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Linear Matrix Equations/Men with Beards

Sylvester equation

James Joseph Syl\-/ester .
(September 3, 1814 — March 15, 1897)
AX +XB = C.
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Introduction

Linear Matrix Equations/Men with Beards

Sylvester equation

Lyapunov equation

James Joseph Sylvester Alexander Michailowitsch Ljapunow

(September 3, 1814 — March 15, 1897) (June 6, 1857 — November 3, 1918)
AX + XB = C. ) AX+XAT =c, c=c’.
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Generalized Sylvester equation:

AXD + EXB = C.
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Generalized Sylvester equation:
AXD + EXB = C.
Generalized Lyapunov equation:

AXET + EXAT=C, Cc=cC".
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Generalized Sylvester equation:
AXD + EXB = C.
Generalized Lyapunov equation:
AXET + EXAT=C, Cc=cC".

Stein equation:
X —AXB = C.
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Generalized Sylvester equation:
AXD + EXB = C.
Generalized Lyapunov equation:
AXET + EXAT=C, Cc=cC".

Stein equation:
X —AXB = C.

(Generalized) discrete Lyapunov/Stein equation:

EXET —AXAT =C, Cc=C".
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Generalized Sylvester equation:
AXD + EXB = C.
Generalized Lyapunov equation:
AXET + EXAT=C, Cc=cC".

Stein equation:
X —AXB = C.

(Generalized) discrete Lyapunov/Stein equation:
EXET —AXAT =C, Cc=C".

Note:
@ Consider only regular cases, having a unique solution!

@ Solutions of symmetric cases are symmetric, X = X' € R"*"; otherwise,
X € R™* with n # £ in general.
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT + > NXN] =C, C=cCT.
k=1
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:

AX + XAT + > NXN] =C, C=cCT.
k=1

Bilinear Sylvester equation:

AX 4+ XB + Z N XMy = C.
k=1
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Introduction
Generalizations of Sylvester (AX + XB = C) and Lyapunov (AX + XAT = C) Equations

Bilinear Lyapunov equation/Lyapunov-plus-positive equation:
AX +XAT +3 NeXN] =C, C=CT.
k=1

Bilinear Sylvester equation:

AX 4+ XB + Z N XMy = C.
k=1

(Generalized) discrete bilinear Lyapunov/Stein-minus-positive eq.:
EXET — AXAT =Y NXN] =C, C=cCT.
k=1

Note: Again consider only regular cases, symmetric equations have symmetric
solutions.
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Existence of Solutions of Linear Matrix Equations |

Exemplarily, consider the generalized Sylvester equation

AXD + EXB = C. (1)
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Introduction

Existence of Solutions of Linear Matrix Equations |

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (D)

Vectorization (using Kronecker product) ~~ representation as linear
system:

(DT @A+ BT ® E)vec(X) =vec(C) <=  Ax=c.
~~ ~—_——  ——

=:A =:x =:c
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Introduction

Existence of Solutions of Linear Matrix Equations |

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (D)

Vectorization (using Kronecker product) ~~ representation as linear
system:

(DT @A+ BT ® E)vec(X) =vec(C) <=  Ax=c.
~~ ~—_——  ——

=:A =:x =:c

= "(1) has a unique solution <= A is nonsingular’
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Introduction

Existence of Solutions of Linear Matrix Equations |

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (D)

Vectorization (using Kronecker product) ~~ representation as linear
system:

(DT @A+ BT ® E)vec(X) =vec(C) <=  Ax=c.
:_;‘ —— =
= =X =c

= "(1) has a unique solution <= A is nonsingular’

A(A) = {aj + B« | aj € A(A, E), B € A(B, D)}.

Hence, (1) has unique solution = A (A, E)N —A(B, D) = 0.
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Introduction

Existence of Solutions of Linear Matrix Equations |

Exemplarily, consider the generalized Sylvester equation
AXD + EXB = C. (D)

Vectorization (using Kronecker product) ~~ representation as linear
system:

(DT @A+ BT ® E)vec(X) =vec(C) <=  Ax=c.
~~ ~—_——  ——

=:A =:x =:c

= "(1) has a unique solution <= A is nonsingular’

A(A) = {aj + B« | aj € A(A, E), B € A(B, D)}.

Hence, (1) has unique solution = A (A, E)N —A(B, D) = 0.

Example: Lyapunov equation AX + XAT = C has unique solution
<= PueC: +upech(A).
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Introduction

The Classical Lyapunov Theorem

Theorem (LYAPUNOV 1892)

Let A € R™" and consider the Lyapunov operator L : X — AX + XAT.
Then the following are equivalent:

(a) VY >0: 3X > 0: L(X) =Y,
(b) 3Y >0: 3X > 0: L(X)=-Y,

(c) AN(A)c C :={zeC|Rz< 0}, ie, Ais (asymptotically) stable or
Hurwitz.

A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English
translation: Stability of Motion, Academic Press, New-York & London, 1966.

P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Introduction Z)

The Classical Lyapunov Theorem

Theorem (Lvarunov 1892)

Let A € R™" and consider the Lyapunov operator L : X — AX + XAT.

Then the following are equivalent:

(a) VY >0: 3X > 0: L(X)=-Y,

(b) Y >0: IX > 0: L(X)=-Y,

(c) AN(A)c C :={zeC|Rz< 0}, ie, Ais (asymptotically) stable or
Hurwitz. )

The proof (c) = (a) is trivial from the necessary and sufficient condition for
existence and uniqueness, apart from the positive definiteness. The latter is
shown by studying z'' Yz for all eigenvectors z of A.

@ A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English
translation: Stability of Motion, Academic Press, New-York & London, 1966

Ia P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Introduction :

The Classical Lyapunov Theorem

Theorem (Lvarunov 1892)

Let A € R™" and consider the Lyapunov operator L : X — AX + XAT.
Then the following are equivalent:

(a) YY >0: 3X > 0: L£(X) = -,

(b) 3Y > 0: 3X > 0: £(X) =Y,

(c) AN(A)c C :={zeC|Rz< 0}, ie, Ais (asymptotically) stable or
Hurwitz.

Important in applications: the nonnegative case:
L(X)=AX +XAT = —WW', where W eR™™ ny < n.

A Hurwitz = 3 unique solution X = ZZ" for Z € R™"™ with 1 < nx < n.

@ A. M. Lyapunov. The General Problem of the Stability of Motion (in Russian). Doctoral dissertation, Univ. Kharkov 1892. English
translation: Stability of Motion, Academic Press, New-York & London, 1966.

Ia P. Lancaster, M. Tismenetsky. The Theory of Matrices (2nd edition). Academic Press, Orlando, FL, 1985. [Chapter 13]
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Introduction

Existence of Solutions of Linear Matrix Equations Il

For Lyapunov-plus-positive-type equations, the solution theory is more
involved.
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Introduction

Existence of Solutions of Linear Matrix Equations Il

For Lyapunov-plus-positive-type equations, the solution theory is more
involved. Focus on the Lyapunov-plus-positive case:

m
AX+XAT+3Y NXN] =C, C=cCT <o
—_——
. k=1
=£(X) X ,
="P(X)
Note: The operator
P(X) > NeXN
j=1
is nonnegative in the sense that P(X) > 0, whenever X > 0.
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Introduction

Existence of Solutions of Linear Matrix Equations Il

For Lyapunov-plus-positive-type equations, the solution theory is more
involved. Focus on the Lyapunov-plus-positive case:

m
AX+XAT+3Y NXN] =C, C=cCT <o

_. k=1

L(X) . ,

="P(X)
Note: The operator
P(X) > NeXN
j=1

is nonnegative in the sense that P(X) > 0, whenever X > 0.

This nonnegative Lyapunov-plus-positive equation is the one occurring in
applications like model order reduction.
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Introduction

Existence of Solutions of Linear Matrix Equations Il

For Lyapunov-plus-positive-type equations, the solution theory is more
involved. Focus on the Lyapunov-plus-positive case:

m
AX+XAT+3Y NXN] =C, C=cCT <o

_. k=1

L(X) . ,

="P(X)
Note: The operator
P(X) > NeXN
j=1

is nonnegative in the sense that P(X) > 0, whenever X > 0.

This nonnegative Lyapunov-plus-positive equation is the one occurring in
applications like model order reduction.

If Ais Hurwitz and the Ni are small enough, eigenvalue perturbation theory
yields existence and uniqueness of solution.

This is related to the concept of bounded-input bounded-output (BIBO)
stability of dynamical systems.
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Introduction

Existence of Solutions of Linear Matrix Equations Il

Theorem (ScuNEIDER 1965, DaMm 2004)

Let A € R"™ " and consider the Lyapunov operator L : X — AX + XAT
and a nonnegative operator P (i.e., P(X)>0if X >0).
The following are equivalent:

(a) YY > 0: 3X > 0: L(X)+P(X)=-Y,

(b) Y >0: 3X > 0: L(X) +P(X) = -V,

(c) Y >0 with (A, Y) controllable: 3X > 0: L(X) +P(X) = -Y,
(d) A(L+P)cC :={zeC|Rz <0},

(e) A(L) c C~ and p(L7'P) < 1,

where p(T) = max{|A| | A € A(T)} = spectral radius of T.

@ T. Damm. Rational Matrix Equations in Stochastic Control. Number 297 in Lecture Notes in Control and Information Sciences.
Springer-Verlag, 2004

H. Schneider. Positive operators and an inertia theorem. Numerische Mathematik, 7:11-17, 1965
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Applications

Stability Theory | — Classical

From Lyapunov's theorem, immediately obtain characterization of
asymptotic stability of linear dynamical systems

x(t) = Ax(t). (2)

Theorem (Lyapunov)
The following are equivalent:
@ For (2), the zero state is asymptotically stable.

@ The Lyapunov equation AX + XAT = Y has a unique solution
X=X">0forallY=YT <0.

o A is Hurwitz.

@ A. M. Lyapunov. The General Problem of the Stability of Motion (In Russian). Doctoral dissertation, Univ. Kharkov 1892. English
translation: Stability of Motion, Academic Press, New-York & London, 1966.
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Applications

Stability Theory Il — Detecting Hopf Bifurcations

Detecting instability in large-scale dynamical systems caused by Hopf
bifurcations ~~ identifying the rightmost pair of complex eigenvalues of large
sparse generalized eigenvalue problems.

[MEERBERGEN/SPENCE 2010] suggest Lyapunov inverse iteration for the
dynamical system with parameter u € R

Mx: = f(x; p).

Task: Identify critical points (x*, u*) where the steady-state solution (i.e.,
x¢ = 0) changes from being stable to unstable.

Their continuation algorithm involves solution of generalized Lyapunov equation
AX;aMT + MX; AT = —F; = F(X),

where A = D,f(x; ) and (x; z) is current estimate of critical point.

@ K. Meerbergen, A. Spence. Inverse iteration for purely imaginary eigenvalues with application to the detection of Hopf
bifurcations in large-scale problems. SIAM Journal on Matrix Analysis and Applications, 31:1082-1999, 2010

@ H.C. Elman, K. Meerbergen, A. Spence, M. Wu. Lyapunov inverse iteration for identifying Hopf bifurcations in models of
incompressible flow. SIAM Journal on Scientific Computing, 34(3):A1584-A1606, 2012
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Applications

Stability Theory Il — Metastable Equilibria of Stochastic Systems

Metastable states of stochastic processes

Figure: Metastable states (red dashed) and path of of a 1-dimensional
stochastic ODE. This is Fig. 2.2(c) of [KUEHN 2012].

Ia C. Kuehn. Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM Journal on
Scientific Computing, 34(3):A1635-A1658, 2012
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Applications '

Stability Theory Il — Metastable Equilibria of Stochastic Systems

Tracking (w.r.t. a parameter ;1 € R) metastable equilibrium points of
stochastic differential equations (SDEs) via continuation methods:

Let x € R” and consider the SDE
dxe = f(xe; p)dt + o F(xe; n)dWe,

where W; = k-dimensional Brownian motion, o > 0 controls the noise level
and f, F sufficiently smooth.

For metastable equilibrium points x* := x*(u), stochastic paths with high
probability stay in regions characterized by covariance matrix C of x;, linearized
at x*, defined by Lyapunov equation

A(X*; 1) C + CAX" s )" + 0 F(x™ ) F(x"; )" =0.

where A(x; ) 1= (Dxf)(x; ).

@ C. Kuehn. Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM Journal on
Scientific Computing, 34(3):A1635-A1658, 2012
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Applications

Biochemical Engineering

Biochemical reaction networks under certain assumptions can be described by

&(t) = Sv(e(t), q), (2)

where S € R"*™ is the stoichiometric matrix, c(t) € R” denotes the species
concentrations, v(t) € R™ the reaction rates, and g the rate constants.

In order to take molecular fluctuations (or intrinsic noise) due the stochasticity
of the biochemical reactions into account, need the covariance matrix
C € R"*" of the concentrations. With

o the diffusion matrix D € R"*" reflecting the randomness of the reaction
events, and

o the drift matrix A = 2¥(c®) € R™" denoting the Jacobian of (2) along
the macroscopic state trajectory at the equilibrium state c°

C is determined by the Lyapunov equation

AC+ CAT + D =0.

@ P. Kiigler, W. Yang. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance
data at two conditions. Journal of Mathematical Biology, 68:1757-1783, 2013
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Applications
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Applications

Fractional Differential Equations

Fractional partial differential equations have received recent interest in
various fields, e.g.,

@ viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),

@ image processing,

@ electro-analytical chemistry,

@ biomedical engineering.

@ T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg
Preprints MPIMD /14-02, January 2014,
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Applications '

Fractional Differential Equations

Fractional partial differential equations have received recent interest in
various fields, e.g.,

@ viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
@ image processing,
@ electro-analytical chemistry,

@ biomedical engineering.

Definition (Caputo derivative)

Given f € C"(a, b), a € [n — 1, n), Caputo derivative of real order « is defined

by: . _—
CDIf(t) = a) /

t— s)a n+1

Ia T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg
Preprints MPIMD /14-02, January 2014.
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Applications '

Fractional Differential Equations

Fractional partial differential equations have received recent interest in
various fields, e.g.,

@ viscoelasticity (e.g., Kelvin-Voigt fractional derivative model),
@ image processing,
@ electro-analytical chemistry,

@ biomedical engineering.

Definition (Riemann-Liouville derivative)

Given integrable f(t) with t € [a, b], B8 € [n — 1, n), left sided
Riemann-Liouville derivative of real order /3 is defined by:

RL — 1 a\" [ f(s)
BDPF(t) = Tn=5) (a) j mds.

@ T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg
Preprints MPIMD /14-02, January 2014,
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Applications

Fractional Differential Equations

Consider fractional " heat equation”
§Dfu(x,t) — FEDPu(x, t) = f(x, t).

For discretization use Griinwald-Letnikov formula (5 € (1,2))

M
RL 8
2 Dlu(x,t) = I|m iy Zgg wu(x — (k=1)h,t)

k=0
and as an approximation get
i+1
SDlu = B Zga kU
he =

@ T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg
Preprints MPIMD/14-02, January 2014
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Applications
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Applications

Fractional Differential Equations

Consider fractional " heat equation”

§D2 u(x,t) — fLDXBu(X, t) = f(x,t).

For discretization use Griinwald-Letnikov formula (5 € (1,2))

M

1
RL 8 _
2 Dlu(x,t) = Mlinoo e E gsku(x — (k—1)h, t)

k

=0

and as an approximation get in (Toeplitz) matrix form

[ &8.1 88,0 0
8,2 88,1 8,0 s
£33 £3,2 £3,1  €B,0 1
u.
21
u3
h—B &3,2 88,1
» .
ego 0 !
ny—1
untl
: : 83,2 88,1 €80 x
L &8,nx  &B,nx—1 g3,2 83,1 A
T
B

Max Planck Institute Magdeburg
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Applications

Fractional Differential Equations

For fractional heat equation equation
gD?U(Xa t) - fLDEU(Xv t) = f(X’ t)
get
(Trer)-—meLy)u=f

where Tt and Li* are Toeplitz matrices. With u = vec(U) and dropping
all superscripts this corresponds to the Sylvester equation

UT] - LsU=F.

@ T. Breiten, V. Simoncini, M. Stoll. Fast iterative solvers for fractional differential equations. Max Planck Institute Magdeburg
Preprints MPIMD /14-02, January 2014,
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Some Classical Applications
Algebraic Riccati Equations (ARE)

Solving AREs by Newtons's Method

Feedback control design often involves solution of

ATX4+XA—XGX+H=0, G=G',H=H".
~~ In each Newton step, solve Lyapunov equation

(A~ GX))" Xj1 + X11(A — GX)) = —X;GX; — H.

4
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Applications
o

Some Classical Applications
Algebraic Riccati Equations (ARE)

Solving AREs by Newtons's Method

Feedback control design often involves solution of

ATX4+XA—XGX+H=0, G=G',H=H".
~~ In each Newton step, solve Lyapunov equation
(A~ GX))" Xj1 + X11(A — GX)) = —X;GX; — H.

Decoupling of dynamical systems, e.g., in slow/fast modes, requires
solution of nonsymmetric ARE

AX + XF — XGX + H = 0.
~~ In each Newton step, solve Sylvester equation

(A= XiG) X1 + Xja(F — GX;) = —X;GX; — H.

4

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations 13/52




Applications
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Some Classical Applications
Model Reduction

Model Reduction via Balanced Truncation

For linear dynamical system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(t) e R”
find reduced-order system
X(t) = Arxe (t) + Bru(t),  ye(t) = Cxe(t), x(t)eR", r<n

such that ||y (t) — y(¢)| < 9.

The popular method balanced truncation requires the solution of the dual
Lyapunov equations

AX + XAT + BBT =0, ATY + YA+ CTC=0.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations 13/52



Sylvester Equations

Overview
This part: joint work with Patrick Kiirschner and Jens Saak (MPI Magdeburg)

@ Introduction

© Applications

© Solving Large-Scale Sylvester and Lyapunov Equations
@ Some Basics
o LR-ADI Derivation
@ Low-Rank Structure of the Residual
o Realification of LR-ADI
o Self-generating Shifts
o The New LR-ADI Applied to Lyapunov Equations

@ Solving Large-Scale Lyapunov-plus-Positive Equations

© References
(© P. Benner, Large-Scale Matrix Equations 14/52



Sylvester Equations
[ 1o}

Solving Large-Scale Sylvester and Lyapunov Equations
The Low-Rank Structure

Sylvester Equations

Find X € R"™™ solving

AX—-XB = FGT,

where A € R™", B e R™™ F ¢ R"™’, G € R™*".

singular values of 1600 x 900 example
If n,m large, but r < n,m
~~» X has a small numerical rank. 100 —(X) i
[PENZL 1999, GRASEDYCK 2004,
ANTOULAS/SORENSEN/ZHOU 2002 —10 |- .
/ / | 10
rank(X,7) = f < min(n, m) ur- —

| |
300 600 900
~» Compute low-rank solution factors Z € R"™f, Y € R™*f,
D € Rf*f, such that X =~ ZDYT with f < min(n, m).

(© P. Benner, Large-Scale Matrix Equations 15/52



Sylvester Equations
[ 1o}

Solving Large-Scale Sylvester and Lyapunov Equations
The Low-Rank Structure

Lyapunov Equations

Find X € R"™" solving

AX+XAT = —FFT,

where A € R"*" F ¢ R"™",

If n Iarge, but r < n singular values of 1600 x 900 example
~~ X has a small numerical rank. 100 #(X) i
[PENZL 1999, GRASEDYCK 2004,
ANTOULAS/SORENSEN/ZHOU 2002] 10-10 |- .
~Uu
rank(X,7)=f < n ur- —

| |
300 600 900

~ Compute low-rank solution factors Z € R"*f,
D € RF*f, such that X ~ ZD7" with f < n.

Max Planck Institute Magdeburg
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Sylvester Equations
oe

Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation AX — XB = FG is equivalent to linear system of
equations
(In®A— BT ®1,) vec(x) = vec(FG).
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Sylvester Equations
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Sylvester equation AX — XB = FGT is equivalent to linear system of
equations
(In®A— BT ®1,) vec(x) = vec(FG).
This cannot be used for numerical solutions unless nm < 100 (or so), as
@ it requires O(n*m?) of storage;
o direct solver needs O(n*m?®) flops;
@ low (tensor-)rank of right-hand side is ignored;

@ in Lyapunov case, symmetry and possible definiteness are not respected.
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Solving Large-Scale Sylvester and Lyapunov Equations

Some Basics

Sylvester equation AX — XB = FGT is equivalent to linear system of
equations
(In®A— BT ®1,) vec(x) = vec(FG).
This cannot be used for numerical solutions unless nm < 100 (or so), as
@ it requires O(n*m?) of storage;
o direct solver needs O(n*m?) flops;
@ low (tensor-)rank of right-hand side is ignored;
@ in Lyapunov case, symmetry and possible definiteness are not respected.
Possible solvers:
@ Standard Krylov subspace solvers in operator from [HocHBRUCK, STARKE,
REICHEL, Bao, ...].
@ Block-Tensor-Krylov subspace methods with truncation [KressNer/TOBLER,
BOLLHOFER/EPPLER, B./BREITEN, ...].
@ Galerkin-type methods based on (extended, rational) Krylov subspace
methods [JAIMOUKHA, KASENALLY, JBILOU, SIMONCINI, DRUSKIN, KNIZHERMANN,. .. ]
@ Doubling-type methods [SmiTh, CHU ET AL., B./SADKANE/EL KHOURY, ...].
@ ADI methods [WacHSPRESS, REICHEL ET AL., L1, PENZL, B., SAAK, KURSCHNER, . ..].
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester and Stein equations

Let a #8 witha ¢ A(B), 5 ¢ A(A), then

AX - XB=FGT & X=AXB 4+ —a)FgG"
N—_——————

Sylvester equation Stein equation

with the Cayley like transformations

(B—a ln) Y (B =28 In),
=(B-a I, "G.

A=A-B 1) A-al,), B:
F:=(A-8 I,)71F, G:

~ fix point iteration
H
Xi=A X_1B +(ﬁ -« )f"g
for k> 1, Xq € R™™,
(© P. Benner, Large-Scale Matrix Equations 17/52
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester and Stein equations

Let ay 7é Bk with ag §é /\(B), Bk §é /\(A), then
AX —XB =FGT & X =AXBk+ (B — o) FuGi"”
N—_——————

Sylvester equation Stein equation

with the Cayley like transformations

A=(A=Bd) Y (A=al,), B:=(B—axlm) (B - Biln),
F = (A—Bul)7LF, G:=(B—aln)~"G.

~> alternating directions implicit (ADI) iteration
X = AX— 1B + (Bk — aw) FuG "k
for k> 1, Xq € R™™, [WACHSPRESS 1988]
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [WACHSPRESS 1988]

Xk = AxXi—1Bk + (Bx — aw) Fk Gy,
Ak = (A= Bily) YA = akly), Bi:= (B — axlm) (B — Bilm),
Fi:=(A—=Bl) 'F €R™", Gy := (B —aulm)™"G e C™*".

Now set Xo = 0 and find factorization Xy = Z, D, Y/

X1 = A1 XoB1 + (B — a1) F1 Gy

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations 18/52



Sylvester Equations
O@000

Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [WACHSPRESS 1988]

Xk = AxXi—1Bk + (Bx — aw) Fk Gy,
Ak = (A= Bily) YA = akly), Bi:= (B — axlm) (B — Bilm),
Fi:=(A—=Bl) 'F €R™", Gy := (B —aulm)™"G e C™*".

Now set Xo = 0 and find factorization Xy = Z, D, Y/
Xi=(B1—a)(A=Bil) TFGT(B — anly) 7t
= V=2 =(A-Bul,) 'F €R™,
D= (61 — Oq)/r S Rrxr,
Wy:=Y = (B — Oéllm)_HG ccmr,
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Sylvester ADI iteration [WACHSPRESS 1988]

Xk = AxXi—1Bk + (Bx — aw) Fk Gy,
Ak = (A= Bily) YA = akly), Bi:= (B — axlm) (B — Bilm),
Fi:=(A—=Bl) 'F €R™", Gy := (B —aulm)™"G e C™*".

Now set Xo = 0 and find factorization Xy = Z, D, Y/
Xo = Ao XiBo + (Bo — ) FaG = ... =

Vo= Vi+ (B — a1)(A+ Bal) ' V4 € R,
Wo = Wi + (az — B1)(B + axl) "Wy e R™,

Z2 = [Zla V2]7
D, = diag (Ds, (82 — a2)l,),
Y2 = [\/17 W2].

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations 18/52
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Solvmg Large-Scale Sylvester and Lyapunov Equations
LR-ADI Algorithm [B. 2005, L1/ TRUHAR 2008, B./L1/TRUHAR 20 9]

Algorithm 1: Low-rank Sylvester ADI / factored ADI (fADI)

Input : Matrices defining AX — XB = FGT and shift parameters
{or, . o b {BLs - Bi -

Output: Z, D, Y such that ZDY" ~ X.

1 = V1:(A—Bll )_

Y1:W1:(B—(,Y1 ) HG

Dl = (“31 — (l’])/,

for k =2,..., knax do

Vi = Vi1 + (Bk — ax—1)(A = Bily) 7 Vi1

Wi = Wi—1 + (ak — Br—1)(B — axly) " HW;_1.

Update solution factors

N o O W =

Zi = [Zk—1, Vi), Yk = [Yi—1, Wi], Di = diag (Di—1, (Brk—ou)ly).

Max Planck Institute Magdeburg P. Benner, Large-Scale Matrix Equations 19/52
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Solving Large-Scale Sylvester and Lyapunov Equations
ADI Shifts

Optimal Shifts

Solution of rational optimization problem

k
min max H
@ ECXEN(A) -

(A =)= 5)
(A =81 — )

)

BiEC pen(B) !~

for which no analytic solution is known in general.

Some shift generation approaches:

o generalized Bagby points, [LEVENBERG /REICHEL 1993]
@ adaption of Penzl's cheap heuristic approach available

[PENZL 1999, L1/ TRUHAR 2008]
~ approximate A(A), A(B) by small number of Ritz values w.r.t. A,
A-1 B, B~1 via Arnoldi,

@ just taking these Ritz values alone also works well quite often.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 20/52
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Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Disadvantages of Low-Rank ADI as of 2012:

@ No efficient stopping criteria:
o Difference in iterates ~» norm of added columns/step: not reliable,

stops often too late.
o Residual is a full dense matrix, can not be calculated as such.

@ Requires complex arithmetic for real coefficients when complex shifts
are used.

@ Expensive (only semi-automatic) set-up phase to precompute ADI
shifts.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 21/52
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Introduction

Solving Large-Scale Sylvester and Lyapunov Equations
LR-ADI Derivation

Disadvantages of Low-Rank ADI as of 2012:
@ No efficient stopping criteria:
o Difference in iterates ~» norm of added columns/step: not reliable,

stops often too late.
o Residual is a full dense matrix, can not be calculated as such.

@ Requires complex arithmetic for real coefficients when complex shifts
are used.

@ Expensive (only semi-automatic) set-up phase to precompute ADI
shifts.

Will show: none of these disadvantages exists as of today
— speed-ups old vs. new LR-ADI can be up to 20!
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Solving Large-Scale Sylvester and Lyapunov Equations

Low-Rank Structure of the Residual

Low-rank Structure of Sy in LR-ADI [B./K{URSCHNER 2013]

Sk = A(ZDY) = (ZD V) B - FGT = —QuUf! e ™,

large, dense n X m matrix

Qx = Qk—1 + (Bk — ak)Vk € C™,
Uk = Uk—1 — (Bk — ax )W € C™*"

= rank(Sk) <r.
Moreover, with Qy = F, Uy = G it holds for the LR-ADI iterations

Vi = (A — akly) P Qk_1,
Wi = (B = Bln) "U,_1, Vk>1.

~~ Holds also similarly in LR-ADI for Lyapunov equations.
[B./KURSCHNER/SAAK 2013]

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 22/52



Sylvester Equations

Solving Large-Scale Sylvester and Lyapunov Equations
~+ Low-rank Sylvester ADI reloaded [B./KURSCHNER 2013]

Algorithm 2: Reformulated Factored ADI iteration (fADI 2.0)

Input : Matrices defining AX — XB = FGT and shift parameters

{ag, ..., ok} {B1,--., Bk, tolerance 7.
Output: Z, Y, D such that ZDY" ~ X.

IQ():F, UOZG,/(:]..
2 while ||Qk,1U,‘il|| > 7||[FGT| do
3 Yk = Pk — Q.
4 Vi= (A= Bil) 1 Qu—1, Wi = (B —akln) HU,1,
5 Qx = Qu—1 + v« Vi, Uk = Ux—1 — i Wk.
6 Update solution factors
= [Zk—1, Vi), Yi = [Yi—1, Wi], Di = diag (Dyx—1,vilr)-
7| k++
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Solving Large-Scale Sylvester and Lyapunov Equations

Computing the Residual Norm

Low-rank factors Qx, Uy of the residual Sk now integral part of the
iteration.
Allows a cheap computation of ||Sk/||2 via, e.g.,

ISkl = QUK ll2 = Uk R |2, Qu = HiRi, Hi' Hic = I

~ requires thin QR factorization of an n x r matrix and || - ||2
computation of an r X r matrix.

Much cheaper than the traditional approach: apply Lanczos to S,’("Sk to

get [|Skll2 = 1/ Amax(SFSk)
~ requires several matrix vector products with A, B (and AT, BT) and
additional scalar products.

Note: In Lyapunov case, residual evaluation is almost "free” as no QR
factorization is required.

Max Planck Institute Magdebur; P. Benner, Large-Scale Matrix Equations 24/52
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Solving Large-Scale Sylvester and Lyapunov Equations

Low-Rank Structure of the Residual

Example I: 5-point discretizations of the operator ~[JBILOU 2006]
L(x) := Ax — v.Vx — f(&1,&)x
on Q = (0,1)? for x = x(&1, &), homogeneous Dirichlet BC.
A: 150 grid points, v = [e$17%, 1000&,], f(&1,&) = &,

B: 120 grid points, v = [sin(& + 2&2), 20e47%], (&1, &) = 16,
= n = 22500, m = 14400, F, G random with r = 4 columns.

Shifts: 10 Ritz values w.r.t. A,A~1, B, B! yield
20 a- shifts, 20 - shifts

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 25/52
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Solving Large-Scale Sylvester and Lyapunov Equations

Low-Rank Structure of the Residual

Example I: 5-point discretizations of the operator ~[JBILOU 2006]
L(x) := Ax — v.Vx — f(&1,&)x
on Q = (0,1)? for x = x(&1, &), homogeneous Dirichlet BC.

[- w- fADI (332.02 sec.) =+ fADI 2.0 (61.1 sec.) J

T T 8 T T T
10t | — b7.49 sec. 280.5%
. . ) T ’
SN Sl oy
_ 103 4 8 A
— i A
“ . E ¥’
_7 \"\ “ l"/"
1070 N g2 . ]
. S 4+ 0.32 sec. =0.005%
________________ h 2N e ‘
11 ! ! \ \ 0 T e e
10 20 40 60 80 20 40 60 80
iteration number k iteration number k
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Solving Large-Scale Sylvester and Lyapunov Equations
Realification of LR-ADI

We have real matrices A, B, F, G defining the Sylvester equation.
If A(A), A(B) C C ~~ some g, Bk might be complex
~ complex operations in LR-ADI ~ Z, D, Y complex.

To generate real solution factors we need that {ax}, {8k} form

Proper and suitably ordered sets of shifts

o If ax € C then a1 =_Oé_k
and either SBx, Bk+1 = Bk € C or By, Brk+1 € R.

o If Bx € C then Biy1 = Bi
and either oy, axr1 = ax € C or ay, akr1 € R.

No restriction, since ADI is independent of the order of shifts.
Can be achieved by simple permutation of the sets of shifts.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 26/52
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Solving Large-Scale Sylvester and Lyapunov Equations
Realification of LR-ADI

Relation of Iterates [B./KURSCHNER 2013]

If g, k1 = @k € C and By, Byt = Bi € C then

Vk+1 = Vk 4 S Im Im (Vk) Wk+1 = Wk“r M Im (Wk) .
51()

Im (o)

o Linear systems with A — @x/,, B — Bkl not required,

o low-rank factors always augmented by real data:

Zis1 = [Zi—1, [Re (Vi) . Im (V)] € R,
Yitr = [Yeo1, [Re (Wi), Im (Wj)] € R™> ],
Dk+1 = dlag (Dk—la [* *] S Rzrxzr) )
o similar relations for residual factors Qi1 € R"*", Uiy1 € R™*" and
for the other shift sequences.

(Generalization of Lyapunov case as in [B./KURSCHNER/SAAK 2012/13].)
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Solving Large-Scale Sylvester and Lyapunov Equations
Realification of LR-ADI

Example |, cont.:

Shifts: 10 Ritz values w.r.t. A,A~% B, B~! yield
20 o- shifts (4 real, 8 complex),
20 - shifts (12 real, 4 complex).

+‘ fADI ‘2.0 (61.2‘1 sec.) |
10! | |- m- fADIg 2.0 (36.9 sec.)
| 100 .
e -3 \ |
F 00w
= b S 200 |
10_7 B -\"l\ |
) |
LM 300
10— ! ! ! ! ! ! !
20 40 60 80 100 200 300
iteration number k spy(Dx) of fADIg.
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Solving Large-Scale Sylvester and Lyapunov Equations
Self-generating Shifts

Problems with heuristic shifts:
@ low-rank structure of solution not embraced,

@ no known rules for the numbers

o kmax of @ / 3 shifts,
o Ritz values (i.e., Arnoldi steps)

k3, k2, kB kB wrt. A ATY B, BT,

o Arnoldi process brings additional costs.

Max Planck Institute Magdeburg P. Benner, Large-Scale Matrix Equations 29/52
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Solving Large-Scale Sylvester and
Self-generating Shifts

Lyapunov Equations

Problems with heuristic shifts:

@ low-rank structure of solution not embraced,
@ no known rules for the numbers

o kmax of @ / B shifts,
o Ritz values (i.e., Arnoldi steps)

K, k% kT, kB wrt. A AN B, BT

@ Arnoldi process brings additional costs.

&Observation:

Even small changes in these numbers can lead to significantly dif-
ferent convergence results.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations
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Solving Large-Scale Sylvester and Lyapunov Equations
Self-generating Shifts

A cheap but powerful way out [Hunp 2012, B./KURSCHNER/SAAK 2013]

@ Choose initial shifts, e.g,
@ = orth(F), U = orth(G),
{a} = NQTAQ), {8} =NUTBD).
Q If these are depleted during ADI compute new shifts via
{onew} = AN(QTAQ),  {Brew} =A(UTBU),

where
Variant 1: @ = orth(Re (V),Im (V)),
D orth(Re (W) Im (W)) (iterates),

Variant 2: @ = orth(Q), U = orth(U) (residual factors).

~ Works surprisingly well although no setup parameters are needed.
~~> Theoretical foundation is current research.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 30/52



Sylvester Equations
{e]e] J

Solving Large-Scale Sylvester and Lyapunov Equations
Self-generating Shifts

Example |, cont.:

; \ \ \
103 |- i - M- Ritz values (36.9 sec.) ||
i —#— Variant 1 (20.56 sec.)
-+ Variant 2 (17.24 sec.)
10—2 n
~
«“
0-7F e AN e i |
h -‘s~
tol ——————————————————— - —
1012 ! ! ! ! ! ! ! !

10 20 30 40 50 60 70 80
iteration number k
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Projection-Based Lyapunov Solvers. ..
... for Lyapunov equation 0 = AX + XA + BBT

Projection-based methods for Lyapunov equations with A+ AT < 0:
@ Compute orthonormal basis range (Z), Z € R"*", for subspace Z C R",
dimZ =r.
Q SetA:=7Z"AZ, B:=Z7"B.
© Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Q Use X =~ ZXZ".
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PrOJectlon Based Lyapunov Solvers. ..
.. for Lyapunov equation 0 = AX + XAT 4+ BBT

Projection-based methods for Lyapunov equations with A+ AT < 0:
@ Compute orthonormal basis range (Z), Z € R"*", for subspace Z C R",
dimZ =r.
Q SetA:=7Z"AZ, B:=Z7"B.
© Solve small-size Lyapunov equation AX + XAT + BBT = 0.
Q Use X =~ ZXZ".

Examples:
o Krylov subspace methods, i.e., for m = 1:
Z=K(A,B,r)=span{B,AB,A’B, ... A" !B}

[SaAaD 1990, JAIMOUKHA/KASENALLY 1994, JBILOU 2002—-2008].
o Extended Krylov subspace method (EKSM) [Smoncint 2007],

Z=K(A B,r)UK(A™}, B, r).

o Rational Krylov subspace methods (RKSM) [Druskin/Sioncint 2011].
(© P. Benner, Large-Scale Matrix Equations 32/52
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Solving Large-Scale Sylvester and Lyapunov Equations
The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

@ Both methods require a system solve and several matvecs per iteration.
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Solving Large-Scale Sylvester and Lyapunov Equations
The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

@ Both methods require a system solve and several matvecs per iteration.

@ EKSM requires only one (or two in the presence of a mass matrix)
factorizations in total, LR-ADI needs a new factorization for each new

shift.
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Solving Large-Scale Sylvester and Lyapunov Equations
The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

@ Both methods require a system solve and several matvecs per iteration.

@ EKSM requires only one (or two in the presence of a mass matrix)
factorizations in total, LR-ADI needs a new factorization for each new
shift.

@ EKSM requires deflation strategy for MIMO systems — MIMO case
requires no extra treatment in LR-ADI.
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Solving Large-Scale Sylvester and Lyapunov Equations
The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

@ Both methods require a system solve and several matvecs per iteration.

@ EKSM requires only one (or two in the presence of a mass matrix)
factorizations in total, LR-ADI needs a new factorization for each new
shift.

@ EKSM requires deflation strategy for MIMO systems — MIMO case
requires no extra treatment in LR-ADI.

@ Both methods have low-rank expressions for the residual, enabling
residual-based stopping criteria.
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Solving Large-Scale Sylvester and Lyapunov Equations
The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

@ Both methods require a system solve and several matvecs per iteration.

@ EKSM requires only one (or two in the presence of a mass matrix)
factorizations in total, LR-ADI needs a new factorization for each new
shift.

@ EKSM requires deflation strategy for MIMO systems — MIMO case
requires no extra treatment in LR-ADI.

@ Both methods have low-rank expressions for the residual, enabling
residual-based stopping criteria.

@ Both methods can be run fully automatic (LR ADI requires self-generating
shifts for this).
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Solving Large-Scale Sylvester and Lyapunov Equations

The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

Both methods require a system solve and several matvecs per iteration.

EKSM requires only one (or two in the presence of a mass matrix)
factorizations in total, LR-ADI needs a new factorization for each new
shift.

EKSM requires deflation strategy for MIMO systems — MIMO case
requires no extra treatment in LR-ADI.

Both methods have low-rank expressions for the residual, enabling
residual-based stopping criteria.

Both methods can be run fully automatic (LR ADI requires self-generating
shifts for this).

EKSM requires dissipativity of A, i.e., A+ AT <0, to guarantee
convergence, ADI only needs A (A) C C™.
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Solving Large-Scale Sylvester and Lyapunov Equations
The New LR-ADI Applied to Lyapunov Equations

Comparison of the new LR-ADI and EKSM

Both methods require a system solve and several matvecs per iteration.

EKSM requires only one (or two in the presence of a mass matrix)
factorizations in total, LR-ADI needs a new factorization for each new
shift.

EKSM requires deflation strategy for MIMO systems — MIMO case
requires no extra treatment in LR-ADI.

Both methods have low-rank expressions for the residual, enabling
residual-based stopping criteria.

Both methods can be run fully automatic (LR ADI requires self-generating
shifts for this).

EKSM requires dissipativity of A, i.e., A+ AT <0, to guarantee
convergence, ADI only needs A (A) C C™.

If it converges, EKSM is usually faster for SISO systems with A= AT < 0.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations
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The New LR-ADI Applied to Lyapunov Equations

Example II: an ocean circulation problem [VAN GLJZEN ET AL. 1998]

o FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth) ~~ stiffness matrix —A with
n = 42 249, choose artificial constant term B = rand(n,5).
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The New LR-ADI Applied to Lyapunov Equations

Example II: an ocean circulation problem [VAN GLJZEN ET AL. 1998]

o FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth) ~~ stiffness matrix —A with
n = 42 249, choose artificial constant term B = rand(n,5).

@ Convergence history:

LR-ADI with adaptive shifts vs. EKSM

100 K
--e-LR-ADI
—=— EKSM

1075

IRI/IBT B

TOL - e
1071

1 1 1 1
0 100 200 300 400 500
coldim(2)
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The New LR-ADI Applied to Lyapunov Equations .

Example II: an ocean circulation problem [VAN GLJZEN ET AL. 1998]

o FEM discretization of a simple 3D ocean circulation model
(barotropic, constant depth) ~~ stiffness matrix —A with
n = 42 249, choose artificial constant term B = rand(n,5).

@ Convergence history:

LR-ADI with adaptive shifts vs. EKSM

10° [ z

_ = -LR-ADI
- —=— EKSM
2 105|
=
& TOLp----mmmmm A B

10—]_0 | | | |

0 100 200 300 400 500

coldim(2)
o CPU times: LR-ADI ~ 110 sec, EKSM =~ 135 sec.
(© P. Benner, Large-Scale Matrix Equations 34/52



Sylvester Equations
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The New LR-ADI Applied to Lyapunov Equations

Example Ill: the triple-chain-ocillator [TRUHAR/VESELIC 2009]

o Standard vibrational system

mO k1 ml k] ml kl Vl

/]
/]

S/

~~ second-order system with n = 21,001,
linearization ~~ n = 42,002,
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Sylvester Equations
0O00e0

The New LR-ADI Applied to Lyapunov Equations

Example Ill: the triple-chain-ocillator [TRUHAR/VESELIC 2009]

o Standard vibrational system

mO k1 ml k] ml kl Vl

/]
/]

S/

~~ second-order system with n = 21,001,
linearization ~~ n = 42,002,
@ Again, artificial constant term: B = rand(n,5).
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The New LR-ADI Applied to Lyapunov Equations

Example Ill: the triple-chain-ocillator [TRUHAR/VESELIC 2009]

o Standard vibrational system ~ second-order system with
n=21,001,
linearization ~~ n = 42,002,

@ Again, artificial constant term: B = rand(n,5).
o Convergence history:

LR-ADI with adaptive shifts vs. EKSM

104 T T T T T T
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o [T e -+ LR-ADI
D g4 | e —=—EKSM |/
~ e__
= 0--0-00-0-0-
x *eo
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Sylvester Equations
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Solving Large-Scale Sylvester and Lyapunov Equations
Summary & Outlook

@ Numerical enhancements of low-rank ADI for large
Sylvester/Lyapunov equations:

@ low-rank residuals, reformulated implementation,
@ compute real low-rank factors in the presence of complex shifts,
© self-generating shift strategies (quantification in progress).

Recall the example:
332.02 sec. down to 17.24 sec. ~- acceleration by factor almost 20.

o Generalized version enables derivation of low-rank solvers for various
generalized Sylvester equations.

@ Ongoing work:
o Apply LR-ADI in Newton methods for algebraic Riccati equations
N(X)=AX+XB+ FG" — XST'X =0,
D(X) = AXAT — EXET +SST + ATXF(I, + FTXF)'FTXA=0.
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Lyapunov-plus-Positive Eqns.

Overview
This part: joint work with Tobias Breiten (KFU Graz, Austria)

o Introduction

9 Applications
e Solving Large-Scale Sylvester and Lyapunov Equations

e Solving Large-Scale Lyapunov-plus-Positive Equations
@ Application: Balanced Truncation for Bilinear Systems
@ Existence of Low-Rank Approximations
@ Generalized ADI Iteration
@ Bilinear EKSM
@ Tensorized Krylov Subspace Methods
@ Comparison of Methods

e References
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Lyapunov-plus-Positive Eqns.
®0

Solving Large-Scale Lyapunov-plus-Positive Equations

Application: Balanced Truncation for Bilinear Systems

Bilinear control systems:

x(t) = Ax(t) + Z N;x(t)ui(t) + Bu(t),

y(t) = Cx(t), x(0) = xo,
where A, N; € R"" B ¢ R"™m  C ¢ RI*",

Properties:

@ Approximation of (weakly) nonlinear systems by Carleman linearization
yields bilinear systems.

@ Appear naturally in boundary control problems, control via coefficients of
PDEs, Fokker-Planck equations, ...

@ Due to the close relation to linear systems, a lot of successful concepts can
be extended, e.g. transfer functions, Gramians, Lyapunov equations, ...

@ Linear stochastic control systems possess an equivalent structure and can
be treated alike [B./Damm '11].
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Introduction \pplication: S e ation: Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Application: Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of
bilinear systems, where we need the solutions of the
Lyapunov-plus-positive equations:

AP + PAT + Z N;PA] +BBT =0,
i=1

ATQ+ QAT+ N/ QA +CTC=0.

i=1

@ Due to its approximation quality, balanced truncation is method of
choice for model reduction of medium-size biliner systems.

@ For stationary iterative solvers, see [Damm 2008], extended to
low-rank solutions recently by [SzyLD/SHANK/SIMONCINI 2014].

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations
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Introduction \pplication: Lyapunov-plus-Positive Eqns.

[e] o

Solving Large-Scale Lyapunov-plus-Positive Equations

Application: Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of
bilinear systems, where we need the solutions of the
Lyapunov-plus-positive equations:

AP + PAT + Z N;PA] +BBT =0,
i=1
m
ATQ+ QAT+ N/ QA +CTC=0.
i=1
Further applications:

@ Analysis and model reduction for linear stochastic control systems driven
by Wiener noise [B./DAMM 2011], Lévy processes [B./REDMANN 2011].

@ Model reduction of linear parameter-varying (LPV) systems using
bilinearization approach [B./BREITEN 2011].

@ Model reduction for Fokker-Planck equations [HARTMANN ET AL. 2013].

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

AX + XAT +> " N;XN] + BBT = 0. (3)
i=1

@ Need a positive semi-definite symmetric solution X.
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Lyapunov-plus-Positive Eqns.
[ Jele}

Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

AX + XAT +> " N;XN] + BBT = 0. (3)
i=1

@ Need a positive semi-definite symmetric solution X.

o As discussed before, solution theory for Lyapuonv-plus-positive
equation is more involved then in standard Lyapuonv case.
Here, existence and uniqueness of positive semi-definite solution
X = XT is assumed.
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

AX + XAT +> " N;XN] + BBT = 0. (3)
i=1

o Need a positive semi-definite symmetric solution X.

o As discussed before, solution theory for Lyapuonv-plus-positive
equation is more involved then in standard Lyapuonv case.
Here, existence and uniqueness of positive semi-definite solution
X = XT is assumed.

o Want: solution methods for large scale problems, i.e., only
matrix-matrix multiplication with A, N;, solves with (shifted) A
allowed!

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations
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Solving Large-Scale Lyapunov-plus-Positive Equations

Some basic facts and assumptions

AX + XAT +> " N;XN] + BBT = 0. (3)
i=1

@ Need a positive semi-definite symmetric solution X.

o As discussed before, solution theory for Lyapuonv-plus-positive
equation is more involved then in standard Lyapuonv case.
Here, existence and uniqueness of positive semi-definite solution
X = XT is assumed.

o Want: solution methods for large scale problems, i.e., only
matrix-matrix multiplication with A, N;, solves with (shifted) A
allowed!

@ Requires to compute data-sparse approximation to generally dense
X; here: X ~ ZZT with Z € R"™"2 ny < nl

Max Planck Institute Magdeburg P. Benner, Large-Scale Matrix Equations 40/52
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations ZZ7 ~ X to the solution of

m
AX + XAT + > N;XN] +BBT =07
j=1
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Lyapunov-plus-Positive Eqns.
(o] e}

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations ZZ7 ~ X to the solution of

m
AX + XAT + > N;XN] +BBT =07
j=1

Standard Lyapunov case: [GRASEDYCK ’04]

AX +XAT +BBT =0 <= (lLh® A+ A® I,)vec(X) = —vec(BBT).
N———

=:A
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case: [GRASEDYCK ’04]
AX +XAT +BBT =0 <= (ILh® A+ A® I,)vec(X) = —vec(BB').
—
=A
Apply .
Mt = —/ exp(tM)dt
0
to A and approximate the integral via (sinc) quadrature =
K
Al x — Z wi exp(tkA),
i=—k

with error ~ exp(—V'k) (exp(—k) if A= AT), then an approximate Lyapunov
solution is given by

vec(X) =~ vec(Xk) = Zw, exp(ti.A) vec(BBT).

i=—k
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Lyapunov-plus-Positive Eqns.
(o] e}

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case: [GRASEDYCK ’04]

AX +XAT +BBT =0 <= (ILh® A+ A® I,)vec(X) = —vec(BB').
e e e—

=:A

vec(X) &~ vec(Xk) = Zw, exp(t;.A) vec(BBT).
i=—k

Now observe that

exp(tiAd) = exp (ti(lh @ A+ A® 1)) = exp(tiA) @ exp(t;A).
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case: [GRASEDYCK ’04]

AX +XAT +BBT =0 <= (ILh® A+ A® I,)vec(X) = —vec(BB').
e e e—

=:A

vec(X) &~ vec(Xk) = Zw, exp(t;.A) vec(BBT).
i=—k

Now observe that
exp(tiAd) = exp (ti(lh @ A+ A® 1)) = exp(tiA) @ exp(t;A).

Hence,

vec(Xx) = Z wj (exp(tiA) @ exp(t;A)) vec(BBT)
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Lyapunov-plus-Positive Eqns.
(o] e}

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Standard Lyapunov case: [GRASEDYCK ’04]

AX +XAT +BBT =0 <= (ILh® A+ A® I,)vec(X) = —vec(BB').
e e e—

=A
Hence,
K
vec(Xk) = Z wj (exp(tiA) ® exp(t;A)) vec(BBT)
i=—k
K
== Xy = Z wi exp( t,A)BBTexp (tA Z w;iB; B, ,
i=—k i=—k

so that rank (Xi) < (2k + 1)m with

IX = Xill, S exp(=Vk)  (exp(—k) for A= AT )!

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 41/52



Lyapunov-plus-Positive Eqns.
(o] e}

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations ZZ7 ~ X to the solution of

m
AX + XAT + > N;XN] +BBT =07
j=1

Problem: in general,

exp (t,—(l RA+AR+ z’": N; ® Nj)) # (exp (tjA) ® exp (t;A)) exp (t,—(zm: N; ® NJ)) .

=1 j=t
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations ZZ7 ~ X to the solution of
m
AX + XAT + > N;XN] +BBT =07
Jj=1
Assume that m =1 and N; = UV with U,V € R"*" and consider

(lLh@A+A® I, +N; @ Ny )vec(X) = —vec(BBT).
\—;—/ N————’
= =y
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Lyapunov-plus-Positive Eqns.
(o] e}

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations ZZ7 ~ X to the solution of
m
AX + XAT + > N;XN] +BBT =07
Jj=1
Assume that m =1 and N; = UV with U,V € R"*" and consider

(lLh@A+A® I, +N; @ Ny )vec(X) = —vec(BBT).
\—;_./ N————’
= =y

Sherman-Morrison-Woodbury =

(heol+(VTeaVvHA (U U)w=(V o VA ly,
Avec(X) =y — (U® U)w.
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itive Eqns.

Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Can we expect low-rank approximations ZZ7 ~ X to the solution of

m
AX + XAT + > N;XN] +BBT =07
j=1

Assume that m =1 and N; = UVT with U, V € R"*" and consider

(lLh@A+A® I, +N; @ Ny )vec(X) = —vec(BBT).
ﬂ_/ N————’
= =y

Sherman-Morrison-Woodbury =

(heol+(VTeaVvHA (U U)w=(V o VA ly,
Avec(X) =y — (U U)w.

Rank of matrix representation of r.h.s. —BBT — Uvec ! (w) U is
< r+1!
~~ Apply results for linear Lyapunov equations with r.h.s of rank r + 1.
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Existence of Low-Rank Approximations

Theorem [B./BREITEN 2012]

Assume existence and uniqueness assumption with stable A and
N; = Uj\/jT, with U, V; € R"™%. Set r = EJ";I i
Then the solution X of

m
AX + XAT + 3 N;XN] + BBT =0
j=1

can be approximated by Xy of rank (2k + 1)(m + r), with an error
satisfying

< exp(—Vk).

~

X = Xell2
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation

AP + PAT + NPNT + BBT = 0.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 43/52



Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation
AP+ PAT + NPNT + BB = 0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT = % ((A+pl)P(A+pl)T — (A= pl)P(A—pl)T)

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 43/52



Lyapunov-plus-Positive Eqns.
( 1o}

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation
AP+ PAT + NPNT + BB = 0.
For a fixed parameter p, we can rewrite the linear Lyapunov operator as

AP + PAT = i ((A+pl)P(A+pl)T — (A= pl)P(A—pl)T)

leading to the fix point iteration [DaMM 2008]

Pj=(A—pl) " (A+pl)Pi_1(A+pl)T (A= pl)~T
+2p(A— pl) Y (NP;,_1NT + BBT)(A—pl)~T.
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Lvapunov plus Positive Eqns

Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Let us again consider the Lyapunov-plus-positive equation
AP + PAT + NPNT + BB =0.

For a fixed parameter p, we can rewrite the linear Lyapunov operator as
1
AP + PAT = % ((A+pl)P(A+pl)T — (A= pl)P(A—pl)T)

leading to the fix point iteration [Damm 2008]

Pi=(A—pl) H(A+pl)Pi1(A+pl) (A= pl)~T
+2p(A—pl) Y (NP,_yNT + BBT)(A—pl)~T.

Pj ~ Z;Z]" (rank (Z;) < n) ~- factored iteration

7z = (A—pl) YA+ p)Zi ZL (A+pl)T (A= pl)~T
+2p(A—pl) " (NZi_1Z[ \NT + BBT)(A—pl)~"

Max Planck Institute Magdeburg P. Benner, Large-Scale Matrix Equations 43/52
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Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Hence, for a given sequence of shift parameters {pi,..., pq}, we can
extend the linear ADI iteration as follows:

Zi=\2pi(A—pil) B,
Zi=(A-pl) (At pl) Zies V20B \2pNZi-]. j<a.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 43/52



Solving Large-Scale Lyapunov-plus-Positive Equations

Generalized ADI Iteration

Hence, for a given sequence of shift parameters {pi,..., pq}, we can
extend the linear ADI iteration as follows:

Zi=\2pi(A—pil) B,
Zi=A-p)  [(A+pDZir 2pB 2NZi4], j<a.

Problems:

@ A and N in general do not commute ~» we have to operate on full
preceding subspace Z;_; in each step.

o Rapid increase of rank (Z;) ~» perform some kind of column
compression.

@ Choice of shift parameters? ~» No obvious generalization of
minimax problem.
Here, we will use shifts minimizing a certain H-optimization
problem, see [B./BREITEN 2011/14].
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Lyapunov-plus-Positive Eqns.
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Generalized ADI lteration

Numerical Example: A Heat Transfer Model with Uncertainty

@ 2-dimensional heat distribution

motivated by [BENNER/SAAK ’05] r2
@ boundary control by a cooling X01 X02 X03
fluid with an uncertain spraying
intensity X10 X1 X12 X13 X14

Q=(0,1) x (0,1)

Xp = AX in Q rl X20 X21 X22 X23 X24 r4
n-Vx=(05+dw)x only
X30 X31 X32 X33 X34
X=u on >
x=0 on 3,y at o s
o spatial discretization k x k-grid s

= dx =~ Axdt + Nxdw; + Budt

@ output: C = 2 [1 1]
(© P. Benner, Large-Scale Matrix Equations 44/52



Generalized ADI lteration

Numerical Example: A Heat Transfer Model with Uncertainty

Conv. history for bilinear low-rank ADI method (n = 40, 000)

—o— Relative Residual ||
—»— Absolute Residual

Residual

Iteration

Max Planck Institute Magdeburg

(© P. Benner, Large-Scale Matrix Equations 44/52



Lyapunov-plus-Positive Eqns.
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Solving Large-Scale Lyapunov-plus-Positive Equations
Generalizing the Extended Krylov Subspace Method (EKSM) [SiMONCINI ’07]

Low-rank solutions of the Lyapunov-plus-positive equation may be
obtained by projecting the original equation onto a suitable smaller
subspace V = span(V), V € R™k with VTV = 1.

In more detail, solve
(VTAV) X + X (VTATV) + (VTNV) X (VINTV) + (VTB) (VTB) =0

and prolongate X ~ VXVT.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 45/52



Lvapunov plus Posmve Eqns

Solving Large-ScaIe Lyapunov- plus-Posntlve Equatlons
Generalizing the Extended Krylov Subspace Method (EKSM) [SiMONCINI ’07]

Low-rank solutions of the Lyapunov-plus-positive equation may be
obtained by projecting the original equation onto a suitable smaller
subspace V = span(V), V € R™k with VTV = 1.

In more detail, solve
(VTAV) X + X (VTATV) 4+ (VTNV) X (VINTV) + (VTB) (VTB) =0
and prolongate X ~ VXVT.

For this, one might use the extended Krylov subspace method (EKSM)
algorithm in the following way:
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Lvapunov plus Posmve Eqns

Solvmg Large-ScaIe Lyapunov-plus-Positive Equatlons
Generalizing the Extended Krylov Subspace Method (EKSM) [SiMONCINI ’07]

Low-rank solutions of the Lyapunov-plus-positive equation may be
obtained by projecting the original equation onto a suitable smaller
subspace V = span(V), V € R™k with VTV = 1.

In more detail, solve
(VTAV) X + X (VTATV) 4+ (VTNV) X (VINTV) + (VTB) (VTB) =0
and prolongate X ~ VXVT.

For this, one might use the extended Krylov subspace method (EKSM)
algorithm in the following way:

Vi=[B A1B],
V,=[AV,.1 AW, NV,4], r=2,3,...

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations 45/52



Solving Large-Scale Lyapunov-plus-Positive Equations
Generalizing the Extended Krylov Subspace Method (EKSM) [SiMONCINI ’07]

Low-rank solutions of the Lyapunov-plus-positive equation may be
obtained by projecting the original equation onto a suitable smaller
subspace V = span(V), V € R™k with VTV = 1.

In more detail, solve
(VTAV) X + X (VTATV) 4+ (VTNV) X (VINTV) + (VTB) (VTB) =0
and prolongate X ~ VXVT.

For this, one might use the extended Krylov subspace method (EKSM)
algorithm in the following way:

Vi=[B A1B],
V,=[AV,.1 AW, NV,4], r=2,3,...

However, criteria like dissipativity of A for the linear case which ensure
solvability of the projected equation have to be further investigated.
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Lyapunov-plus-Positive Eqns.
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Bilinear EKSM

Residual Computation in O(k3)

Theorem (B./Brerten 2012)

Let V; € R"™% be the extendend Krylov matrix after i generalized EKSM steps.
Denote the residual associated with the approximate solution Xi = V;X;V." by

R = AX; + X;AT + NXiNT + BB,
where X; is the solution of the reduced Lyapunov-plus-positive equation
ViTAViX: + XiViT AT Vi + ViTNVXG VINT V; + VT BBTV; = 0.
Then:
o range (R;) C range (Vit1),

o ||Ri|| = ||ViL1Ri Vis1|| for the Frobenius and spectral norms.
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Lyapunov-plus-Positive Eqns.
(o] e}

Bilinear EKSM

Residual Computation in O(k3)

Theorem (B./Brerten 2012)

Let V; € R"™% be the extendend Krylov matrix after i generalized EKSM steps.
Denote the residual associated with the approximate solution Xi = V;X;V." by

R = AX; + X;AT + NXiNT + BB,
where X; is the solution of the reduced Lyapunov-plus-positive equation

ViTAV.X + X ViTATV + VTNV VI NV + ViTBBT V= 0.

Then:

o range (R;) C range (Vit1),

o ||Ri|| = ||ViL1Ri Vis1|| for the Frobenius and spectral norms.
Remarks:

@ Residual evaluation only requires quantities needed in i/ + 1st projection
step plus (’)(k,—3+1 operations.

@ No Hessenberg structure of reduced system matrix that allows to simplify
residual expression as in standard Lyapunov case!
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Bilinear EKSM

Numerical Example: A Heat Transfer Model with Uncertainty

Convergence history for bilinear EKSM variant (n = 6,400)

T T T T T
10T —o— Relative Residual
—x— Absolute Residual
100
“©
=
‘g 1074
o
108
—12 | | | | |
& 2 4 6 8 10 12
Iteration
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Solving Large-Scale Lyapunov-plus-Positive Equations
Tensorized Krylov Subspace Methods

Another possibility is to iteratively solve the linear system
(lhb@A+A® I, + N N)vec(X) = —vec(BBT),
with a fixed number of ADI iteration steps used as a preconditioner M
MU, @A+AR 1, + N N)vec(X) = —M *vec(BBT).

We implemented this approach for PCG and BiCGstab.

Updates like Xi11 <— Xk + wi Pk require truncation operator to preserve
low-order structure.

Note, that the low-rank factorization X ~ ZZT has to be replaced by
X ~ ZDZ", D possibly indefinite.

Similar to more general tensorized Krylov solvers, see [KRESSNER/TOBLER 2010/12].
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uction Applications ester Equat Lyapunov-plus-Positive Eqns.

Tensorized Krylov Subspace Methods

Vanilla Implementation of Tensor-PCG for Matrix Equations

Algorithm 3: Preconditioned CG method for A(X) = B

Input : Matrix functions A, M : R"*" — R"*"low rank factor B of right-hand side
B = —BBT. Truncation operator 7 w.r.t. relative accuracy €e/.
Output: Low rank approximation X = LDLT with ||A(X) — B||f < tol.

1 Xo=0, Ry =B, Zy = M~YRy), Po = Zo, Qo = A(Po), & = (Po, Qo), k=0
2 while ||RkHF > tol do
(Ri,Pk)
&k
4 Xiy1 = X +wicPr,  Xigr < T (Xiy1)
5 Riy1 = B — A(Xi41),  Optionally: Ryyy < T (Ris1)
6 Zjy1 = M7 (Riq1)
By = — (Zk+£1k,Qk>

3 Wi =

8 Piy1 = Zky1 + BiPr,  Pig1 < T(Py1)

0 Qkr1 = A(Pry1)s Optionally: Qi1 < T(Qk+1)
10 Ek+1 = (Prt1, Qut1)

| k=k+1

12 X = Xi

Here, A : X — AX + XAT + NXNT, M: ¢ steps of (bilinear) ADI, both in
low-rank (" ZDZ™" format).
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Lyapunov-plus-Positive Eqns.
{ 1]

Comparison of Methods

Heat Equation with Boundary Control

Comparison of low rank solution methods for n = 562, 500.

—— Bilinear ADI (6 Hz-optimal shifts) Bilinear ADI (8 H>-optimal shifts)
- - - Bilinear ADI (10 #Hz-optimal shifts) —@— Bilinear ADI (4 Wachspress shifts)
—=— CG (Bilinear ADI Precond.) —=— Bilinear EKSM

Relative residual

! !
200 400
Iteration number Rank of Xj
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Lyapunov-plus-Positive Eqns.
{ 1]

Comparison of Methods
Fokker-Planck Equation

Comparison of low rank solution methods for n = 10, 000.

—— Bilinear ADI (2 H2-optimal shifts) —e— Bilinear ADI (2 Wachspress shifts)
—— BiCG (Bilinear ADI Precond.) —+— BiCG (Linear ADI Precond.)
—&— Bilinear EKSM

10— 101

©

5

I 110~

> i

=

-l{-u' 4

g 1077 1077

""""" ~H]

—10 —10
el 5 10 15 20 20 40 60 80 100°

Iteration number Rank of Xj

.
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Lyapunov-plus-Positive Eqns.
{ 1]

Comparison of Methods

RC Circuit Simulation

Comparison of low rank solution methods for n = 250, 000.

—— Bilinear ADI (6 Hp-optimal shifts) —@— Bilinear ADI (4 Wachspress shifts)
—a— BiCG (Bilinear ADI Precond.) —+— BiCG (Linear ADI Precond.)
—&— Bilinear EKSM

100¢ 10°

106

Relative residual

|
400 600

10—° 10—°

Iteration number Rank of Xj

.
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Lyapunov-plus-Positive Eqns.
{ 1]

Comparison of Methods (

Comparison of CPU times

| || Heat equation | RC circuit [ Fokker-Planck |

Bilin. ADI 2 743 shifts - - 1.733 (1.578)
Bilin. ADI 6 7{ shifts 144,065 (2,274) | 20,900 (3091) -
Bilin. ADI 8 75 shifts 135,711 (3,177) - -
Bilin. ADI 10 > shifts 33,051 (4,652) - -

Bilin. ADI 2 Wachspress shifts - - 6.617 (4.562)
Bilin. ADI 4 Wachspress shifts || 41,883 (2,500) | 18,046 (308) -

CG (Bilin. ADI precond.) 15,640 - -

BiCG (Bilin. ADI precond.) - 16,131 11.581
BiCG (Linear ADI precond.) - 12,652 9.680
EKSM 7,093 19,778 8.555

Numbers in brackets: computation of shift parameters.

Max Planck Institute Magdeburg (© P. Benner, Large-Scale Matrix Equations ~ 50/52



Introduction \F ations S ation: Lyapunov-plus-Positive Eqns.
O 00O O ofele] }

Solving Large-Scale Lyapunov-plus-Positive Equations
Summary & Outlook

@ Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of Lyapunov-plus-positive equations.

(]

Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ~ 500,000 in MATLAB®.

Optimal choice of shift parameters for ADI is a nontrivial task.

Other "tricks” (realification, low-rank residuals) not adapted from
standard case so far.

What about the singular value decay in case of N being full rank?

Need efficient implementation!
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