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Introduction
Model Reduction for Dynamical Systems

Dynamical Systems

Σ :

{
ẋ(t) = f (t, x(t), u(t)), x(t0) = x0,
y(t) = g(t, x(t), u(t))

with

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.
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Model Reduction for Dynamical Systems

Original System

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
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Model Reduction for Dynamical Systems

Original System

Σ :

{
ẋ(t) = f (t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂ .
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Application Areas

Historically:

structural dynamics (1960ies: modal truncation, Guyan/Craig-Bampton
reduction),

computational fluid dynamics/CFD (1970/80ies: proper orthogonal
decomposition/POD),

control design (1980ies: balanced truncation),

microelectronics/circuit simulation (1990ies: moment matching/Padé
approximation [Freund!]).

Now: many other disciplines in computational sciences and engineering like

design of MEMS/NEMS (micro/nano-electrical-mechanical systems),

computational electromagnetics,

computational neurosciences,

computational (insert your favorite discipline here),

chemical process engineering,

biomedical engineering,

. . .
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Motivating Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Simplorer R© test circuit with 2 transistors.

Conservative thermic sub-system in Simplorer:
voltage  temperature, current  heat flow.

Original model: n = 270.593, m = q = 2 ⇒
Computing time (on Intel Xeon dualcore 3GHz, 1 Thread):

– Main computational cost for set-up data ≈ 22min.
– Computation of reduced models from set-up data: 44–49sec. (r = 20–70).
– Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system, < 1min for reduced system.
– Speed-up factor: 18 including / ≥ 450 excluding reduced model generation!
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Motivating Examples
A Nonlinear Model from Computational Neurosciences: the FitzHugh-Nagumo System

Simple model for neuron (de-)activation [Chaturantabut/Sorensen 2009]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Source: http://en.wikipedia.org/wiki/Neuron
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wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1]

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 50000t3 exp(−15t).

Parameter g handled as an additional input.

Original state dimension n = 2 · 400, QBDAE dimension N = 3 · 400,
reduced QBDAE dimension r = 26, chosen expansion point σ = 1.
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Introduction
Nonlinear Model Reduction

Given a large-scale control-affine nonlinear control system of the form

Σ :

{
ẋ(t) = f (x(t)) + bu(t),

y(t) = cT x(t), x(0) = x0,

with f : Rn → Rn nonlinear and b, c ∈ Rn, x ∈ Rn, u, y ∈ R.

MOR

Σ̂ :

{
˙̂x(t) = f̂ (x̂(t)) + b̂u(t),

ŷ(t) = ĉT x̂(t), x̂(0) = x̂0,

with f̂ : Rn̂ → Rn̂ and b̂, ĉ ∈ Rn̂, x ∈ Rn̂, u ∈ R and

ŷ ≈ y ∈ R, n̂� n.
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Introduction
Common Reduction Techniques

Proper Orthogonal Decomposition (POD)

Take computed or experimental ’snapshots’ of full model:
[x(t1), x(t2), . . . , x(tN)] =: X ,

perform SVD of snapshot matrix: X = VSW T ≈ Vn̂Sn̂W T
n̂ .

Reduction by POD-Galerkin projection: ˙̂x = V T
n̂ f (Vn̂x̂) + V T

n̂ Bu.

Requires evaluation of f
 discrete empirical interpolation [Sorensen/Chaturantabut ’09].

Input dependency due to ’snapshots’ !

Trajectory Piecewise Linear (TPWL)

Linearize f along trajectory,

reduce resulting linear systems,

construct reduced model by weighted sum of linear systems.

Requires simulation of original model and several linear reduction
steps, many heuristics.

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 9/38
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Introduction
Linear System Norms

First consider linear systems, i.e. f (x) = Ax  

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) ' Y (s) = C (sI − A)−1BU(s).

Two common system norms for measuring approximation quality:

H2-norm, ‖Σ‖H2 =
(

1
2π

∫ 2π

0
tr (H∗(−iω)H(iω)) dω

) 1
2

,

H∞-norm, ‖Σ‖H∞ = sup
ω∈R

σmax (H(iω)) ,

where
H(s) = C (sI − A)−1 B

denotes the corresponding transfer function of the linear system.

We focus on the first one  interpolation-based model reduction
approaches.
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Introduction
Error system and H2-Optimality [Meier/Luenberger ’67]

In order to find an H2-optimal reduced system, consider the error system
H(s)− Ĥ(s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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In order to find an H2-optimal reduced system, consider the error system
H(s)− Ĥ(s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

Assuming a coordinate system in which Â is diagonal and taking
derivatives of

‖H( . )− Ĥ( . )‖2
H2

with respect to free parameters in Λ (Â), B̂, Ĉ  first-order necessary
H2-optimality conditions (SISO)

H(−λ̂i ) = Ĥ(−λ̂i ),
H ′(−λ̂i ) = Ĥ ′(−λ̂i ),

where λ̂i are the poles of the reduced system Σ̂.
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H(s)− Ĥ(s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

First-order necessary H2-optimality conditions (MIMO):

H(−λ̂i )B̃i = Ĥ(−λ̂i )B̃i , for i = 1, . . . , n̂,

C̃T
i H(−λ̂i ) = C̃T

i Ĥ(−λ̂i ), for i = 1, . . . , n̂,

C̃T
i H ′(−λ̂i )B̃i = C̃T

i Ĥ ′(−λ̂i )B̃i for i = 1, . . . , n̂,

where Â = RΛ̂R−T is the spectral decomposition of the reduced system
and B̃ = B̂TR−T , C̃ = Ĉ R.
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C̃T
i H ′(−λ̂i )B̃i = C̃T

i Ĥ ′(−λ̂i )B̃i for i = 1, . . . , n̂,

⇔ vec (Ip)T
(

eje
T
i ⊗ C

)(
−Λ̂⊗ In − In̂ ⊗ A

)−1 (
B̃T ⊗ B

)
vec (Im)

= vec (Ip)T
(

eje
T
i ⊗ Ĉ

)(
−Λ̂⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃T ⊗ B̂

)
vec (Im),

for i = 1, . . . , n̂ and j = 1, . . . , p.
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Introduction
Interpolation of the Transfer Function [Grimme ’97]

Construct reduced transfer function by Petrov-Galerkin projection
P = VW T , i.e.

Ĥ(s) = CV
(
sI −W TAV

)−1
W TB,

where V and W are given as

V =
[
(σ1I − A)−1B, . . . , (σr I − A)−1B

]
,

W =
[
(σ1I − AT )−1CT , . . . , (σr I − AT )−1CT

]
.

Then
H(σi ) = Ĥ(σi ) and H ′(σi ) = Ĥ ′(σi ),

for i = 1, . . . , r .
Starting with an initial guess for Λ̂ and setting σi ≡ −λ̂i  iterative
algorithms (IRKA/MIRIAm) that yield H2-optimal models.

[Gugercin et al. ’06/’08], [Bunse-Gerstner et al. ’07],

[Van Dooren et al. ’08]
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H(σi ) = Ĥ(σi ) and H ′(σi ) = Ĥ ′(σi ),
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H2-Model Reduction for Bilinear Systems
Bilinear Control Systems

Now consider ẋ = Ax + g(x , u) with

g(x , u) = Bu +
[
N1, . . . ,Nm

]
(Im ⊗ x) u,

i.e. bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ni ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n.

Approximation of weakly nonlinear systems  Carleman
linearization [Krener!].

A lot of linear concepts can be extended, e.g. moment matching
[Bai!], Gramians, Lyapunov equations, . . .

An equivalent structure arises for some stochastic control systems.
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H2-Model Reduction for Bilinear Systems
Some Basic Facts

Output Characterization (SISO): Volterra series

y(t) =
∞∑
k=1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

K(t1, . . . , tk)u(t−t1−. . .−tk) · · · u(t−tk)dtk · · · dt1,

with kernels K (t1, . . . , tk) = CeAtk N1 · · · eAt2 N1eAt1 B.

Multivariate Laplace-transform:

Hk(s1, . . . , sk) = C (sk I − A)−1N1 · · · (s2I − A)−1N1(s1I − A)−1B.

Bilinear H2-norm:

||Σ||H2
:=

(
tr

( ∞∑
k=1

∫ ∞
−∞

. . .

∫ ∞
−∞

1

(2π)k
Hk (iω1, . . . , iωk )HT

k (iω1, . . . , iωk )

)) 1
2

.

[Zhang/Lam. ’02]
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H2-Model Reduction for Bilinear Systems
H2-Norm Computation

Lemma [B./Breiten ’11]

Let Σ denote a bilinear system. Then, the H2-norm is given as:

||Σ||2H2
= (vec(Ip))T (C ⊗ C)

(
−A⊗ I − I ⊗ A−

m∑
i=1

Ni ⊗ Ni

)−1

(B ⊗ B) vec(Im).

Error System

In order to find an H2-optimal reduced system, define the error system
Σerr := Σ− Σ̂ as follows:

Aerr =

[
A 0

0 Â

]
, Nerr

i =

[
Ni 0

0 N̂i

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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H2-Model Reduction
H2-Optimality Conditions

Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.
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Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ñi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:
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(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ñi ⊗ Ni

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).
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Using Λ, Ñi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ñi ⊗ Ni

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).

Where is the connection to the interpolation of transfer functions?
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)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).

(vec(Iq))T
(

eje
T
` ⊗ C

)
(−Λ⊗ In − In̂ ⊗ A)−1 vec(BB̃T )

= (vec(Iq))T
(

eje
T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â

)−1

vec(B̂B̃T ).
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)
vec(Im)
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)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).

(vec(Iq))T
(
eje

T
` ⊗ C

)
−λ1I − A

. . .

−λn̂I − A


−1

BB̃T
1

.

.

.

BB̃T
n̂



= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)
−λ1I − Â

. . .

−λn̂I − Â


−1

B̂B̃T
1

.

.

.

B̂B̃T
n̂

 .
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Â = RΛR−1, Ñi = R−1N̂iR, B̃ = R−1B̂, C̃ = ĈR.
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T
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)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ñi ⊗ N̂i

)−1 (
B̃ ⊗ B̂

)
vec(Im).

H(−λ`)B̃T
` = Ĥ(−λ`)B̃T

`

 tangential interpolation at mirror images of reduced system poles
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Using Λ, Ñi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1
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 tangential interpolation at mirror images of reduced system poles

Note: [Flagg 2011] shows equivalence to interpolating the Volterra series!
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A First Iterative Approach

Algorithm 1 Bilinear IRKA

Input: A, Ni , B, C , Â, N̂i , B̂, Ĉ
Output: Aopt , Nopt

i , Bopt , C opt

1: while (change in Λ > ε) do
2: RΛR−1 = Â, B̃ = R−1B̂, C̃ = Ĉ R, Ñi = R−1N̂iR

3: vec(V ) =

(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ñi ⊗ Ni

)−1 (
B̃ ⊗ B

)
vec(Im)

4: vec(W ) =

(
−Λ⊗ In − In̂ ⊗ AT −

m∑
i=1

ÑT
i ⊗ NT

i

)−1 (
C̃T ⊗ CT

)
vec(Iq)

5: V = orth(V ), W = orth(W )

6: Â =
(
W TV

)−1
W TAV , N̂i =

(
W TV

)−1
W TNiV ,

B̂ =
(
W TV

)−1
W TB, Ĉ = CV

7: end while
8: Aopt = Â, Nopt

i = N̂i , Bopt = B̂, C opt = Ĉ
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Numerical Examples
A Heat Transfer Model

2-dimensional heat distribution
[B./Saak ’05]

Boundary control by spraying
intensities of a cooling fluid

Ω = (0, 1)× (0, 1),

xt = ∆x in Ω,

n · ∇x = c · u1,2,3(x − 1) on Γ1, Γ2, Γ3,

x = u4 on Γ4.

Spatial discretization k × k-grid

⇒ ẋ ≈ A1x +
3∑

i=1

Nixui + Bu

⇒ A2 = 0.

Output: y =
1

k2

[
1 . . . 1

]
.

Γ1

Γ3

Γ4

Γ2

x10

x20

x30

x01 x02 x03

x14

x24

x34

x41 x42 x43

x11

x21

x31

x12

x22

x32

x13

x23

x33
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Numerical Examples
A Heat Transfer Model

Comparison of relative H2-error for n = 10.000
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Linear IRKA
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Numerical Examples
Fokker-Planck Equation

As a second example, we consider a dragged Brownian particle whose
one-dimensional motion is given by

dXt = −∇V (Xt , t)dt +
√

2σdWt ,

with σ = 2
3 and V (x , u) = W (x , t) + Φ(x , ut) = (x2 − 1)2 − xu − x .

Alternatively, one can consider ([Hartmann et al. ’10]) ,

ρ(x , t)dx = P [Xt ∈ [x , x + dx )]

which is described by the Fokker-Planck equation

∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ), (x , t) ∈ (−2, 2)× (0,T ],

0 = σ∇ρ+ ρ∇B, (x , t) ∈ {−2, 2} × [0,T ],

ρ0 = ρ, (x , t) ∈ (−2, 2)× 0.

Output C discrete characteristic function of the interval [0.95, 1.05].
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Numerical Examples
Fokker-Planck Equation

Comparison of relative H2-error for n = 500
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Nonlinear Model Reduction
Quadratic-Bilinear Differential Algebraic Equations (QBDAEs)

Coming back to the more general case with nonlinear f (x), we consider
the class of quadratic-bilinear differential algebraic equations

Σ :

{
E ẋ(t) = A1x(t) + A2x(t)⊗ x(t) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where E ,A1,N ∈ Rn×n,A2 ∈ Rn×n2

(Hessian tensor),B,CT∈ Rn are
quite helpful.

A large class of smooth nonlinear control-affine systems can be
transformed into the above type of control system.

The transformation is exact, but a slight increase of the state
dimension has to be accepted.

Input-output behavior can be characterized by generalized transfer
functions  enables us to use Krylov-based reduction techniques.
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Nonlinear Model Reduction
Transformation via McCormick Relaxation

Theorem [Gu’09]

Assume that the state equation of a nonlinear system Σ is given by

ẋ = a0x + a1g1(x) + . . .+ akgk(x) + Bu,

where gi (x) : Rn → Rn are compositions of uni-variable rational,
exponential, logarithmic, trigonometric or root functions, respectively.
Then, by iteratively taking derivatives and adding algebraic equations,
respectively, Σ can be transformed into a system of QBDAEs.

Example

ẋ1 = exp(−x2) ·
√

x2
1 + 1, ẋ2 = −x2 + u.

z1 := exp(−x2), z2 :=
√

x2
1 + 1.

ẋ1 = z1 · z2, ẋ2 = −x2 + u, ż1 = −z1 · (−x2 + u),
ż2 = 2·x1·z1·z2

2·z2
= x1 · z1.
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ż2 = 2·x1·z1·z2

2·z2
= x1 · z1.

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 21/38



Introduction H2-Model Reduction for Bilinear Systems Nonlinear Model Reduction Conclusions and Outlook References

Nonlinear Model Reduction
Transformation via McCormick Relaxation

Theorem [Gu’09]

Assume that the state equation of a nonlinear system Σ is given by
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Nonlinear Model Reduction
Variational Analysis and Linear Subsystems

Analysis of nonlinear systems by variational equation approach:

consider input of the form αu(t),
nonlinear system is assumed to be a series of homogeneous nonlinear
subsystems, i.e. response should be of the form

x(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . .

comparison of terms αi , i = 1, 2, . . . leads to series of systems

E ẋ1 = A1x1 + Bu,

E ẋ2 = A1x2 + A2x1 ⊗ x1 + Nx1u,

E ẋ3 = A1x3 + A2 (x1 ⊗ x2 + x2 ⊗ x1) + Nx2u

...

although i-th subsystem is coupled nonlinearly to preceding systems,
linear systems are obtained if terms xj , j < i , are interpreted as
pseudo-inputs.
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E ẋ1 = A1x1 + Bu,
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Nonlinear Model Reduction
Generalized Transfer Functions

In a similar way, a series of generalized symmetric transfer functions can
be obtained via the growing exponential approach:

H1(s1) = C (s1E − A1)−1B︸ ︷︷ ︸
G1(s1)

,

H2(s1, s2) =
1

2!
C ((s1 + s2)E − A1)−1 [N (G1(s1) + G1(s2))

+A2 (G1(s1)⊗ G1(s2) + G1(s2)⊗ G1(s1))] ,

H3(s1, s2, s3) =
1

3!
C ((s1 + s2 + s3)E − A1)−1[

N(G2(s1, s2) + G2(s2, s3) + G2(s1, s3))

+ A2

(
G1(s1)⊗ G2(s2, s3) + G1(s2)⊗ G2(s1, s3)

+ G1(s3)⊗ G2(s1, s3) + G2(s2, s3)⊗ G1(s1)

+ G2(s1, s3)⊗ G1(s2) + G2(s1, s2)⊗ G1(s3)
)]
.
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Nonlinear Model Reduction
Characterization via Multimoments

For simplicity, focus on the first two transfer functions. For H1(s1),
choosing σ and making use of the Neumann lemma leads to

H1(s1) =
∞∑
i=0

C
(
(A1 − σE )−1E

)i
(A1 − σE )−1B (s1 − σ)i︸ ︷︷ ︸
mi

s1,σ

.

Similarly, specifying an expansion point (τ, ξ) yields

H2(s1, s2) =
1

2

∞∑
i=0

C
(

(A1 − (τ + ξ)E)−1E
)i

(A1 − (τ + ξ)E)−1 (s1 + s2 − τ − ξ)i ·[
A2

(
∞∑
j=0

mj
s1,τ ⊗

∞∑
k=0

mk
s2,ξ +

∞∑
k=0

mk
s2,ξ ⊗

∞∑
j=0

mj
s1,τ

)
+ N

(
∞∑
p=0

mp
s1,τ +

∞∑
p=0

mq
s2,ξ

)]
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Nonlinear Model Reduction
Constructing the Projection Matrix

Goal: ∂

∂s
q−1
1

H1(σ) = ∂

∂s
q−1
1

Ĥ1(σ), ∂
∂s l1s

m
2

H2(σ, σ) = ∂
∂s l1s

m
2

Ĥ2(σ, σ), l + m ≤ q − 1.

Construct the following sequence of nested Krylov subspaces

V1 =Kq

(
(A1 − σE )−1E , (A1 − σE )−1b

)
for i = 1 : q

V i
2 = Kq−i+1

(
(A1 − 2σE )−1E , (A1 − 2σE )−1NV1(:, i)

)
,

for j = 1 : min(q − i + 1, i)

V i,j
3 = Kq−i−j+2

(
(A1 − 2σE )−1E , (A1 − 2σE )−1A2V1(:, i)⊗ V1(:, j)

)
,

V1(:, i) denoting the i-th column of V1. Set V = orth [V1,V
i
2 ,V

i,j
3 ] and

construct Σ̂ by the Galerkin-Projection P = VVT :

Â1 = VTA1V ∈ Rn̂×n̂, Â2 = VTA2(V ⊗ V) ∈ Rn̂×n̂2

,

N̂ = VTNV ∈ Rn̂×n̂, b̂ = VTb ∈ Rn̂, ĉT = cTV ∈ Rn̂.
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Nonlinear Model Reduction
Tensors and Matricizations: A Short Excursion [Kolda/Bader ’09, Grasedyck ’10]

A tensor is a vector
(Ai )i∈I ∈ RI

indexed by a product index set

I = I1 × · · · × Id , #Ij = nj .

For a given tensor A, the t-matricization A(t) is defined as

A(t) ∈ RIt×It′ , A
(t)
(iµ)µ∈t, (iµ)µ∈t′ := A(i1,...,id ), t ′ := {1, . . . , d}\t.
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Figure : Slices of a 3rd-order tensor. [Courtesy of Tammy Kolda]
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 Allows to compute matrix products more efficiently.
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Nonlinear Model Reduction
Two-Sided Projection Methods

Similarly to the linear case, one can exploit duality concepts, in order to
construct two-sided projection methods.

Interpreting A(2) now as the 2-matricization of the Hessian 3-tensor
corresponding to A2, one can show that the dual Krylov spaces have to
be constructed as follows

W1 =Kq

(
(A1 − 2σE)−TET , (A1 − 2σE)−T c

)
for i = 1 : q

W i
2 = Kq−i+1

(
(A1 − σE)−TET , (A1 − σE)−TNTW1(:, i)

)
,

for j = 1 : min(q − i + 1, i)

W i,j
3 = Kq−i−j+2

(
(A1 − σE)−TET , (A1 − σE)−TA(2)V1(:, i)⊗W1(:, j)

)
,

Note: Due to the symmetry of the Hessian tensor, the 3-matricization
A(3) coincides with A(2).
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Nonlinear Model Reduction
Multimoment matching

Theorem

Σ = (E ,A1,A2,N, b, c) original QBDAE system.

Reduced system by Petrov-Galerkin projection P = VWT with

V1 = Kq1 (E ,A1, b, σ) , W1 = Kq1

(
ET ,AT

1 , c, 2σ
)

for i = 1 : q2

V2 = Kq2−i+1 (E ,A1,NV1(:, i), 2σ)

W2 = Kq2−i+1

(
ET ,AT

1 ,N
TW1(:, i), σ

)
for j = 1 : min(q2 − i + 1, i)

V3 = Kq2−i−j+2 (E ,A1,A2V1(:, i)⊗ V1(:, j), 2σ)

W3 = Kq2−i−j+2

(
ET ,AT

1 ,A(2)V1(:, i)⊗W1(:, j), σ
)
.

Then, it holds:

∂ iH1

∂s i1
(σ) =

∂ i Ĥ1

∂s i1
(σ),

∂ iH1

∂s i1
(2σ) =

∂ i Ĥ1

∂s i1
(2σ), i = 0, . . . , q1 − 1,

∂ i+j

∂s i1s
j
2

H2(σ, σ) =
∂ i+j

∂s i1s
j
2

Ĥ2(σ, σ), i + j ≤ 2q2 − 1.
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Max Planck Institute Magdeburg P. Benner, MOR for Nonlinear Systems 29/38



Introduction H2-Model Reduction for Bilinear Systems Nonlinear Model Reduction Conclusions and Outlook References

Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Consider initial and boundary conditions

ux(x , y , 0) =

√
2

2
, uy (x , y , 0) =

√
2

2
, for (x , y) ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for (x , y) ∈ Ω\Ω1,

ux = 0, uy = 0, for (x , y) ∈ ∂Ω.
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2
, for (x , y) ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for (x , y) ∈ Ω\Ω1,

ux = 0, uy = 0, for (x , y) ∈ ∂Ω.

Spatial discretization  QBDAE system with nonzero I.C. and
N = 0  reformulate as system with zero I.C. and constant input.
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2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Consider initial and boundary conditions

ux(x , y , 0) =

√
2

2
, uy (x , y , 0) =

√
2

2
, for (x , y) ∈ Ω1 := (0, 0.5],

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for (x , y) ∈ Ω\Ω1,

ux = 0, uy = 0, for (x , y) ∈ ∂Ω.

Spatial discretization  QBDAE system with nonzero I.C. and
N = 0  reformulate as system with zero I.C. and constant input.

Output C chosen to be average x-velocity.
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Numerical Examples
Two-Dimensional Burgers Equation

Comparison of relative time-domain error for n = 1600
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Numerical Examples
Two-Dimensional Burgers Equation

2D-Burgers equation on (0, 1)× (0, 1)︸ ︷︷ ︸
:=Ω

×[0,T ]

ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Now consider initial and boundary conditions

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ∈ Ω,

ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.
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ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.

Spatial discretization  QBDAE system with zero I.C. and 4 inputs
B ∈ Rn×4, N1,N2,N3,N4, ROM with q1 = 5, q2 = 2, σ = 0, n̂ = 52 .
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ut = − (u · ∇) u + ν∆u

with u(x , y , t) ∈ R2 describing the motion of a compressible fluid.

Now consider initial and boundary conditions

ux(x , y , 0) = 0, uy (x , y , 0) = 0, for x , y ∈ Ω,

ux = cos(πt), uy = cos(2πt), for (x , y) ∈ {0, 1} × (0, 1),

ux = sin(πt), uy = sin(2πt), for (x , y) ∈ (0, 1)× {0, 1}.

Spatial discretization  QBDAE system with zero I.C. and 4 inputs
B ∈ Rn×4, N1,N2,N3,N4, ROM with q1 = 5, q2 = 2, σ = 0, n̂ = 52 .

State reconstruction by reduced model x ≈ V x̂ , max. rel. err < 3%.
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Numerical Examples
The Chafee-Infante equation

Consider PDE with a cubic nonlinearity:

vt + v 3 = vxx + v , in (0, 1)× (0,T ),

v(0, ·) = u(t), in (0,T ),

vx(1, ·) = 0, in (0,T ),

v(x , 0) = v0(x), in (0, 1)

original state dimension n = 500, QBDAE dimension N = 2 · 500,
reduced QBDAE dimension r = 9
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Nonlinear Model Reduction by Generalized
Moment-Matching
The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 5 cos (t))
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Nonlinear Model Reduction by Generalized
Moment-Matching
The Chafee-Infante equation

Comparison between moment-matching and POD (u(t) = 50 sin (t))
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Nonlinear Model Reduction by Generalized
Moment-Matching
The FitzHugh-Nagumo System

FitzHugh-Nagumo system modeling a neuron
[Chaturantabut, Sorensen ’09]

εvt(x , t) = ε2vxx(x , t) + f (v(x , t))− w(x , t) + g ,

wt(x , t) = hv(x , t)− γw(x , t) + g ,

with f (v) = v(v − 0.1)(1− v) and initial and boundary conditions

v(x , 0) = 0, w(x , 0) = 0, x ∈ [0, 1],

vx(0, t) = −i0(t), vx(1, t) = 0, t ≥ 0,

where
ε = 0.015, h = 0.5, γ = 2, g = 0.05, i0(t) = 5 · 104t3 exp(−15t)

original state dimension n = 2 · 1000, QBDAE dimension
N = 3 · 1000, reduced QBDAE dimension r = 20
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Numerical Examples
The FitzHugh-Nagumo System

Limit cycle behavior for 1-sided proj. (ROM, n̂ = 20 , σ = 4)
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Numerical Examples
The FitzHugh-Nagumo System

POD via moment-matching (training input)
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Numerical Examples
The FitzHugh-Nagumo System

POD via moment-matching (varying input)
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Conclusions and Outlook

Many nonlinear dynamics can be expressed by a system of
quadratic-bilinear differential algebraic equations.

For this type of systems, a frequency domain analysis leads to
certain generalized transfer functions.

There exist Krylov subspace methods that extend the concept of
moment-matching  using basic tools from tensor theory allows for
better approximations.

In contrast to other methods like TPWL and POD, the reduction
process is independent of the control input.

Optimal choice of interpolation points?

Stability/index-preserving reduction possible?
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