic method:

Assume A is diagonalizable, T−1AT = DA, project state-space onto A-invariant
subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then with

V = T (:, 1 : r) = [ t1, . . . , tr ], W̃ H = T−1(1 : r , :), W = W̃ (V HW̃ )−1,

reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Simple computation for large-scale systems, using, e.g., Krylov subspace
methods (Lanczos, Arnoldi), Jacobi-Davidson method.
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Modal Truncation

Basic method:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Error bound:

‖G − Ĝ‖∞ ≤ ‖C2‖‖B2‖
1

minλ∈Λ (A2) |Re(λ)| .

Proof:

G(s) = C(sI − A)−1B + D = CTT−1(sI − A)−1TT−1B + D

= CT (sI − T−1AT )−1T−1B + D

= [ Ĉ , C2 ]

[
(sIr − Â)−1

(sIn−r − A2)−1

][
B̂
B2

]
+ D

= Ĝ(s) + C2(sIn−r − A2)−1B2,
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Modal Truncation

Basic method:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Properties:
Error bound:

‖G − Ĝ‖∞ ≤ ‖C2‖‖B2‖
1

minλ∈Λ (A2) |Re(λ)| .

Proof:

G(s) = Ĝ(s) + C2(sIn−r − A2)−1B2,

observing that ‖G − Ĝ‖∞ = supω∈R σmax(C2(ωIn−r − A2)−1B2), and

C2(ωIn−r − A2)−1B2 = C2diag

(
1

ω − λr+1
, . . . ,

1

ω − λn

)
B2.
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Modal Truncation

Basic method:

Assume A is diagonalizable, T−1AT = DA, project state-space onto A-invariant
subspace V = span(t1, . . . , tr ), tk = eigenvectors corresp. to “dominant”
modes / eigenvalues of A. Then reduced-order model is

Â := W HAV = diag {λ1, . . . , λr}, B̂ := W HB, Ĉ = CV

Also computable by truncation:

T−1AT =

[
Â

A2

]
, T−1B =

[
B̂
B2

]
, CT = [ Ĉ , C2 ], D̂ = D.

Difficulties:

Eigenvalues contain only limited system information.

Dominance measures are difficult to compute.
([Litz ’79] use Jordan canoncial form; otherwise merely heuristic criteria,
e.g., [Varga ’95]. Recent improvement: dominant pole algorithm.)

Error bound not computable for really large-scale problems.
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Modal Truncation
Example

BEAM, SISO system from SLICOT Benchmark Collection for Model
Reduction, n = 348, m = q = 1, reduced using 13 dominant complex
conjugate eigenpairs, error bound yields ‖G − Ĝ‖∞ ≤ 1.21 · 103

Bode plots of transfer functions and error function
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Modal Truncation
Extensions

Base enrichment
Static modes are defined by setting ẋ = 0 and assuming unit loads, i.e.,
u(t) ≡ ej , j = 1, . . . ,m:

0 = Ax(t) + Bej =⇒ x(t) ≡ −A−1bj .

Projection subspace V is then augmented by A−1[ b1, . . . , bm ] = A−1B.

Interpolation-projection framework =⇒ G (0) = Ĝ (0)!

If two sided projection is used, complimentary subspace can be
augmented by A−TCT =⇒ G ′(0) = Ĝ ′(0)! (If m 6= q, add random
vectors or delete some of the columns in A−TCT ).
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Modal Truncation
Extensions

Guyan reduction (static condensation)

Partition states in masters x1 ∈ Rr and slaves x2 ∈ Rn−r (FEM terminology)
Assume stationarity, i.e., ẋ = 0 and solve for x2 in

0 =

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u

⇒ x2 = −A−1
22 A21x1 − A−1

22 B2u.

Inserting this into the first part of the dynamic system

ẋ1 = A11x1 + A12x2 + B1u, y = C1x1 + C2x2

then yields the reduced-order model

ẋ1 = (A11 − A12A
−1
22 A21)x1 + (B1 − A12A

−1
22 B2)u

y = (C1 − C2A
−1
22 A21)x1 − C2A

−1
22 B2u.
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Modal Truncation
Dominant Poles

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.
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Modal Truncation
Dominant Poles

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

Note: this follows using the spectral decomposition A = XDX−1, with
X = [ x1, . . . , xn] the right and X−1 =: Y = [y1, . . . , yn]H the left eigenvector matrices:

G(s) = C(sI − XDX−1)−1B = CX (sI − diag {λ1, . . . , λn})−1YB

= [Cx1, . . . ,Cxn ]


1

s−λ1

. . .
1

s−λn


 yH

1 B
...
yH
n B


=

n∑
k=1

(Cxk )(yH
k B)

s − λk
.
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Modal Truncation
Dominant Poles

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

Note: Rk = (Cxk)(yH
k B) are the residues of G in the sense of the residue

theorem of complex analysis:

res (G , λ`) = lim
s→λ`

(s − λ`)G(s) =
n∑

k=1

lim
s→λ`

s − λ`
s − λk︸ ︷︷ ︸

=

{
0 for k 6= `
1 for k = `

Rk = R`.
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Modal Truncation
Dominant Poles

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

As projection basis use spaces spanned by right/left eigenvectors
corresponding to dominant poles, i.e.. (λj , xj , yj) with largest

‖Rk‖/| re (λk)|.
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Modal Truncation
Dominant Poles

Pole-Residue Form of Transfer Function
Consider partial fraction expansion of transfer function with D = 0:

G (s) =
n∑

k=1

Rk

s − λk

with the residues Rk := (Cxk)(yH
k B) ∈ Cq×m.

As projection basis use spaces spanned by right/left eigenvectors
corresponding to dominant poles, i.e.. (λj , xj , yj) with largest

‖Rk‖/| re (λk)|.

Remark
The dominant modes have most important influence on the input-output
behavior of the system and are responsible for the ”peaks”’ in the frequency
response.
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

ω

‖G
(
ω

)‖
2

exact model, n = 217
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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exact model, n = 217

im (λ) of dominant poles
k = 46 dominant poles
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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‖G
(
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exact model, n = 217

im (λ) of dominant poles
k = 46 dominant poles

k = 46, smallest re (λ) + static modes
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Dominant Poles
Random SISO Example (B, CT ∈ Rn)
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ω

‖G
(
ω

)‖
2

exact model, n = 217

im (λ) of dominant poles
k = 46 dominant poles

k = 46, smallest re (λ) + static modes

Algorithms for computing dominant poles and eigenvectors:

Subspace Accelerated Dominante Pole Algorithm
(SADPA),

Rayleigh-Quotient-Iteration (RQI),

Jacobi-Davidson-Method.
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E):

G(s) = C
(
(s0E − A) + (s − s0)E

)−1
B
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E):

G(s) = C
(
(s0E − A) + (s − s0)E

)−1
B

= C
(
I + (s − s0) (s0E − A)−1E︸ ︷︷ ︸

:=Ã

)−1

(s0E − A)−1B︸ ︷︷ ︸
:=B̃
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E):

G(s) = C
(
(s0E − A) + (s − s0)E

)−1
B

= C
(
I + (s − s0) (s0E − A)−1E︸ ︷︷ ︸

:=Ã

)−1

(s0E − A)−1B︸ ︷︷ ︸
:=B̃

= C
(
I + (s − s0)Ã

)−1

B̃

Neumann Lemma. ‖F‖ < 1 ⇒ I − F invertible, (I − F )−1 =
∑∞

k=0 F
k .
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(
I + (s − s0)Ã

)−1

B̃ = C
(
I −

(
− (s − s0)Ã

)︸ ︷︷ ︸
= F

)−1

B̃

Neumann Lemma. ‖F‖ < 1 ⇒ I − F invertible, (I − F )−1 =
∑∞
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E), and Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B:

G(s) = C
(
I + (s − s0)Ã

)−1

B̃ = C
(
I −

(
− (s − s0)Ã

)︸ ︷︷ ︸
= F

)−1

B̃

= C

(
∞∑
k=0

(−1)k(s − s0)k Ãk

)
B̃

Neumann Lemma. ‖F‖ < 1 ⇒ I − F invertible, (I − F )−1 =
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E), and Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B:

G(s) = C
(
I + (s − s0)Ã

)−1

B̃ = C
(
I −

(
− (s − s0)Ã

)︸ ︷︷ ︸
= F

)−1

B̃

= C

(
∞∑
k=0

(−1)k(s − s0)k Ãk

)
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=
∞∑
k=0

(−1)kCÃk B̃︸ ︷︷ ︸
=: mk

(s − s0)k
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E), and Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B:

G(s) = C
(
I + (s − s0)Ã

)−1

B̃ = C
(
I −

(
− (s − s0)Ã

)︸ ︷︷ ︸
= F

)−1

B̃

= C

(
∞∑
k=0

(−1)k(s − s0)k Ãk

)
B̃

=
∞∑
k=0

(−1)kCÃk B̃︸ ︷︷ ︸
=: mk

(s − s0)k

= m0 + m1(s − s0) + m2(s − s0)2 + . . .
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E), and Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B:

G(s) = m0 + m1(s − s0) + m2(s − s0)2 + . . .

with mk = (−1)kCÃk B̃.
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Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E), and Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B:

G(s) = m0 + m1(s − s0) + m2(s − s0)2 + . . .

with mk = (−1)kCÃk B̃.

– For s0 = 0: mk := −C(A−1E)kA−1B  moments.
(mk = −CA−(k+1)B for E = In)

– For s0 =∞ and E = In: m0 = 0, mk := CAk−1B for k ≥ 1  
Markov parameters.

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 35/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Padé Approximation

Idea:

Consider (even for possibly singular E if λE − A regular):

Eẋ = Ax + Bu, y = Cx

with transfer function G(s) = C(sE − A)−1B.

For s0 6∈ Λ (A,E), and Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B:

G(s) = m0 + m1(s − s0) + m2(s − s0)2 + . . .

with mk = (−1)kCÃk B̃.

As reduced-order model use rth Padé approximant Ĝ to G :

G(s) = Ĝ(s) +O((s − s0)2r ),

i.e., mk = m̂k for k = 0, . . . , 2r − 1

 moment matching if s0 <∞,

 partial realization if s0 =∞.
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Theorem [Grimme ’97, Villemagne/Skelton ’87]

Let s∗ 6∈ Λ (A,E) and

Ã := (s∗E − A)−1E , B̃ := (s∗E − A)−1B,

Ã∗ := (s∗E − A)−TET , C̃ := (s∗E − A)−TCT .

If the reduced-order model is obtained by oblique projection onto V ⊂ Rn along
W ⊂ Rn, and

span
{
B̃, ÃB̃, . . . , ÃK−1B̃

}
⊂ V,

span
{
C̃ , Ã∗C̃ , . . . , (Ã∗)K−1C̃

}
⊂ W,

then G(s∗) = Ĝ(s∗),
dk

dsk
G(s∗) = dk

dsk
Ĝ(s∗) for k = 1, . . . , `− 1, where

` ≥ 2K
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

Padé approximation/moment matching yield:

mk =
1

k!
G (k)(s0) =

1

k!
Ĝ (k)(s0) = m̂k , k = 0, . . . , 2K − 1,

i.e., Hermite interpolation in s0.

Recall interpolation via projection result ⇒ moments need not be
computed explicitly; moment matching is equivalent to projecting
state-space onto

V = span(B̃, ÃB̃, . . . , ÃK−1B̃) =: KK (Ã, B̃)

(where Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B) along

W = span(C̃ , Ã∗C̃T , . . . , (Ã∗)K−1C̃) =: KK (Ã∗, C̃).

(where Ã∗ = (s∗E − A)−TET , C̃ = (s∗E − A)−TCT ).

Computation via unsymmetric Lanczos method.
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Padé Approximation
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

Padé approximation/moment matching yield:

mk =
1

k!
G (k)(s0) =

1

k!
Ĝ (k)(s0) = m̂k , k = 0, . . . , 2K − 1,

i.e., Hermite interpolation in s0.

Recall interpolation via projection result ⇒ moments need not be
computed explicitly; moment matching is equivalent to projecting
state-space onto

V = span(B̃, ÃB̃, . . . , ÃK−1B̃) =: KK (Ã, B̃)

(where Ã = (s0E − A)−1E , B̃ = (s0E − A)−1B) along

W = span(C̃ , Ã∗C̃T , . . . , (Ã∗)K−1C̃) =: KK (Ã∗, C̃).

(where Ã∗ = (s∗E − A)−TET , C̃ = (s∗E − A)−TCT ).

Computation via unsymmetric Lanczos method.

Remark: Arnoldi (PRIMA) yields only G(s) = Ĝ(s) +O((s − s0)r ).
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Padé Approximation
The Padé-Lanczos Connection [Gallivan/Grimme/Van Dooren 1994, Freund/Feldmann 1994]

Padé-via-Lanczos Method (PVL)

Difficulties:

Computable error estimates/bounds for ‖y − ŷ‖2 often very pessimistic or
expensive to evaluate.

Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional/Rayleigh
damping (Beattie/Gugercin ’05).

Good approximation quality only locally.

Preservation of physical properties only in special cases (e.g.
PRIMA/Arnoldi: V TAV is stable if A is negative definite or dissipative  
exercises); usually requires post processing which (partially) destroys
moment matching properties.
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expensive to evaluate.

Mostly heuristic criteria for choice of expansion points.
Optimal choice for second-order systems with proportional/Rayleigh
damping (Beattie/Gugercin ’05).

Good approximation quality only locally.

Preservation of physical properties only in special cases (e.g.
PRIMA/Arnoldi: V TAV is stable if A is negative definite or dissipative  
exercises); usually requires post processing which (partially) destroys
moment matching properties.

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 37/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Interpolatory Model Reduction
A Change of Perspective: Rational Interpolation

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1In − A)−1B, . . . , (sk In − A)−1B
}
⊂ Ran(V ),

span
{

(s1In − A)−TCT , . . . , (sk In − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.
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Interpolatory Model Reduction
A Change of Perspective: Rational Interpolation

Theorem (simplified) [Grimme ’97, Villemagne/Skelton ’87]

If

span
{

(s1In − A)−1B, . . . , (sk In − A)−1B
}
⊂ Ran(V ),

span
{

(s1In − A)−TCT , . . . , (sk In − A)−TCT
}
⊂ Ran(W ),

then

G (sj) = Ĝ (sj),
d

ds
G (sj) =

d

ds
Ĝ (sj), for j = 1, . . . , k.

Remark:

computation of V ,W from rational Krylov subspaces, e.g.,

– dual rational Arnoldi/Lanczos [Grimme ’97],

– Iterative Rational Krylov-Algo. [Antoulas/Beattie/Gugercin ’07].
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H2-Optimal Model Reduction

Best H2-norm approximation problem

Find arg minĜ∈H2 of order ≤r‖G − Ĝ‖2.
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H2-Optimal Model Reduction

Best H2-norm approximation problem

Find arg minĜ∈H2 of order ≤r‖G − Ĝ‖2.

 First-order necessary H2-optimality conditions:

For SISO systems

G (−µi ) = Ĝ (−µi ),

G ′(−µi ) = Ĝ ′(−µi ),

where µi are the poles of the reduced transfer function Ĝ .
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H2-Optimal Model Reduction

Best H2-norm approximation problem

Find arg minĜ∈H2 of order ≤r‖G − Ĝ‖2.

 First-order necessary H2-optimality conditions:

For MIMO systems

G (−µi )B̃i = Ĝ (−µi )B̃i , for i = 1, . . . , r ,

C̃T
i G (−µi ) = C̃T

i Ĝ (−µi ), for i = 1, . . . , r ,

C̃T
i G ′(−µi )B̃i = C̃T

i Ĝ ′(−µi )B̃i , for i = 1, . . . , r ,

where T−1ÂT = diag {µ1, . . . , µr} = spectral decomposition and

B̃ = B̂TT−T , C̃ = ĈT .

 tangential interpolation conditions.
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Interpolatory Model Reduction
Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P = VW T , i.e.

Ĝ (s) = CV
(
sI −W TAV

)−1
W TB,

where V and W are given as the rational Krylov subspaces

V =
[
(−µ1I − A)−1B, . . . , (−µr I − A)−1B

]
,

W =
[
(−µ1I − AT )−1CT , . . . , (−µr I − AT )−1CT

]
.

Then
G (−µi ) = Ĝ (−µi ) and G ′(−µi ) = Ĝ ′(−µi ),

for i = 1, . . . , r as desired.
 iterative algorithms (IRKA/MIRIAm) that yield H2-optimal models.

[Gugercin et al. ’06], [Bunse-Gerstner et al. ’07],

[Van Dooren et al. ’08]
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[Gugercin et al. ’06], [Bunse-Gerstner et al. ’07],

[Van Dooren et al. ’08]
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for i = 1, . . . , r as desired.
 iterative algorithms (IRKA/MIRIAm) that yield H2-optimal models.

[Gugercin et al. ’06], [Bunse-Gerstner et al. ’07],

[Van Dooren et al. ’08]

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 40/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Interpolatory Model Reduction
Interpolation of the Transfer Function by Projection

Construct reduced transfer function by Petrov-Galerkin projection
P = VW T , i.e.
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H2-Optimal Model Reduction
The Basic IRKA Algorithm

Algorithm 1 IRKA (MIMO version/MIRIAm)

Input: A stable, B, C , Â stable, B̂, Ĉ , δ > 0.
Output: Aopt , Bopt , C opt

1: while (maxj=1,...,r

{
|µj−µold

j |
|µj |

}
> δ) do

2: diag {µ1, . . . , µr} := T−1ÂT = spectral decomposition,
B̃ = B̂HT−T , C̃ = ĈT .

3: V =
[
(−µ1I − A)−1BB̃1, . . . , (−µr I − A)−1BB̃r

]
4: W =

[
(−µ1I − AT )−1CT C̃1, . . . , (−µr I − AT )−1CT C̃r

]
5: V = orth(V ), W = orth(W ), W = W (V HW )−1

6: Â = W HAV , B̂ = W HB, Ĉ = CV
7: end while
8: Aopt = Â, Bopt = B̂, C opt = Ĉ
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Motivation
Image Compression by Truncated SVD

A digital image with nx × ny pixels can be represented as matrix
X ∈ Rnx×ny , where xij contains color information of pixel (i , j).

Memory (in single precision): 4 · nx · ny bytes.

Theorem (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

X̂ =
∑r

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X .

The approximation error is ‖X − X̂‖2 = σr+1.

Idea for dimension reduction
Instead of X save u1, . . . , ur , σ1v1, . . . , σrvr .
 memory = 4r × (nx + ny ) bytes.
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Example: Image Compression by Truncated SVD

Example: Clown

320× 200 pixel
 ≈ 256 kB

rank r = 50, ≈ 104 kB

rank r = 20, ≈ 42 kB
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Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB
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Dimension Reduction via SVD

Example: Gatlinburg
Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,

George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kB

rank r = 100, ≈ 448 kB

rank r = 50, ≈ 224 kB
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Image data compression via SVD works, if the singular values decay
(exponentially).

Singular Values of the Image Data Matrices
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A different viewpoint

Linear Mapping

A matrix A ∈ R`×k represents a linear mapping

A : Rk → R` : x → y := Ax .

The truncated SVD ignores small Hankel singular values and thus the
related left and right singular vectors.

Consequence:

Vectors (almost) in the kernel of A do not contribute to range (A)
and can hardly or not at all be reconstructed from the input-output
relation (”A−1”)  ”unobservable” states.

Vectors (almost) in range (A)⊥ cannot be ”reached” from any
x ∈ Rk  ”unreachable/uncontrollable” states.

Hence, the truncated SVD ignores stares hard to reconstruct and
hard to reach.
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Balanced Truncation
The basic method

Basic principle:

Recall: a stable system Σ, realized by (A,B,C ,D), is called
balanced, if the Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.
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Balanced Truncation
The basic method

Basic principle:

Recall: a stable system Σ, realized by (A,B,C ,D), is called
balanced, if the Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

]
,D

)
Truncation  (Â, B̂, Ĉ , D̂) := (A11,B1,C1,D).
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Balanced Truncation
The basic method

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .
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Balanced Truncation
The basic method

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 )
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2

]
.
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2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 ) = Σ

− 1
2

1 UT
1 UΣV TV1Σ

− 1
2

1
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Balanced Truncation
The basic method

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]
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Σ2
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V T
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V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 ) = Σ

− 1
2

1 UT
1 UΣV TV1Σ

− 1
2

1

= Σ
− 1

2
1 [ Ir , 0 ]

[
Σ1

Σ2

][
Ir
0

]
Σ
− 1

2
1
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Balanced Truncation
The basic method

Implementation: SR Method

1 Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2 Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3 ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .

Note:

V TW = (Σ
− 1

2
1 UT

1 S)(RTV1Σ
− 1

2
1 ) = Σ

− 1
2

1 UT
1 UΣV TV1Σ

− 1
2

1

= Σ
− 1

2
1 [ Ir , 0 ]

[
Σ1

Σ2

] [
Ir
0

]
Σ
− 1

2
1 = Σ

− 1
2

1 Σ1Σ
− 1

2
1 = Ir

=⇒ VW T is an oblique projector, hence balanced truncation is a

Petrov-Galerkin projection method.
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Balanced Truncation
The basic method

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2.
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Balanced Truncation
Numerical examples for BT: Optimal Cooling of Steel Profiles

n = 1, 357, Absolute Error

– BT model computed with sign
function method,

– MT w/o static condensation,
same order as BT model.

n = 79, 841, Absolute Error

– BT model computed using
M.E.S.S. in MATLAB,

– Computation time: ≈1 min.
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Balanced Truncation
Numerical examples for BT: Microgyroscope (Butterfly Gyro)

FEM discretization of structure dynamical model using quadratic
tetrahedral elements (ANSYS-SOLID187)
 n = 34, 722, m = 1, q = 12.

Reduced model computed using SpaRed, r = 30.

Frequency Repsonse Analysis Hankel Singular Values
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Balanced Truncation
Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.
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Balanced Truncation
Software

Lyapack [Penzl 2000]

MATLAB toolbox for solving

– Lyapunov equations and algebraic Riccati equations,

– model reduction and LQR problems.

Main work horse: Low-rank ADI and Newton-ADI iterations.

M.E.S.S. – Matrix Equations Sparse Solvers
[B./Köhler/Saak ’08–]

Extended and revised version of Lyapack.

Includes solvers for large-scale differential Riccati equations (based on
Rosenbrock and BDF methods).

Many algorithmic improvements:

– new ADI parameter selection,
– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of the mass matrix,
– new ADI versions avoiding complex arithmetic etc.

C and MATLAB versions.
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– column compression based on RRQR,
– more efficient use of direct solvers,
– treatment of generalized systems without factorization of the mass matrix,
– new ADI versions avoiding complex arithmetic etc.

C and MATLAB versions.
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Parametric Model Order Redution
Affine Representation

Parametric Systems

Σ(p) :

{
E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t)),

y(t; p) = C (p)x(t; p).

Assume

E (p) = E0 + e1(p)E1 + . . .+ eqE (p)EqE ,

A(p) = A0 + a1(p)A1 + . . .+ aqA(p)AqA ,

B(p) = B0 + b1(p)B1 + . . .+ bqB (p)BqB ,

C (p) = C0 + c1(p)C1 + . . .+ cqC (p)CqC .
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Parametric Model Order Redution
Structure-Preservation

Petrov-Galerkin-type projection

For given projection matrices V ,W ∈ Rn×r with W TV = Ir
( (VW T )2 = VW T is projector), compute

Ê(p) = W TE0V + e1(p)W TE1V + . . .+ eqE (p)W TEqEV ,

= Ê0 + e1(p)Ê1 + . . .+ eqE (p)ÊqE ,

Â(p) = W TA0V + a1(p)W TA1V + . . .+ aqA(p)W TAqAV ,

= Â0 + a1(p)Â1 + . . .+ aqA(p)ÂqA ,

B̂(p) = W TB0 + b1(p)W TB1 + . . .+ bqB (p)W TBqB ,

= B̂0 + b1(p)B̂1 + . . .+ bqB (p)B̂qB ,

Ĉ(p) = C0V + c1(p)C1V + . . .+ cqC (p)CqCV ,

= Ĉ0 + c1(p)Ĉ1 + . . .+ cqC (p)ĈqC .
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PMOR based on Multi-Moment Matching

Idea: choose appropriate frequency parameter ŝ and parameter vector p̂,
expand into multivariate power series about (ŝ, p̂) and compute
reduced-order model, so that

G (s, p) = Ĝ (s, p) +O
(
|s − ŝ|K + ‖p − p̂‖L + |s − ŝ|k‖p − p̂‖`

)
,

i.e., first K , L, k + ` (mostly: K = L = k + `) coefficients (multi-moments)
of Taylor/Laurent series coincide.

Algorithms:

[Daniel et al. ’04]: explicit computation of moments, numerically
unstable.

[Farle et al. ’06/’07]: Krylov subspace approach, only polynomial
parameter-dependance, numerical properties not clear, but appears
to be robust.

[Feng/B. ’07–’10]: Arnoldi-MGS method, employ recursive
dependance of multi-moments, numerically robust, r often larger as
with [Farle et al.].
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|s − ŝ|K + ‖p − p̂‖L + |s − ŝ|k‖p − p̂‖`
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PMOR based on Multi-Moment Matching
Numerical Examples

Electro-chemical SEM:
compute cyclic voltammogram based on FEM model

Eẋ(t) = (A0 + p1A1 + p2A2)x(t) + Bu(t), y(t) = cT x(t),

where n = 16, 912, m = 3, A1,A2 diagonal.

K = L = k + ` = 4 ⇒ r = 26 K = L = k + ` = 9 ⇒ r = 86
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PMOR based on Rational Interpolation
Theory: Interpolation of the Transfer Function

Theorem [Baur/Beattie/B./Gugercin ’07/’11]

Let Ĝ(s, p) := Ĉ(p)(sÊ(p)− Â(p))−1B̂(p)

= C(p)V (sW TE(p)V −W TA(p)V )−1W TB(p)

and suppose p̂ = [p̂1, ..., p̂d ]T and ŝ ∈ C are chosen such that both
ŝ E (p̂) − A(p̂) and ŝ Ê (p̂) − Â(p̂) are invertible.

If
(ŝ E (p̂)− A(p̂))−1 B(p̂) ∈ Ran(V )

or (
C (p̂) (ŝ E (p̂)− A(p̂))−1

)T
∈ Ran(W ),

then G (ŝ, p̂) = Ĝ (ŝ, p̂).

Note: result extends to MIMO case using tangential interpolation:
Let 0 6= b ∈ Rm, 0 6= c ∈ Rq be arbitrary.

a) If (ŝ E(p̂)− A(p̂))−1 B(p̂)b ∈ Ran(V ), then G(ŝ, p̂)b = Ĝ(ŝ, p̂)b;

b) If
(
cTC(p̂) (ŝ E(p̂)− A(p̂))−1

)T
∈ Ran(W ), then cTG(ŝ, p̂) = cT Ĝ(ŝ, p̂).
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(ŝ E (p̂)− A(p̂))−1 B(p̂) ∈ Ran(V )

or (
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PMOR based on Rational Interpolation
Theory: Interpolation of the Parameter Gradient

Theorem [Baur/Beattie/B./Gugercin ’07/’11]

Suppose that E (p), A(p), B(p), C (p) are C 1 in a neighborhood of
p̂ = [p̂1, ..., p̂d ]T and that both ŝ E (p̂) − A(p̂) and ŝ Ê (p̂) − Â(p̂) are
invertible. If

(ŝ E (p̂)− A(p̂))−1 B(p̂) ∈ Ran(V )

and (
C (p̂) (ŝ E (p̂)− A(p̂))−1

)T
∈ Ran(W ),

then

∇pG (ŝ, p̂) = ∇pGr (ŝ, p̂),
∂

∂s
G (ŝ, p̂) =

∂

∂s
Ĝ (ŝ, p̂).
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(ŝ E (p̂)− A(p̂))−1 B(p̂) ∈ Ran(V )

and (
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PMOR based on Rational Interpolation
Theory: Interpolation of the Parameter Gradient

Theorem [Baur/Beattie/B./Gugercin ’07/’11]

Suppose that E (p), A(p), B(p), C (p) are C 1 in a neighborhood of
p̂ = [p̂1, ..., p̂d ]T and that both ŝ E (p̂) − A(p̂) and ŝ Ê (p̂) − Â(p̂) are
invertible. If

(ŝ E (p̂)− A(p̂))−1 B(p̂) ∈ Ran(V )

and (
C (p̂) (ŝ E (p̂)− A(p̂))−1

)T
∈ Ran(W ),

then

∇pG (ŝ, p̂) = ∇pGr (ŝ, p̂),
∂

∂s
G (ŝ, p̂) =

∂

∂s
Ĝ (ŝ, p̂).

1 Assertion of theorem satisfies necessary conditions for surrogate models in trust
region methods [Alexandrov/Dennis/Lewis/Torczon ’98].

2 Approximation of gradient allows use of reduced-order model for sensitivity
analysis.
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PMOR based on Rational Interpolation
Algorithm

Generic implementation of interpolatory PMOR

Define A(s, p) := sE(p)− A(p).

1 Select “frequencies” s1, . . . , sk ∈ C and parameter vectors
p(1), . . . , p(`) ∈ Rd .

2 Compute (orthonormal) basis of

V = span
{
A(s1, p

(1))−1B(p(1)), . . . ,A(sk , p
(`))−1B(p(`))

}
.

3 Compute (orthonormal) basis of

W = span
{
A(s1, p

(1))−HC(p(1))T , . . . ,A(sk , p
(`))−TC(p(`))T

}
.

4 Set V := [v1, . . . , vk`], W̃ := [w1, . . . ,wk`], and W := W̃ (W̃ TV )−1.
(Note: r = k`).

5 Compute

{
Â(p) := W TA(p)V , B̂(p) := W TB(p)V ,

Ĉ(p) := W TC(p)V , Ê(p) := W TE(p)V .
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PMOR based on Rational Interpolation
Remarks

If directional derivatives w.r.t. p are included in Ran(V ), Ran(W ),
then also the Hessian of G (ŝ, p̂) is interpolated by the Hessian of
Ĝ (ŝ, p̂).

Choice of optimal interpolation frequencies sk and parameter vectors
p(k) in general is an open problem.

For prescribed parameter vectors p(k), we can use corresponding
H2-optimal frequencies sk,`, ` = 1, . . . , rk computed by IRKA, i.e.,

reduced-order systems Ĝ
(k)
∗ so that

‖G (., p(k))− Ĝ
(k)
∗ (.)‖H2 = min

order(Ĝ)=rk
Ĝ stable

‖G (., p(k))− Ĝ (k)(.)‖H2 ,

where

‖G‖H2
:=

(
1

2π

∫ +∞

−∞

∥∥G (ω)
∥∥2

F
dω

)1/2

.

Optimal choice of interpolation frequencies sk and parameter vectors
p(k) possible for special parameterized SISO systems.
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Ĝ (ŝ, p̂).

Choice of optimal interpolation frequencies sk and parameter vectors
p(k) in general is an open problem.

For prescribed parameter vectors p(k), we can use corresponding
H2-optimal frequencies sk,`, ` = 1, . . . , rk computed by IRKA, i.e.,

reduced-order systems Ĝ
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Ĝ stable

‖G (., p(k))− Ĝ (k)(.)‖H2 ,
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PMOR based on Rational Interpolation
Numerical Example: 2D Convection-Diffusion Equation

FD discretization (n = 400, m = q = 1) yields

ẋ(t) = (p0A0 + p1A1 + p2A2) x(t) + B u(t),

where p0 = diffusion coefficient; pi , i = 1, 2, convection in xi
direction, p ∈ [ 0, 1 ]3.

Parameter vectors for interpolation:

p(1) = (0.8, 0.5, 0.5), p(2) = (0.8, 0, 0.5), p(3) = (0.8, 1, 0.5),
p(4) = (0.1, 0.5, 0.5), p(5) = (0.1, 0, 1), p(6) = (0.1, 1, 1).

Compare implementations:

– generic rational PMOR (≡ fix interpolation frequencies),
– IRKA-based rational PMOR (≡ optimize interpolation frequencies).

Reduced-order model: r1 = r2 = r3 = 3, r4 = r5 = r6 = 4 ⇒ r = 21.
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PMOR based on Rational Interpolation
Numerical Example: 2D Convection-Diffusion Equation

Relative H2 Error for p0 = 0.1

!
!"#

!"$
!"%

!"&
'

!

!"#

!"$

!"%

!"&

'
!("%

!("$

!("#

!(

!#"&

!#"%

)
'

*+,-./0+12
#
1+334315431)

!
161!"'

)
#

1,
4
7
18
99
12
1!
12

31
99
#
1:
19
91
2
19
9 #
;

IRKA, 5 steps

!

!"#

!"$

!"%

!"&

'

!

!"#

!"$

!"%

!"&

'

!$"(

!$

!)"(

!)

!#"(

!#

!'"(

!'

!!"(

*
'

+,-./01,23
#
2,445426542*

!
272!"'

*
#

2-
5
8
29
::
23
2!
23

42
::
#
2;
2:
:2
3
2:
: #
<

generic

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 62/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

PMOR based on Rational Interpolation
Numerical Example: 2D Convection-Diffusion Equation

Relative H∞ Error for p0 = 0.1
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PMOR based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Important requirement for a compact model of thermal conduction is
boundary condition independence.

The thermal problem is modeled by the heat equation, where heat
exchange through device interfaces is modeled by convection boundary
conditions containing film coefficients {pi}3

i=1, to describe the heat
exchange at the ith interface.

Spatial semi-discretization leads to

Eẋ(t) = (A0 +
3∑

i=1

piAi )x(t) + bu(t), y(t) = cT x(t),

where n = 4, 257, Ai , i = 1, 2, 3, are diagonal.

Source: C.J.M Lasance, Two benchmarks to facilitate the study of compact thermal

modeling phenomena, IEEE. Trans. Components and Packaging Technologies,

Vol. 24, No. 4, pp. 559–565, 2001.

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 64/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

PMOR based on Rational Interpolation
Numerical Example: Thermal Conduction in a Semiconductor Chip

Choose 2 interpolation points for parameters (“important” configurations), 8/7
interpolation frequencies are picked H2 optimal by IRKA. =⇒ k = 2, ` = 8, 7,
hence r = 15.

p3 = 1, p1, p2 ∈ [1, 104].
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Nonlinear Model Reduction
A Brief Introduction

Given a large-scale control-affine nonlinear control system of the form

Σ :

{
ẋ(t) = f (x(t)) + bu(t),

y(t) = cT x(t), x(0) = x0,

with f : Rn → Rn nonlinear and b, c ∈ Rn, x ∈ Rn, u, y ∈ R.

MOR

Σ̂ :

{
˙̂x(t) = f̂ (x̂(t)) + b̂u(t),

ŷ(t) = ĉT x̂(t), x̂(0) = x̂0,

with f̂ : Rn̂ → Rn̂ and b̂, ĉ ∈ Rn̂, x ∈ Rn̂, u ∈ R and ŷ ≈ y ∈ R, n̂� n.
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Nonlinear Model Reduction
Common Reduction Techniques

Proper Orthogonal Decomposition (POD)

Take computed or experimental ’snapshots’ of full model:
[x(t1), x(t2), . . . , x(tN)] =: X ,

perform SVD of snapshot matrix: X = VSW T ≈ Vn̂Sn̂W
T
n̂ .

Reduction by POD-Galerkin projection: ˙̂x = V T
n̂ f (Vn̂x̂) + V T

n̂ Bu.

Requires evaluation of f
 discrete empirical interpolation [Sorensen/Chaturantabut ’09].

Input dependency due to ’snapshots’ !

Trajectory Piecewise Linear (TPWL)

Linearize f along trajectory,

reduce resulting linear systems,

construct reduced model by weighted sum of linear systems.

Requires simulation of original model and several linear reduction
steps, many heuristics.
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Nonlinear Model Reduction by Generalized Moment-Matching
Quadratic-Bilinear Differential Algebraic Equations (QBDAEs)

Consider the class of quadratic-bilinear differential algebraic equations

Σ :

{
Eẋ(t) = A1x(t) + A2x(t)⊗ x(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where E ,A1,N ∈ Rn×n,A2 ∈ Rn×n2

(Hessian tensor),B,CT∈ Rn are
quite helpful.

A large class of smooth nonlinear control-affine systems can be
transformed into the above type of control system.

The transformation is exact, but a slight increase of the state
dimension has to be accepted.

Input-output behavior can be characterized by generalized transfer
functions  enables us to use Krylov-/rational interpolation-based
reduction techniques.
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Nonlinear Model Reduction by Generalized Moment-Matching
Transformation to QBDAE form via McCormick relaxation

Theorem [Gu ’09]

Assume that the state equation of a nonlinear system Σ is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + Bu,

where gi (x) : Rn → Rn are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, Σ can be transformed into a system of QBDAEs.
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Transformation to QBDAE form via McCormick relaxation

Theorem [Gu ’09]

Assume that the state equation of a nonlinear system Σ is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + Bu,

where gi (x) : Rn → Rn are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, Σ can be transformed into a system of QBDAEs.

Example

ẋ1 = exp(−x2) ·
√
x2

1 + 1, ẋ2 = −x2 + u.

z1 := exp(−x2),

ẋ1 = z1 · z2,
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Transformation to QBDAE form via McCormick relaxation
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Assume that the state equation of a nonlinear system Σ is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + Bu,
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√
x2

1 + 1, ẋ2 = −x2 + u.

z1 := exp(−x2), z2 :=
√
x2

1 + 1.

ẋ1 = z1 · z2, ẋ2 = −x2 + u, ż1 = −z1 · (−x2 + u),
ż2 = 2·x1·z1·z2

2·z2
= x1 · z1.
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Nonlinear Model Reduction by Generalized Moment-Matching
Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:

consider input of the form αu(t),

nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . .

Comparison of terms αi , i = 1, 2, . . . leads to series of systems

Eẋ1 = A1x1 + Bu,

Eẋ2 = A1x2 + A2x1 ⊗ x1 + Nx1u,

Eẋ3 = A1x3 + A2 (x1 ⊗ x2 + x2 ⊗ x1) + Nx2u

...

although i-th subsystem is coupled nonlinearly to preceding systems,
linear systems are obtained if terms xj , j < i , are interpreted as
pseudo-inputs.
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Eẋ1 = A1x1 + Bu,
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Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:
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Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:

H1(s1) = C (s1E − A1)−1B︸ ︷︷ ︸
G1(s1)

,

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 72/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:

H1(s1) = C (s1E − A1)−1B︸ ︷︷ ︸
G1(s1)

,

H2(s1, s2) =
1

2!
C ((s1 + s2)E − A1)−1 [N (G1(s1) + G1(s2))

+A2 (G1(s1)⊗ G1(s2) + G1(s2)⊗ G1(s1))] ,
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Nonlinear Model Reduction by Generalized Moment-Matching
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via formal multivariate Laplace transforms:

H1(s1) = C (s1E − A1)−1B︸ ︷︷ ︸
G1(s1)

,

H2(s1, s2) =
1

2!
C ((s1 + s2)E − A1)−1 [N (G1(s1) + G1(s2))

+A2 (G1(s1)⊗ G1(s2) + G1(s2)⊗ G1(s1))] ,

H3(s1, s2, s3) =
1

3!
C ((s1 + s2 + s3)E − A1)−1[

N(G2(s1, s2) + G2(s2, s3) + G2(s1, s3))

+ A2

(
G1(s1)⊗ G2(s2, s3) + G1(s2)⊗ G2(s1, s3)

+ G1(s3)⊗ G2(s1, s3) + G2(s2, s3)⊗ G1(s1)

+ G2(s1, s3)⊗ G1(s2) + G2(s1, s2)⊗ G1(s3)
)]
.
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Nonlinear Model Reduction by Generalized Moment-Matching
Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For H1(s1),
choosing σ and making use of the Neumann lemma leads to

H1(s1) =
∞∑
i=0

C
(
(A1 − σE )−1E

)i
(A1 − σE )−1B (s1 − σ)i︸ ︷︷ ︸
mi

s1,σ

.
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Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For H1(s1),
choosing σ and making use of the Neumann lemma leads to

H1(s1) =
∞∑
i=0

C
(
(A1 − σE )−1E

)i
(A1 − σE )−1B (s1 − σ)i︸ ︷︷ ︸
mi

s1,σ

.

Similarly, specifying an expansion point (τ, ξ) yields

H2(s1, s2) =
1

2

∞∑
i=0

C
(

(A1 − (τ + ξ)E)−1E
)i

(A1 − (τ + ξ)E)−1 (s1 + s2 − τ − ξ)i ·[
A2

(
∞∑
j=0

mj
s1,τ ⊗

∞∑
k=0

mk
s2,ξ +

∞∑
k=0

mk
s2,ξ ⊗

∞∑
j=0

mj
s1,τ

)
+ N

(
∞∑
p=0

mp
s1,τ +

∞∑
p=0

mq
s2,ξ

)]
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Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: ∂

∂s
q−1
1

H1(σ) = ∂

∂s
q−1
1

Ĥ1(σ), ∂
∂s l

1
sm
2

H2(σ, σ) = ∂
∂s l

1
sm
2

Ĥ2(σ, σ), l + m ≤ q − 1.

Construct the following sequence of nested Krylov subspaces
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∂s
q−1
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Ĥ1(σ), ∂
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1
sm
2

H2(σ, σ) = ∂
∂s l

1
sm
2

Ĥ2(σ, σ), l + m ≤ q − 1.

Construct the following sequence of nested Krylov subspaces

V1 =Kq

(
(A1 − σE )−1E , (A1 − σE )−1b

)

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 74/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: ∂

∂s
q−1
1

H1(σ) = ∂

∂s
q−1
1

Ĥ1(σ), ∂
∂s l

1
sm
2

H2(σ, σ) = ∂
∂s l

1
sm
2

Ĥ2(σ, σ), l + m ≤ q − 1.

Construct the following sequence of nested Krylov subspaces

V1 =Kq

(
(A1 − σE )−1E , (A1 − σE )−1b

)
for i = 1 : q

V i
2 = Kq−i+1

(
(A1 − 2σE )−1E , (A1 − 2σE )−1NV1(:, i)

)
,
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Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: ∂

∂s
q−1
1

H1(σ) = ∂

∂s
q−1
1

Ĥ1(σ), ∂
∂s l

1
sm
2

H2(σ, σ) = ∂
∂s l

1
sm
2

Ĥ2(σ, σ), l + m ≤ q − 1.

Construct the following sequence of nested Krylov subspaces

V1 =Kq

(
(A1 − σE )−1E , (A1 − σE )−1b

)
for i = 1 : q

V i
2 = Kq−i+1

(
(A1 − 2σE )−1E , (A1 − 2σE )−1NV1(:, i)

)
,

for j = 1 : min(q − i + 1, i)

V i,j
3 = Kq−i−j+2

(
(A1 − 2σE )−1E , (A1 − 2σE )−1A2V1(:, i)⊗ V1(:, j)

)
,

V1(:, i) denoting the i-th column of V1.
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Nonlinear Model Reduction by Generalized Moment-Matching
Constructing the Projection Matrix

Goal: ∂

∂s
q−1
1

H1(σ) = ∂

∂s
q−1
1

Ĥ1(σ), ∂
∂s l

1
sm
2

H2(σ, σ) = ∂
∂s l

1
sm
2

Ĥ2(σ, σ), l + m ≤ q − 1.

Construct the following sequence of nested Krylov subspaces

V1 =Kq

(
(A1 − σE )−1E , (A1 − σE )−1b

)
for i = 1 : q

V i
2 = Kq−i+1

(
(A1 − 2σE )−1E , (A1 − 2σE )−1NV1(:, i)

)
,

for j = 1 : min(q − i + 1, i)

V i,j
3 = Kq−i−j+2

(
(A1 − 2σE )−1E , (A1 − 2σE )−1A2V1(:, i)⊗ V1(:, j)

)
,

V1(:, i) denoting the i-th column of V1. Set V = orth [V1,V
i
2 ,V

i,j
3 ] and

construct Σ̂ by the Galerkin-Projection P = VVT :

Â1 = VTA1V ∈ Rn̂×n̂, Â2 = VTA2(V ⊗ V) ∈ Rn̂×n̂2

,

N̂ = VTNV ∈ Rn̂×n̂, b̂ = VTb ∈ Rn̂, ĉT = cTV ∈ Rn̂.
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Nonlinear Model Reduction by Generalized Moment-Matching
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided (Petrov-Galerkin) projection methods.

Construction the dual Krylov subspaces efficiently requires a bit of tensor
calculus.
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Nonlinear Model Reduction by Generalized Moment-Matching
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided (Petrov-Galerkin) projection methods.

Construction the dual Krylov subspaces efficiently requires a bit of tensor
calculus.
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Nonlinear Model Reduction by Generalized Moment-Matching
Two-Sided Projection Methods

Theorem [B./Breiten 2012]

Σ = (E ,A1,A2,N, b, c) original QBDAE system.

Reduced system by Petrov-Galerkin projection P = VWT with

V1 = Kq1 (E ,A1, b, σ) , W1 = Kq1

(
ET ,AT

1 , c, 2σ
)

for i = 1 : q2

V2 = Kq2−i+1 (E ,A1,NV1(:, i), 2σ)

W2 = Kq2−i+1

(
ET ,AT

1 ,N
TW1(:, i), σ

)
for j = 1 : min(q2 − i + 1, i)

V3 = Kq2−i−j+2 (E ,A1,A2V1(:, i)⊗ V1(:, j), 2σ)

W3 = Kq2−i−j+2

(
ET ,AT

1 ,A(2)V1(:, i)⊗W1(:, j), σ
)
.

Then, it holds:

∂ iH1

∂s i1
(σ) =

∂ i Ĥ1

∂s i1
(σ),

∂ iH1

∂s i1
(2σ) =

∂ i Ĥ1

∂s i1
(2σ), i = 0, . . . , q1 − 1,

∂ i+j

∂s i1s
j
2

H2(σ, σ) =
∂ i+j

∂s i1s
j
2

Ĥ2(σ, σ), i + j ≤ 2q2 − 1.
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Consider initial and boundary conditions

ux(x , y , 0) =

√
2

2
, uy (x , y , 0) =

√
2

2
, for (x , y) ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for (x , y) ∈ Ω\Ω1,

ux = 0, uy = 0, for (x , y) ∈ ∂Ω.
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Consider initial and boundary conditions

ux(x , y , 0) =

√
2

2
, uy (x , y , 0) =

√
2

2
, for (x , y) ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for (x , y) ∈ Ω\Ω1,

ux = 0, uy = 0, for (x , y) ∈ ∂Ω.

Spatial discretization  QBDAE system with nonzero I.C. and
N = 0  reformulate as system with zero I.C. and constant input.
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Consider initial and boundary conditions

ux(x , y , 0) =

√
2

2
, uy (x , y , 0) =

√
2

2
, for (x , y) ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for (x , y) ∈ Ω\Ω1,

ux = 0, uy = 0, for (x , y) ∈ ∂Ω.

Spatial discretization  QBDAE system with nonzero I.C. and
N = 0  reformulate as system with zero I.C. and constant input.

Output C chosen to be average x-velocity.
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Numerical Examples
Two-Dimensional Burgers Equation

Comparison of relative time-domain error for n = 1600
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Now consider initial and boundary conditions

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ∈ Ω,

ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Now consider initial and boundary conditions

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ∈ Ω,

ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.

Spatial discretization  QBDAE system with zero I.C. and 4 inputs
B ∈ Rn×4, N1,N2,N3,N4, ROM with q1 = 5, q2 = 2, σ = 0, n̂ = 52 .
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Now consider initial and boundary conditions

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ∈ Ω,

ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.

Spatial discretization  QBDAE system with zero I.C. and 4 inputs
B ∈ Rn×4, N1,N2,N3,N4, ROM with q1 = 5, q2 = 2, σ = 0, n̂ = 52 .

State reconstruction by reduced model x ≈ V x̂ , max. rel. err < 3%.
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Numerical Examples
The Chafee-Infante equation

Consider PDE with a cubic nonlinearity:

vt + v3 = vxx + v , in (0, 1)× (0,T ),

v(0, ·) = u(t), in (0,T ),

vx(1, ·) = 0, in (0,T ),

v(x , 0) = v0(x), in (0, 1)

original state dimension n = 500, QBDAE dimension N = 2 · 500,
reduced QBDAE dimension r = 9
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Numerical Examples
The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 5 cos (t))
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Numerical Examples
The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 50 sin (t))
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Numerical Examples
The FitzHugh-Nagumo System

FitzHugh-Nagumo system modeling a neuron
[Chaturantabut, Sorensen ’09]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1],

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where
ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 5 · 104t3 exp(−15t)

original state dimension n = 2 · 1000, QBDAE dimension
N = 3 · 1000, reduced QBDAE dimension r = 20

Max Planck Institute Magdeburg c© Peter Benner, Model Reduction Using Rational Approximation 80/84



Introduction MOR by Projection Modal Truncation RatInt Balanced Truncation PMOR Nonlinear Model Reduction Fin

Numerical Examples
The FitzHugh-Nagumo System

POD via moment-matching (varying input)
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Topics Not Covered

Linear Systems:

Balanced residualization (singular perturbation approximation),
yields G (0) = Ĝ (0).

Balancing-related methods.

Special methods for second-order (mechanical) systems.

Extensions to bilinear and stochastic systems.

MOR methods for discrete-time systems.

Extensions to descriptor systems Eẋ = Ax + Bu, E singular.

Nonlinear Systems:

Other MOR techniques like POD, RB, Empirical Gramians.

Simulation-free methods for parametric systems is widely open!
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Course Material

Material, including a video of all lectures and exercises with
solutions, corresponding to an extended (10 hours) version
Matrix Equations and Model Reduction of this course. held at
Gene Golub SIAM Summer School 2013 ”Matrix Functions and
Matrix Equations”, Fudan University, Shanghai, China is
available at

http://g2s3.cs.ucdavis.edu/course.html.
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