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Growing up . . . in Betzdorf/Sieg
1967 . . . until 1986

This is where I spent childhood and youth . . .
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Growing up . . . in Betzdorf/Sieg
1967 . . . until 1986

. . . and this is where I actually spent most part of it.
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Freiherr-vom-Stein-Gymnasium Betzdorf-Kirchen
1977: entered in 5th grade 1986: graduation (Abitur)

A famous graduate . . .
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Freiherr-vom-Stein-Gymnasium Betzdorf-Kirchen
1977: entered in 5th grade 1986: graduation (Abitur)

A famous graduate . . .

Jochem Marotzke (Abitur 1977)
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Studying Mathematics at RWTH Aachen 1987–1993

Volker Mehrmann

Plesken, Görlich, Neubüser, Oberschelp, Butzer, Jongen, Mehrmann, Dahmen
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First research results
Diploma Thesis . . . and the first paper

The algebraic Riccati equation

0 = W + ATX + XA− XVX =: R(X ),

with data A ∈ Rn×n, V ,W ∈ Rn×n symmetric positive semidefinite, and
unknown X = XT ∈ Rn×n.

Major equation in systems and control theory: feedback , filtering, . . .

Existence of solution under mild conditions, but no uniqueness: generically(
2n
n

)
solutions, but also |X| =∞ with X := {X = XT ∈ Rn×n |R(X ) = 0}

possible in applications.

Usually need max. solution w.r.t. Loewner ordering: Xmax ≥ X ∀X ∈ X.

Numerical algorithms need to guarantee the computation of Xmax with
small backward error with at most O(n3) flops.

In [1,2], we describe one of the first algorithms achieving this — at least
for small n, say n < 50.

[1] P. Benner. Ein orthogonal symplektischer Multishift Algorithmus zur Lösung der algebraischen Riccatigleichung.

Diplomarbeit, RWTH Aachen, Institut für Geometrie und Praktische Mathematik, March 1993.

[2] G.S. Ammar, P. Benner, and V. Mehrmann. A multishift algorithm for the numerical solution of algebraic Riccati equations.
Electr. Trans. Num. Anal., 1:33–48, 1993.
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Starting a Math Ph.D. in Kansas
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Starting a Math Ph.D. in Kansas
. . . under the guidance of Ralph Byers

Started working on

variants of Newton’s method for
AREs,

large-scale Hamiltonian eigenproblems,

the sign function method.

Ralph Byers
(1955-2007)

[3] P. Benner and R. Byers. An exact line search method for solving generalized continuous-time algebraic Riccati equations.
IEEE Trans. Automat. Control, 43(1):101–107, 1998.

[4] P. Benner and H. Faßbender. An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem.
Linear Algebra Appl., 263:75–111, 1997.

[5] P. Benner and E.S. Quintana-Ort́ı. Solving stable generalized Lyapunov equations with the matrix sign function.
Numerical Algorithms, 20(1):75–100, 1999.
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Continuing (and finishing) the Ph.D. in Chemnitz 1997
. . . with Volker Mehrmann (and Ralph Byers)

Volker Mehrmann

[6] P. Benner. Contributions to the Numerical Solution of Algebraic Riccati Equations and
Related Eigenvalue Problems.
Dissertation, Fakultät für Mathematik, TU Chemnitz–Zwickau, 09107 Chemnitz (Germany),
February 1997.
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Van Loan’s curse
The Hamiltonian Eigenproblem

Definition

Let J =

[
0 In

−In 0

]
, then H ∈ R2n×2n is called Hamiltonian if

(HJ)T = HJ.

Note: J−1 = JT = −J.

Explicit block form of Hamiltonian matrices

[
A B
C −AT

]
, where A,B,C ∈ Rn×n and B = BT , C = CT .

For mathematicians: Hamiltonian matrices form the Lie algebra associated to

the symplectic matrix group and the skew bilinear form 〈 ., . 〉J .
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The Hamiltonian Eigenproblem
Spectral Properties

Hamiltonian Eigensymmetry

Hamiltonian matrices exhibit the Hamiltonian eigensymmetry:
if λ is a finite eigenvalue of H, then λ̄,−λ,−λ̄ are eigenvalues of H, too.

Typical Hamiltonian spectrum
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The Hamiltonian Eigenproblem

Goal

Structure-preserving algorithm, i.e., if λ̃ is a computed eigenvalue of H,

then λ̃,−λ̃,−λ̃ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix
pencils like the QR/QZ, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved
if the Hamiltonian structure is preserved.

Definition

V ∈ R2n×2n is symplectic if V T JV = J, i.e., V−1 = JTV T J.

Vk ∈ R2n×2k is symplectic or a J-isometry if V T
k JnVk = Jk .

Lemma

If H is Hamiltonian and V is symplectic, then V−1HV is Hamiltonian,
too.
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Van Loan’s curse
Applications

Hamiltonian eigenproblems arise in many different applications, e.g.:

Systems and control:

Solution methods for algebraic and differential Riccati equations.
Design of LQR/LQG/H2/H∞ controllers and filters for
continuous-time linear control systems.
Stability radii and system norm computations; optimization of
system norms.
Passivity-preserving model reduction based on balancing.
Reduced-order control for infinite-dimensional systems based on
inertial manifolds.

Computational physics:
exponential integrators for Hamiltonian dynamics.
Quantum chemistry:
computing excitation energies in many-particle systems using
random phase approximation (RPA); Bethe-Salpeter equation.
Quadratic eigenvalue problems:
in particular, gyroscopic systems.
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Van Loan’s curse

Theorem (Paige/Van Loan 1981)

If H has no purely imaginary eigenvalues, then the Hamiltonian Schur
form exists: there exists a symplectic and orthogonal similarity
transformation

V THV =


@
@@

@
@@

 .
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If H has no purely imaginary eigenvalues, then the Hamiltonian Schur
form exists: there exists a symplectic and orthogonal similarity
transformation

V THV =


@
@@

@
@@

 .
Symplectic =⇒ Hamiltonian structure and eigensymmetry preserved.
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Van Loan’s curse

Theorem (Paige/Van Loan 1981)
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V THV =
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@
@@

@
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 .
Symplectic =⇒ Hamiltonian structure and eigensymmetry preserved.

Orthogonal =⇒ Computation is backward stable, i.e., computed eigenvalues
are as good as possible in finite precision arithmetic.

Schur form =⇒ for standard matrices, computable with O(n3) flops.

Problem: no constructive algorithm given in [7]!

[7] C.C. Paige and C.F. Van Loan. A Schur decomposition for Hamiltonian matrices.

Linear Algebra Appl., 41:11–32, 1981.
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Van Loan’s curse

Van Loan’s curse
Compute all eigenvalues of a Hamiltonian
matrix using a numerical algorithm that is

backward stable,

preserves the Hamiltonian eigensymmetry

requires at most O(n3) operations.

Despite progress in [8,9], the problem remained
open until 1997/98. Charlie Van Loan

(Cornell U.)

[8] R. Byers. A Hamiltonian QR-algorithm. SIAM J. Sci. Statist. Comput., 7:212–229, 1986.

[9] C.F. Van Loan. A symplectic method for approximating all the eigenvalues of a Hamiltonian
matrix. Linear Algebra Appl., 61:233–251, 1984.
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Van Loan’s curse . . . solved 1997/98

Breaking the curse

Use relation to skew-Hamiltonian N := H2;

do not compute N explicitly (as in [Van Loan 1984]), but use a clever
implicit strategy to compute symplectic URV decomposition:

UHV =

[
H1 H̃

HT
2

]
=

 @
@

@@@
@

 ,
then apply product QR algorithm to H2H1 (no explicit product needed!)
to get eigenvalues.

Further tricks to get eigenvectors/invariant subspaces.

backward stable, preserves Hamiltonian eigensymmetry,
O(n3) (and 40% faster than unstructured solver!).

Now part of, e.g., MATLAB.
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[10] P. Benner, V. Mehrmann, and H. Xu. A numerically stable, structure preserving method for computing the eigenvalues of real
Hamiltonian or symplectic pencils. Numer. Math., 78(3):329–358, 1998.

[11] P. Benner, V. Mehrmann, and H. Xu. A new method for computing the stable invariant subspace of a real Hamiltonian matrix.
J. Comput. Appl. Math., 86:17–43, 1997.
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Wanderings

Habilitation in Bremen 2001

Building up the Zentrum für Technomathematik.
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Wanderings

Lecturer at TU Berlin 2002–2003

First phase of DFG Research Center Matheon.

(Visiting associate professor for one term at TU Hamburg-Harburg.)
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Wanderings

Full professor at TU Chemnitz 2003–2010

Head of research group
”Mathematics in Industry and Technology”

Research on

model reduction,

feedback control,

HPC algorithms

for large-scale instationary dynamical systems.
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Wanderings
. . . come to an end

Appointment as director at MPI Magdeburg 2010

Head of search group (department)
Computational Methods in Systems and Control Theory

Managing Director 2013/14
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MPG
Managing Director in Magdeburg — nonscientific challenges

Political quarrels in Sachsen-Anhalt

Süddeutsche Zeitung
vom 6. Mai 2014

Max Planck Institute Magdeburg c© P. Benner, Antrittsrede 17/30



Growing up First research results Van Loan’s curse Wanderings MPG Model Order Reduction Future Research Appendix

MPG
Managing Director in Magdeburg — nonscientific challenges

Elbe flood June 2013
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Model Order Reduction
A Key Technology for Complex Dynamical Systems

Complexity of computer simulation (DNS, direct numerical
simulation) and, particularly, of computer-aided control, optimization
and design of dynamical processes increases rapidly, due to

– multiphysics applications (e.g., MEMS),
– parameter uncertainties,
– network structures (e.g., nanoelectronics, biochemical/

metabolic networks),
– complicated 3D geometries (e.g., machine tools) or nD

problems in molecular dynamics.

Curse of Dimensionality:
Hardware acceleration does not compensate for increase in model
complexity!

Require goal-oriented reduced-order models (ROMs) and algorithmic
improvements!

Max Planck Institute Magdeburg c© P. Benner, Antrittsrede 18/30



Growing up First research results Van Loan’s curse Wanderings MPG Model Order Reduction Future Research Appendix

Model Order Reduction
A Key Technology for Complex Dynamical Systems

Complexity of computer simulation (DNS, direct numerical
simulation) and, particularly, of computer-aided control, optimization
and design of dynamical processes increases rapidly, due to

– multiphysics applications (e.g., MEMS),
– parameter uncertainties,
– network structures (e.g., nanoelectronics, biochemical/

metabolic networks),
– complicated 3D geometries (e.g., machine tools) or nD

problems in molecular dynamics.

Curse of Dimensionality:
Hardware acceleration does not compensate for increase in model
complexity!

Require goal-oriented reduced-order models (ROMs) and algorithmic
improvements!

Max Planck Institute Magdeburg c© P. Benner, Antrittsrede 18/30



Growing up First research results Van Loan’s curse Wanderings MPG Model Order Reduction Future Research Appendix

Model Order Reduction
A Key Technology for Complex Dynamical Systems

Example: Algorithmic vs. Hardware Acceleration
Engineering design often requires extensive parameter studies in ”real-time”.

Micro gyroscope example:
duration of parameter study reduced from

about 3 days
to 1 hour
with 0.1% loss in accuracy

using advanced mathematical methods.

Another MEMS example (Anemometer): reduction

from > 11 days to ∼ 90sec.  10.500 times

faster!

=⇒ Acceleration
factor ≈ 72.

CPU clock rate limited (≤ 3 GHz), hardware acceleration only achievable
using multicore technology.

Given ideal speed-up: would require ≈ 288 (21.000) cores to achieve the
same!
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A Key Technology for Complex Dynamical Systems

Complexity of computer simulation (DNS, direct numerical
simulation) and, particularly, of computer-aided control, optimization
and design of dynamical processes increases rapidly, due to

– multiphysics applications (e.g., MEMS),
– parameter uncertainties,
– network structures (e.g., nanoelectronics, biochemical/

metabolic networks),
– complicated 3D geometries (e.g., machine tools) or nD

problems in molecular dynamics.

Curse of Dimensionality:
Hardware acceleration does not compensate for increase in model
complexity!

Require goal-oriented reduced-order models (ROMs) and algorithmic
improvements!

⇓
Key technology: system approximation / model reduction
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Model Order Reduction
Parametric Dynamical Systems

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t); p), x(t0; p) = x0(p), (a)

y(t; p) = g(t, x(t; p), u(t); p) (b)

with

(generalized) states x(t; p) ∈ Rn (or a suitable Hilbert space),

inputs u(t) ∈ Rm (or a suitable Hilbert space),

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

Applications (”multi-query context”):

Repeated simulation for varying material or geometry parameters,
boundary conditions,

control, optimization and design.
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Dynamical Systems

Original System

Σ :

{
ẋ(t; p) = f (t, x(t), u(t); p),
y(t; p) = g(t, x(t), u(t); p).

states x(t; p) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t; p) = f̂ (t, x̂(t), u(t); p),
ŷ(t; p) = ĝ(t, x̂(t), u(t); p).

states x̂(t; p) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t; p) ∈ Rq.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible inputs u and all p ∈ Ω.
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Dynamical Systems
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Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible inputs u and all p ∈ Ω.

Secondary goal: reconstruct approximation of x from x̂ .
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Model Order Reduction
Linear Parametric Systems

Linear, time-invariant (parametric) systems

E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t), A(p),E (p) ∈ Rn×n,

y(t; p) = C (p)x(t; p), B(p) ∈ Rn×m,C (p) ∈ Rq×n.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) 7→ x(s; p), ẋ(t; p) 7→ sx(s; p))
to linear system with x(0; p) ≡ 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(s; p) = C(p)x(s; p),

yields I/O-relation in frequency domain:

y(s; p) =
(
C(p)(sE(p)− A(p))−1B(p)︸ ︷︷ ︸

=:G(s;p)

)
u(s).

G(s; p) is the parameter-dependent transfer function of Σ(p).
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(
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=:G(s;p)

)
u(s).

G(s; p) is the parameter-dependent transfer function of Σ(p).

Goal: Fast evaluation of mapping (u, p) → y(s; p).
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(
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=:G(s;p)

)
u(s).

G(s; p) is the parameter-dependent transfer function of Σ(p).

Goal: Approx. G(s; p) by rational matrix Ĝ(s; p) of much lower degree!
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Exemplary Results: Linear Parametric Systems
Rational Interpolation by Projection onto Krylov Subspaces

Theorem [10]

Suppose that E(p), A(p), B(p), C(p) are C 1 in a neighborhood of
p̂ = [p̂1, ..., p̂d ]T ∈ Ω and that both ŝ E(p̂) − A(p̂) and ŝ Ê(p̂) − Â(p̂) are
invertible. If

(ŝ E(p̂)− A(p̂))−1 B(p̂)∈ Ran(V ),(
C(p̂) (ŝ E(p̂)− A(p̂))−1

)T
∈ Ran(W ),

and

Â(s, p) = W TA(s, p)V , B̂(s, p) = W TB(s, p), Ĉ(s, p) = C(s, p)V , . . .

then G(ŝ, p̂) = Ĝ(ŝ, p̂)

∇pG(ŝ, p̂) = ∇pĜ(ŝ, p̂),
∂

∂s
G(ŝ, p̂) =

∂

∂s
Ĝ(ŝ, p̂).

[10] U. Baur, C. Beattie, P. Benner, and S. Gugercin. Interpolatory Projection Methods for
Parameterized Model Reduction. SIAM J. Sci. Comp., 33:2489–2518, 2011.

Max Planck Institute Magdeburg c© P. Benner, Antrittsrede 22/30



Growing up First research results Van Loan’s curse Wanderings MPG Model Order Reduction Future Research Appendix

Exemplary Results: Nonlinear Systems
Matching Volterra Moments

Quadratic-bilinear systems

Σ :

{
Eẋ(t) = Ax(t) + Hx(t)⊗ x(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where E ,A,N ∈ Rn×n,H ∈ Rn×n2

(Hessian tensor),B,CT∈ Rn.

A large number of smooth nonlinear systems can be transformed
into QB systems using additional variables.

Solution is represented by Volterra series, or, by a sequence of formal
linear systems.

Coefficients in Volterra series can be interpolated using concept of
generalized transfer functions.
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Exemplary Results: Nonlinear Systems
Matching Volterra Moments

Theorem [11]

Let Ê = W TEV , Â = W TAV , Ĥ = W TH (V ⊗ V ), N̂ = W TNV , b̂ = W Tb,
ĉ = V T c with full-rank V ,W ∈ Rn×nr s.t. Ê is invertible and define
F (s) = sE − A, bi := F (σi )

−1b, ci := F (2σi )
−T c,

spanV ⊃ span
i=1,...,k

{
bi , F (2σi )

−1 [H(bi ⊗ bi ) + Nbi ]
}
,

spanW ⊃ span
i=1,...,k

{
ci , F (σi )

−T

[
H(2)(fi ⊗ ci ) +

1

2
NT ci

]}
,

with σi 6∈ {Λ (A,E),Λ (Â, Ê)}. Then for i = 1, . . . , k:

G1(σi ) = Ĝ1(σi ), G1(2σi ) = Ĝ1(2σi ),

G2(σi , σi ) = Ĝ2(σi , σi ),
∂

∂sj
G2(σi , σi ) =

∂

∂sj
Ĝ2(σi , σi ), j = 1, 2.

[11] P. Benner and T. Breiten. Two-Sided Projection Methods for Nonlinear Model Order
Reduction. SIAM J. Sci. Comp., provisionally accepted.
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Numerical Examples
Industrial Case Study: Thermal Analysis of Electrical Motor

Thermal simulations to detect whether temperature changes lead to
fatigue or deterioration of employed materials.
Main heat source: thermal losses resulting from current stator coil/rotor.
Many different current profiles need to be considered to predict whether
temperature on certain parts of the motor remans in feasible region.
Finite element analysis on rather complicated geometries  large-scale
linear models with many (here: 7/13) parameters.

Schematic view of an electrical motor. Bosch integrated motor generator used
in hybrid variants of Porsche Cayenne,

VW Touareg.
Pictures:Bildtext | Caption

Der Integrierte Motor Generator von Bosch
 

Antriebseinheit und Generator in einem: der Integrierte Motor
Generator (IMG) von Bosch. Der IMG ist in den Hybrid-Varianten
des Porsche Cayenne und Volkswagen Touareg im Serieneinsatz. Er
ist zwischen Verbrennungsmotor und Getriebe verbaut.
 

The Bosch integrated motor generator
 

Drive unit and generator in one: the Bosch integrated motor
generator (IMG). The IMG is used in the hybrid variants of the
Porsche Cayenne and the Volkswagen Touareg. It is installed
between the combustion engine and the transmission.

Pressebild-Nr.
Press Photo No.

1-GS-16549

zu Presse-Information
See Press Release

PI7048, PI7073

Nachdruck für redaktionelle
Zwecke honorarfrei mit Vermerk
„Foto: Bosch”

Reproduction for press purposes
free of charge with credit
“Picture: Bosch”

Alle Bosch-Pressebilder finden
Sie unter www.bosch-presse.de

You can find all Bosch press
photos at www.bosch-press.com

www.bosch.com
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Numerical Examples
Industrial Case Study: Thermal Analysis of Electrical Motor

FEM analysis of thermal model  
linear parametric systems with
n = 41, 199, m = 4 inputs, and
d = 13 parameters,

measurements taken at q = 4 heat
sensors;

time for 1 transient simulation in
COMSOL R© ∼ 90min;

ROM order n̂ = 300, time for 1
transient simulation ∼ 15sec.

Legend: Temperature curves for six
different values (5, 25, 45, 65, 85,
100[W /m2K ]) of the heat transfer
coefficient on the coil.

[12] P. Benner and A. Bruns. Parametric Model Order Reduction of
Thermal Models Using the Bilinear Interpolatory Rational Krylov
Algorithm. Math. Comp. Model. Dyn. Syst., 2014 (online).
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Numerical Examples
Model Reduction and ROM-based Optimization of SMB Chromatography

Goal: optimization of simulated moving bed (SMB)
chromatography (multi-column separation process).

Challenges:
periodic shifting of inlets and outlets to
realize continuous counter-current movement
between liquid and adsorbent phases,

mixed continuous and discrete behavior,

columns modeled by coupled system of
nonlinear PDEs (dispersion, Langmuir
isotherm),

inherent cyclic steady state (CSS) nature.

Achievements:

Applied trust-region POD and Krylov subspace-based model reduction
techniques.

Reduced computing time by factors 5–50.

[13] S. Li, L. Feng, P. Benner, and A. Seidel-Morgenstern. Using Surrogate Models for Efficient Optimization of Simulated Moving Bed
Chromatography. Comp. & Chem. Engrg., 67:121–132, 2014.

[14] S. Li, Y. Yue, L. Feng, A. Seidel-Morgenstern, and P. Benner. Model Reduction for Linear Simulated Moving Bed Chromatography
Systems Using Krylov-Subspace Methods. AIChE Journal, 2014 (online).
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Numerical Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1],

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Source: http://en.wikipedia.org/wiki/Neuron
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Numerical Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1],

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Parameter g handled as an additional input.

Original state dimension n = 2 · 400, QBDAE dimension N = 3 · 400,
reduced QBDAE dimension r = 26, chosen expansion point σ = 1.
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Thanks to . . .
. . . the Computational Methods in Systems and Control Theory team

15 PostDocs, 17 Ph.D. students, 13 nationalities, 16 kids
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Current and Future Research

Model order reduction for systems with stochastic parameters/driven
by noise processes.

Develop new algorithms based on a combination of model order
reduction techniques with tensor calculus and data compression
techniques for solving problems in nD space and/or with n
parameters (n > 100) with complexities independent of n
(”breaking the curse of dimensionality”).

Compute reduced-order models from data.

A simple to state, unsolved problem: given a linear system with
transfer function G (s), and a reduced-order r , find the best rational
approximation Ĝ (s) of degree r to G (s) w.r.t. to ‖ . ‖∞.

Computer-aided control system design for coupled PDE systems
becomes online feasible.

Combine mathematical algorithm development with efficient use of
new hardware accelerators.
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Combine mathematical algorithm development with efficient use of
new hardware accelerators.
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The LQR Problem
R.E. Kalman. Contributions to the theory of optimal control.
Boletin Sociedad Matematica Mexicana, 5:102–119, 1960

The linear-quadratic regulator (LQR) problem

min
u∈L2[0,∞]

∫ ∞
0

x(t)TWx(t) + u(t)TRu(t) dt ( = V(x0)) (1)

subject to
ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ Rn. (2)

A ∈ Rn×n, B ∈ Rn×m, 0 ≤W = W T ∈ Rn×n, 0 ≤ R = RT ∈ Rm×m.

Solution: optimal control/Riccati feedback [Kalman 1960]

u∗(t) = −R−1BTX∗x(t), (3)

where X∗ = XT
∗ ∈ Rn×n is the unique positive semidefinite solution of the

algebraic Riccati equation (ARE)

0 = Q + ATX + XA− XBR−1BTX =: R(X ). (4)

return
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