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Introduction to Parametric Model Order Reduction
Parametric Dynamical Systems

Dynamical Systems

Σ(p) :

{
E (p)ẋ(t; p) = f (t, x(t; p), u(t), p), x(t0) = x0, (a)

y(t; p) = g(t, x(t; p), u(t), p) (b)

with

(generalized) states x(t; p) ∈ Rn (E ∈ Rn×n),

inputs u(t) ∈ Rm,

outputs y(t; p) ∈ Rq, (b) is called output equation,

p ∈ Ω ⊂ Rd is a parameter vector, Ω is bounded.

Applications:

Repeated simulation for varying material or geometry parameters,
boundary conditions,

control, optimization and design.
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Introduction to Parametric Model Order Reduction
Linear Parametric Systems

Linear, time-invariant (parametric) systems

E (p)ẋ(t; p) = A(p)x(t; p) + B(p)u(t), A(p),E (p) ∈ Rn×n,

y(t; p) = C (p)x(t; p), B(p) ∈ Rn×m,C (p) ∈ Rq×n.

Laplace Transformation / Frequency Domain

Application of Laplace transformation (x(t; p) 7→ x(s; p), ẋ(t; p) 7→ sx(s; p))
to linear system with x(0) = 0:

sE(p)x(s; p) = A(p)x(s; p) + B(p)u(s), y(s; p) = C(p)x(s; p),

yields I/O-relation in frequency domain:

y(s; p) =
(

C(p)(sE(p)− A(p))−1B(p)︸ ︷︷ ︸
=:H(s;p)

)
u(s).

H(s; p) is the parameter-dependent transfer function of Σ(p).

Goal: Fast evaluation of mapping (u, p) → y(s; p).
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Voltage applied to electrodes induces
vibration of wings, resulting rotation due
to Coriolis force yields sensor data.

FE model of second order:
N = 17.361 n = 34.722, m = 1, q = 12.

Sensor for position control based on
acceleration and rotation.

Application: inertial navigation.

Source: The Oberwolfach Benchmark Collection http://www.imtek.de/simulation/benchmark
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model: M(d)ẍ(t) + D(θ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t).
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Parametric FE model:

M(d)ẍ(t) + D(θ, d , α, β)ẋ(t) + T (d)x(t) = Bu(t),

wobei

M(d) = M1 + dM2,

D(θ, d , α, β) = θ(D1 + dD2) + αM(d) + βT (d),

T (d) = T1 +
1

d
T2 + dT3,

with

width of bearing: d ,

angular velocity: θ,

Rayleigh damping parameters: α, β.
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Introduction to Parametric Model Order Reduction
Motivating Example: Microsystems/MEMS Design

Microgyroscope (butterfly gyro)

Original. . . and reduced-order model.
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The Model Order Reduction (MOR) Problem

Problem
Approximate the dynamical system

E (p)ẋ = A(p)x + B(p)u, E (p),A(p) ∈ Rn×n,
y = C (p)x , B(p) ∈ Rn×m,C (p) ∈ Rq×n,

by reduced-order system

Ê (p) ˙̂x = Â(p)x̂ + B̂(p)u, Ê (p), Â(p) ∈ Rr×r ,

ŷ = Ĉ (p)x̂ , B̂(p) ∈ Rr×m, Ĉ (p) ∈ Rq×r ,

of order r � n, such that

‖y − ŷ‖ = ‖Hu − Ĥu‖ ≤ ‖H − Ĥ‖ · ‖u‖ < tolerance · ‖u‖ ∀ p ∈ Ω.

=⇒ Approximation problem: min
order (Ĥ)≤r

‖H − Ĥ‖.
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Consider bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Aix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.
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Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Aix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.

Key Observation [B./Breiten 2011]

Consider parameters as additional inputs, a linear parametric system

ẋ(t) = Ax(t) +

mp∑
i=1

ai (p)Aix(t) + B0u0(t), y(t) = Cx(t)

with B0 ∈ Rn×m0 can be interpreted as bilinear system:

u(t) :=
[
a1(p) . . . amp (p) u0(t)

]T
,

B :=
[
0 . . . 0 B0

]
∈ Rn×m, m = mp + m0.
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Parametric Systems as Bilinear Systems
Linear Parametric Systems — An Alternative Interpretation

Linear parametric systems can be interpreted as bilinear systems.

Consequence

Model order reduction techniques for bilinear systems can be applied to
linear parametric systems!

Here:

Balanced truncation,

H2 optimal model reduction.
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Balanced Truncation for Linear Systems

Idea (for simplicity, E = In)

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization (needs P,Q!) of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1,TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[

C1 C2

])
.

Truncation  (Â, B̂, Ĉ) = (A11,B1,C1).
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Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 9/28



PMOR Balanced Truncation for Bilinear Systems H2-Model Reduction for Bilinear Systems Conclusions and Outlook

Balanced Truncation for Linear Systems

Idea (for simplicity, E = In)

Σ :

{
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Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σn̂.

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=n̂+1
σk

)
‖u‖2.
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Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σn̂.

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=n̂+1
σk

)
‖u‖2.

Practical implementation

Rather than solving Lyapunov equations for P,Q (n2 unknowns!),
find S ,R ∈ Rn×s with s � n such that P ≈ SST , Q ≈ RRT .

Reduced-order model directly obtained via small-scale (s × s) SVD
of RTS!

No O(n3) or O(n2) computations necessary!
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Balanced Truncation for Bilinear Systems
Bilinear Control Systems — Theory and Background

Bilinear control systems:

Σ :

 ẋ(t) = Ax(t) +
m∑
i=1

Aix(t)ui (t) + Bu(t),

y(t) = Cx(t), x(0) = x0,

where A,Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n.

Properties:

Approximation of (weakly) nonlinear systems by Carleman linearization
yields bilinear systems.

Appear naturally in boundary control problems, control via coefficients of
PDEs, Fokker-Planck equations, . . .

Due to the close relation to linear systems, a lot of successful concepts can
be extended, e.g. transfer functions, Gramians, Lyapunov equations, . . .

Linear stochastic control systems possess an equivalent structure and can
be treated alike [B./Damm 2011].
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Balanced Truncation for Bilinear Systems

The concept of balanced truncation can be generalized to the case of
bilinear systems, where we need the solutions of the generalized
Lyapunov equations:

AP + PAT +
m∑
i=1

AiPAT
i + BBT = 0,

ATQ + QAT +
m∑
i=1

AT
i QAi + CTC = 0.

These equations also appear for stochastic control systems, see
[B./Damm 2011].

”Twice-the-trail-of-the-HSVs” error bound does not hold
[B./Damm 2014], stability preservation not yet proved.
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Balanced Truncation for Bilinear Systems
Some basic facts and assumptions

AX + XAT +
m∑
i=1

AiXAT
i + BBT = 0. (1)

Need a positive semi-definite symmetric solution X .

In standard Lyapunov case, existence and uniqueness guaranteed if A
stable (Λ (A) ⊂ C−); this is not sufficient here: (1) is equivalent to(

In ⊗ A + A⊗ In +
m∑
i=1

Ai ⊗ Ai

)
vec(X ) = − vec(BBT ).

One sufficient condition for stable A is smallness of Ai (related to stability
radius of A)

 bounded-input bounded-output (BIBO) stability of bilinear systems.

This will be assumed from here on, hence: existence and uniqueness of
positive semi-definite solution X = XT .

Want: solution methods for large scale problems, i.e., only matrix-matrix
multiplication with A,Aj , solves with (shifted) A allowed!

Requires to compute data-sparse approximation to generally dense X ;
here: X ≈ ZZT with Z ∈ Rn×nZ , nZ � n!
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Balanced Truncation for Bilinear Systems
Existence of low-rank approximations

Q: Can we expect low-rank approximations ZZT ≈ X to the solution of

AX + XAT +
m∑
j=1

AjXAT
j + BBT = 0 ?

Theorem [B./Breiten 2013]

Assume existence and uniqueness assumption with stable A and
Aj = UjV

T
j , with Uj ,Vj ∈ Rn×rj . Set r =

∑m
j=1 rj .

Then the solution X of

AX + XAT +
m∑
j=1

AjXAT
j + BBT = 0

can be approximated by Xk of rank (2k + 1)(m + r), with an error
satisfying

‖X − Xk‖2 . exp(−
√

k).
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AX + XAT +
m∑
j=1

AjXAT
j + BBT = 0 ?

Theorem [B./Breiten 2013]

Assume existence and uniqueness assumption with stable A and
Aj = UjV

T
j , with Uj ,Vj ∈ Rn×rj . Set r =

∑m
j=1 rj .

Then the solution X of

AX + XAT +
m∑
j=1

AjXAT
j + BBT = 0

can be approximated by Xk of rank (2k + 1)(m + r), with an error
satisfying

‖X − Xk‖2 . exp(−
√

k).
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Balanced Truncation for Bilinear Systems
Numerical Methods

Generalized Alternating Directions Iteration (ADI) method.
1 Computing square solution matrix (∼ n2 unknowns) [Damm 2008].
2 Computing low-rank factors of solutions (∼ n unknowns)

[B./Breiten 2013].

Generalized Extended (or rational) Krylov Subspace Method
(EKSM) [B./Breiten 2013].

Tensorized versions of standard Krylov subspace methods, e.g.,
PCG, PBiCGStab [Kressner/Tobler 2011, B./Breiten 2013].
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Balanced Truncation for Bilinear Systems
Numerical Examples: Heat Equation with Boundary Control

Comparison of low rank solution methods for n = 562, 500.
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Balanced Truncation for Bilinear Systems
Numerical Examples: Fokker-Planck Equation

Comparison of low rank solution methods for n = 10, 000.
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Balanced Truncation for Bilinear Systems
Numerical Examples: RC Circuit Simulation

Comparison of low rank solution methods for n = 250, 000.
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Balanced Truncation for Bilinear Systems
Numerical Examples: Comparison

Comparison of CPU times

Heat equation RC circuit Fokker-Planck

Bilin. ADI 2 H2 shifts - - 1.733 (1.578)

Bilin. ADI 6 H2 shifts 144,065 (2,274) 20,900 (3091) -

Bilin. ADI 8 H2 shifts 135,711 (3,177) - -

Bilin. ADI 10 H2 shifts 33,051 (4,652) - -

Bilin. ADI 2 Wachspress shifts - - 6.617 (4.562)

Bilin. ADI 4 Wachspress shifts 41,883 (2,500) 18,046 (308) -

CG (Bilin. ADI precond.) 15,640 - -

BiCG (Bilin. ADI precond.) - 16,131 11.581

BiCG (Linear ADI precond.) - 12,652 9.680

EKSM 7,093 19,778 8.555

Numbers in brackets: computation of shift parameters.
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Application to Parametric MOR
Fast Simulation of Cyclic Voltammogramms [Feng/Koziol/Rudnyi/Korvink ’06]

Eẋ(t) = (A + p1(t)A1 + p2(t)A2)x(t) + B,

y(t) = Cx(t), x(0) = x0 6= 0,

Rewrite as system with zero initial
condition,

FE model: n = 16, 912, m = 3, q = 1,

pj ∈ [0, 109] time-varying voltage
functions,

transfer function H(iω, p1, p2),

reduced system dimension r = 67,

max
ω∈{ωmin,...,ωmax}
pj∈{pmin,...,pmax}

||H−Ĥ||2
||H||2

< 6 · 10−4,

evaluation times: FOM 4.5h, ROM 38s
 speed-up factor ≈ 426.

Figure : [Feng et al. ’06]
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Application to Parametric MOR
Fast Simulation of Cyclic Voltammogramms [Feng/Koziol/Rudnyi/Korvink ’06]

Original. . . and reduced-order model.
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Application to Parametric MOR
2D Model of an Anemometer [Baur et al. ’10]

SenL Heater SenR

FlowProfile

Figure : [Baur et al. ’10]

Consider an anemometer, a flow sensing device located on a membrane
used in context of minimizing heat dissipation.

E ẋ(t) = (A + pA1)x(t) + Bu(t), y(t) = Cx(t), x(0) = 0,

FE model: n = 29, 008, m = 1, q = 3,

p1 ∈ [0, 1] fluid velocity,

transfer function H(iω, p1), reduced system dimension r = 146,

max
ω∈{ωmin,...,ωmax}
p1∈{pmin,...,pmax}

‖H(ω,p)−Ĥ(ω,p)‖2

‖H(ω,p)‖2
< 3 · 10−5,

evaluation times: FOM 51min, ROM 21sec.
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H2-Model Reduction for Bilinear Systems
H2-Model Reduction for Linear Systems

First consider stable (i.e. Λ (A) ⊂ C−) linear systems,

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) ' Y (s) = C (sI − A)−1BU(s)

System norms

Two common system norms for measuring approximation quality:

H2-norm, ‖Σ‖H2 =
(

1
2π

∫ 2π

0
tr ((H∗(−iω)H(iω))) dω

) 1
2

,

H∞-norm, ‖Σ‖H∞ = sup
ω∈R

σmax (H(iω)),

where
H(s) = C (sI − A)−1 B.

Note: H∞-norm approximation  balanced truncation.
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H2-Model Reduction for Bilinear Systems
Error system and H2-Optimality [Meier/Luenberger 1967]

In order to find an H2-optimal reduced system, consider the error system
H(s)− Ĥ(s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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H2-Model Reduction for Bilinear Systems
Error system and H2-Optimality [Meier/Luenberger 1967]

In order to find an H2-optimal reduced system, consider the error system
H(s)− Ĥ(s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

Assuming a coordinate system in which Â is diagonal and taking
derivatives of

‖H( . )− Ĥ( . )‖2
H2

with respect to free parameters in Λ (Â), B̂, Ĉ  first-order necessary
H2-optimality conditions (SISO)

H(−λ̂i ) = Ĥ(−λ̂i ),
H ′(−λ̂i ) = Ĥ ′(−λ̂i ),

where λ̂i are the poles of the reduced system Σ̂.
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H2-Model Reduction for Bilinear Systems
Error system and H2-Optimality [Meier/Luenberger 1967]

In order to find an H2-optimal reduced system, consider the error system
H(s)− Ĥ(s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

First-order necessary H2-optimality conditions (MIMO):

H(−λ̂i )B̃i = Ĥ(−λ̂i )B̃i , for i = 1, . . . , n̂,

C̃T
i H(−λ̂i ) = C̃T

i Ĥ(−λ̂i ), for i = 1, . . . , n̂,

C̃T
i H ′(−λ̂i )B̃i = C̃T

i Ĥ ′(−λ̂i )B̃i for i = 1, . . . , n̂,

where Â = RΛ̂R−T is the spectral decomposition of the reduced system
and B̃ = B̂TR−T , C̃ = Ĉ R.
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H(s)− Ĥ(s) which can be realized by

Aerr =

[
A 0

0 Â

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.

First-order necessary H2-optimality conditions (MIMO):

H(−λ̂i )B̃i = Ĥ(−λ̂i )B̃i , for i = 1, . . . , n̂,

C̃T
i H(−λ̂i ) = C̃T

i Ĥ(−λ̂i ), for i = 1, . . . , n̂,

C̃T
i H ′(−λ̂i )B̃i = C̃T

i Ĥ ′(−λ̂i )B̃i for i = 1, . . . , n̂,

⇔ vec (Iq)T
(

eje
T
i ⊗ C

)(
−Λ̂⊗ In − In̂ ⊗ A

)−1 (
B̃T ⊗ B

)
vec (Im)

= vec (Iq)T
(

eje
T
i ⊗ Ĉ

)(
−Λ̂⊗ In̂ − In̂ ⊗ Â

)−1 (
B̃T ⊗ B̂

)
vec (Im),

for i = 1, . . . , n̂ and j = 1, . . . , q.

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 19/28



PMOR Balanced Truncation for Bilinear Systems H2-Model Reduction for Bilinear Systems Conclusions and Outlook

H2-Model Reduction for Bilinear Systems
Interpolation of the Transfer Function [Grimme 1997]

Construct reduced transfer function by Petrov-Galerkin projection
P = VW T , i.e.

Ĥ(s) = CV
(
sI −W TAV

)−1
W TB,

where V and W are given as

V =
[
(σ1I − A)−1B, . . . , (σr I − A)−1B

]
,

W =
[
(σ1I − AT )−1CT , . . . , (σr I − AT )−1CT

]
.

Then
H(σi ) = Ĥ(σi ) and H ′(σi ) = Ĥ ′(σi ),

for i = 1, . . . , r .
Starting with an initial guess for Λ̂ and setting σi ≡ −λ̂i  iterative
algorithms (IRKA/MIRIAm) that yield H2-optimal models.

[Gugercin et al. 2006/08], [Bunse-Gerstner et al. 2007],

[Van Dooren et al. 2008]
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H2-Model Reduction for Bilinear Systems
Some background

Consider bilinear system

Σ :

{
ẋ(t) = Ax(t) +

m∑
i=1

Aix(t)ui (t) + Bu(t), y(t) = Cx(t).

Output Characterization (SISO): Volterra series

y(t) =
∞∑
k=1

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

K(t1, . . . , tk)u(t−t1−. . .−tk) · · · u(t−tk)dtk · · · dt1,

with kernels K (t1, . . . , tk) = CeAtk A1 · · · eAt2 A1eAt1 B.

Multivariate Laplace-transform:

Hk(s1, . . . , sk) = C (sk I − A)−1N1 · · · (s2I − A)−1N1(s1I − A)−1B.

Bilinear H2-norm: [Zhang/Lam 2002]

||Σ||H2
:=

(
tr

(( ∞∑
k=1

∫ ∞
−∞

. . .

∫ ∞
−∞

1

(2π)k
Hk (iω1, . . . , iωk )HT

k (iω1, . . . , iωk )

))) 1
2

.
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H2-Model Reduction for Bilinear Systems
Measuring the Approximation Error

Lemma [B./Breiten 2012]

Let Σ denote a bilinear system. Then, the H2-norm is given as:

||Σ||2H2
= (vec(Iq))T (C ⊗ C)

(
−A⊗ I − I ⊗ A−

m∑
i=1

Ai ⊗ Ai

)−1

(B ⊗ B) vec(Im).

Error System

In order to find an H2-optimal reduced system, define the error system
Σerr := Σ− Σ̂ as follows:

Aerr =

[
A 0

0 Â

]
, Aerr

i =

[
Ai 0

0 Âi

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ

]
.
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0 Âi

]
, Berr =

[
B

B̂

]
, C err =

[
C −Ĉ
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H2-Model Reduction
H2-Optimality Conditions

Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.
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H2-Optimality Conditions

Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:
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Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).
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H2-Model Reduction
H2-Optimality Conditions

Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).

Connection to interpolation of transfer functions?
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Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).

For Ai ≡ 0, this is equivalent to

H(−λ`)B̃T
` = Ĥ(−λ`)B̃T

`

 tangential interpolation at mirror images of reduced system poles!
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Let us assume Σ̂ is given by its eigenvalue decomposition:

Â = RΛR−1, Ãi = R−1ÂiR, B̃ = R−1B̂, C̃ = ĈR.

Using Λ, Ãi , B̃, C̃ as optimization parameters, we can derive necessary
conditions for H2-optimality, e.g.:

(vec(Iq))T
(
eje

T
` ⊗ C

)(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

= (vec(Iq))T
(
eje

T
` ⊗ Ĉ

)(
−Λ⊗ In − In̂ ⊗ Â−

m∑
i=1

Ãi ⊗ Âi

)−1 (
B̃ ⊗ B̂

)
vec(Im).

For Ai ≡ 0, this is equivalent to

H(−λ`)B̃T
` = Ĥ(−λ`)B̃T

`

 tangential interpolation at mirror images of reduced system poles!

Note: [Flagg 2011] shows equivalence to interpolating the Volterra series!
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A First Iterative Approach

Algorithm 1 Bilinear IRKA

Input: A, Ai , B, C , Â, Âi , B̂, Ĉ
Output: Aopt , Aopt

i , Bopt , C opt

1: while (change in Λ > ε) do
2: RΛR−1 = Â, B̃ = R−1B̂, C̃ = Ĉ R, Ãi = R−1ÂiR

3: vec(V ) =

(
−Λ⊗ In − In̂ ⊗ A−

m∑
i=1

Ãi ⊗ Ai

)−1 (
B̃ ⊗ B

)
vec(Im)

4: vec(W ) =

(
−Λ⊗ In − In̂ ⊗ AT −

m∑
i=1

ÃT
i ⊗ AT

i

)−1 (
C̃T ⊗ CT

)
vec(Iq)

5: V = orth(V ), W = orth(W )

6: Â =
(
W TV

)−1
W TAV , Âi =

(
W TV

)−1
W TAiV ,

B̂ =
(
W TV

)−1
W TB, Ĉ = CV

7: end while
8: Aopt = Â, Aopt

i = Âi , Bopt = B̂, C opt = Ĉ
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H2-Model Reduction for Bilinear Systems
Industrial Case Study: Thermal Analysis of Electrical Motor

Thermal simulations to detect whether temperature changes lead to
fatigue or deterioration of employed materials.
Main heat source: thermal losses resulting from current stator coil/rotor.
Many different current profiles need to be considered to predict whether
temperature on certain parts of the motor remans in feasible region.
Finite element analysis on rather complicated geometries  large-scale
linear models with many (here: 7/13) parameters.

Schematic view of an electrical motor. Bosch integrated motor generator used
in hybrid variants of Porsche Cayenne,

VW Touareg.
Pictures:Bildtext | Caption

Der Integrierte Motor Generator von Bosch
 

Antriebseinheit und Generator in einem: der Integrierte Motor
Generator (IMG) von Bosch. Der IMG ist in den Hybrid-Varianten
des Porsche Cayenne und Volkswagen Touareg im Serieneinsatz. Er
ist zwischen Verbrennungsmotor und Getriebe verbaut.
 

The Bosch integrated motor generator
 

Drive unit and generator in one: the Bosch integrated motor
generator (IMG). The IMG is used in the hybrid variants of the
Porsche Cayenne and the Volkswagen Touareg. It is installed
between the combustion engine and the transmission.
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H2-Model Reduction for Bilinear Systems
Industrial Case Study: Thermal Analysis of Electrical Motor

FEM analysis of thermal model  
linear parametric systems with
n = 41, 199, m = 4 inputs, and
d = 13 parameters,

measurements taken at q = 4 heat
sensors;

time for 1 transient simulation in
COMSOL R© ∼ 90min;

ROM order n̂ = 300, time for 1
transient simulation ∼ 15sec.

Legend: Temperature curves for six
different values (5, 25, 45, 65, 85,
100[W /m2K ]) of the heat transfer
coefficient on the coil.
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Conclusions and Outlook

We have established a connection between special linear parametric
and bilinear systems that automatically yields structure-preserving
model reduction techniques for linear parametric systems.

Balanced truncation:

Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of generalized Lyapunov equations.
Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ∼ 500, 000 in MATLAB R©.
Optimal choice of shift parameters for ADI is a nontrivial task.
Existence of low-rank solutions in case of Ai being full rank?

H2 optimal model reduction:

Yields competitive approach, proven in industrial context.
Still high offline cost (= time for generating reduced-order model).
May need to switch to one-sided projection (W = V ) to preserve
stability.

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 27/28



PMOR Balanced Truncation for Bilinear Systems H2-Model Reduction for Bilinear Systems Conclusions and Outlook

Conclusions and Outlook

We have established a connection between special linear parametric
and bilinear systems that automatically yields structure-preserving
model reduction techniques for linear parametric systems.

Balanced truncation:

Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of generalized Lyapunov equations.
Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ∼ 500, 000 in MATLAB R©.
Optimal choice of shift parameters for ADI is a nontrivial task.
Existence of low-rank solutions in case of Ai being full rank?

H2 optimal model reduction:

Yields competitive approach, proven in industrial context.
Still high offline cost (= time for generating reduced-order model).
May need to switch to one-sided projection (W = V ) to preserve
stability.

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 27/28



PMOR Balanced Truncation for Bilinear Systems H2-Model Reduction for Bilinear Systems Conclusions and Outlook

Conclusions and Outlook

We have established a connection between special linear parametric
and bilinear systems that automatically yields structure-preserving
model reduction techniques for linear parametric systems.

Balanced truncation:

Under certain assumptions, we can expect the existence of low-rank
approximations to the solution of generalized Lyapunov equations.
Solutions strategies via extending the ADI iteration to bilinear
systems and EKSM as well as using preconditioned iterative solvers
like CG or BiCGstab up to dimensions n ∼ 500, 000 in MATLAB R©.
Optimal choice of shift parameters for ADI is a nontrivial task.
Existence of low-rank solutions in case of Ai being full rank?

H2 optimal model reduction:

Yields competitive approach, proven in industrial context.
Still high offline cost (= time for generating reduced-order model).
May need to switch to one-sided projection (W = V ) to preserve
stability.

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 27/28



PMOR Balanced Truncation for Bilinear Systems H2-Model Reduction for Bilinear Systems Conclusions and Outlook

References

P. Benner and T. Breiten.

OnH2 model reduction of linear parameter-varying systems.
Proceedings in Applied Mathematics and Mechanics 11:805–806, 2011.

P. Benner and T. Breiten.

On optimality of interpolation-based low-rank approximations of large-scale matrix equations.
Systems & Control Letters 67:55–64, 2014.

P. Benner and T. Breiten.

Interpolation-basedH2-model reduction of bilinear control systems.
SIAM Journal on Matrix Analysis and Applications 33(3):859–885, 2012.

P. Benner and T. Breiten.

Low rank methods for a class of generalized Lyapunov equations and related issues.
Numerische Mathematik, 124(3):441–470, 2013.

P. Benner and A. Bruns.

Parametric model order reduction of thermal models using the bilinear interpolatory rational Krylov algorithm.
Mathematical and Computer Modelling of Dynamical Systems, 2014 (in press).

P. Benner and T. Damm

Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems.
SIAM Journal on Control and Optimization 49(2):686–711, 2011.

T. Damm.

Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations.
Numerical Linear Algebra with Applications 15(9):853–871, 2008.

L. Grasedyck.

Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure.
Computing 72(3–4):247–265, 2004.

Max Planck Institute Magdeburg c© P. Benner, PMOR: Survey and Recent Advances 28/28


	Introduction to Parametric Model Order Reduction
	Dynamical systems
	Parametric Systems as Bilinear Systems

	Balanced Truncation for Bilinear Systems
	Balanced Truncation for Linear Systems
	Bilinear Systems
	Existence of low-rank approximations
	Numerical Methods
	Application to Parametric MOR

	H2-Model Reduction for Bilinear Systems
	H2-Model Reduction for Linear Systems
	Industrial Case Study: Thermal Analysis of Electrical Motor

	Conclusions and Outlook

