: A MAX PLANCK INSTITUTE :
A‘ FOR DYNAMICS OF COMPLEX : COMPUTATIONAL METHODS IN
\“4 TECHNICAL SYSTEMS : SYSTEMS AND CONTROL THEORY

MAGDEBURG

Model Order Reduction
for Nonlmear Systems

Peter Benner

11. Elgersburg Workshop
February 19-23, 2017




Joint work with ...

‘ = <Y Mian llyas Ahmad
:4 National University of Science and Technology, Islamabad

Tobias Breiten
Karl-Franzens-Universitat Graz

Pawan Goyal
MPI Magdeburg

Jan Heiland
MPI Magdeburg

Imad Jaimoukha
Imperial College London

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Overview

1. Introduction

2. Model Reduction for Linear Systems

3. Balanced Truncation for Nonlinear Systems
4. Rational Interpolation for Nonlinear Systems

5. References

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



1. Introduction

Model Reduction for Control Systems
System Classes

How general are these system classes?
Linear Systems and their Transfer Functions

2. Model Reduction for Linear Systems
3. Balanced Truncation for Nonlinear Systems
4. Rational Interpolation for Nonlinear Systems

5. References

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



& @ Introduction

Model Reduction for Control Systems

Nonlinear Control Systems

f(t,X(t),U(t)), EX(tO):EXOa

| Ex(t)
Z'{ g(t,x(t), u(t))

y(t)

with
o (generalized) states x(t) € R”,
o inputs u(t) e R,
o outputs y(t) € R9.
If E singular ~ descriptor system. Here, E = [, for simplicity.

¥
———
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@ Model Reduction for Control Systems

Original System (E = /,)
:{m) = F(t.x(t),u(t)),
y(t) = g(t,x(¢),u(t)).

o states x(t) e R”",

@ inputs u(t) e R",

@ outputs y(t) € RY.
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Original System (E = /,) Reduced-Order Model (ROM)

:{X(t) = f(t,x(t), u(1)), ’i:{).?(t) = F(t,%(t), u(1)),
y(t) = g(t,x(t), u(t)). y(t) = 8(t,%(1), u(t)).
o states x(t) e R”, © states X(t) eR", r < n
@ inputs u(t) e R, @ inputs u(t) e R™,

@ outputs y(t) € RY. @ outputs y(t) € RY.

% V
————
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Sc 8 @ Model Reduction for Control Systems

Original System (E = /,) Reduced-Order Model (ROM)

z:{xu) _ £t x(8), u(t)), f:{ﬁ(t) - F(t,x(1), u(t)),
y(t) = g(t,x(t), u(t)). y(t) = 8(t,%(1), u(t)).
o states x(t) e R”, © states X(t) eR", r < n
@ inputs u(t) e R, @ inputs u(t) e R™,
@ outputs y(t) € RY. @ outputs y(t) € RY.

|y = 9|l < tolerance - |u| for all admissible input signals.
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Sc 8 @ Model Reduction for Control Systems

Original System (E = /,) Reduced-Order Model (ROM)

z:{xu) _ (£ x(8), u(t)), f:{ﬁ(r) = (e %(8), u(t)),
y(t) = g(t,x(t),u(t)). y(t) = 8(t, (1), u(t)).
o states x(t) e R”, o states X(t) eR", r < n
@ inputs u(t) e R, @ inputs u(t) e R™,
@ outputs y(t) € RY. @ outputs y(t) € RY.

|y = 7|l < tolerance - |u| for all admissible input signals.

Secondary goal: reconstruct approximation of x from X.
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@ @ System Classes

Control-Affine (Autonomous) Systems

x(t) = f(t,x,u)
y(t) = g(t,x,u)

AG(8) + B(x(£)u(t), A:R"—>R™ B:R" > R™",
C(x(t) + D((B)u(t), C:R">R™, D:R" >R,
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@ @ System Classes

Control-Affine (Autonomous) Systems

x(t) = f(t,xu) = A(x(0)+B(x(t))u(t), A:R"->R™, B:R">R™,
y(t) = gt xu) = C(x(8)+D(x(1))u(t), C:R"—>R™, D:R" >R

Linear, Time-Invariant (LTI) Systems

x(t) = f(t,x,u) Ax(t) + Bu(t), AeR™" BeR™",
y(t) = g(t,x,u) = Cx(t)+ Du(t), CeR" D eR™™.
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@ @ System Classes

Control-Affine (Autonomous) Systems

x(t) = f(t,x,u)
y(t) = g(t,x,u)

AG(8) + B(x(£)u(t), A:R"—>R™ B:R" > R™",
C(x(t) + D((B)u(t), C:R">R™, D:R" >R,

Linear, Time-Invariant (LTI) Systems

x(t) f(t,x,u) Ax(t) + Bu(t), AeR™" BeR™",
y(t) = g(t,x,u) = Cx(t)+ Du(t), CeR" D eR™™.

Bilinear Systems

x(t)
y(t)

f(t,x,u)
g(t, x, u)

Ax(t) + X7 ui(t)Aix(t) + Bu(t), A A e R™" BeR™™
Cx(t) + Du(t), C e R, D eR™™,
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@ System Classes

Linear, Time-Invariant (LTI) Systems

x(t)
y(t)

f(t,x,u)
g(t,x,u)

Ax(t) + Bu(t), AeR™" BeR™™,
Cx(t) + Du(t),  CeR¥" DeR™™.

Bilinear Systems

x(t)
y(t)

f(t,x,u) = Ax(t)+ X7 ui(t)Aix(t) + Bu(t), A /A eR™" BeR™™,
g(t,x,u) Cx(t) + Du(t), CeRY" DeR™™.

Quadratic-Bilinear (QB) Systems

x(t) = f(t,x,u) = Ax(t)+H (x(t)®x(t)) + X7 ui(t)Aix(t) + Bu(t),
A A eR™" HeR™™ BeR™™

y(t) Cx(t) + Du(t), C eR¥", D e R¥™,

g(t,x,u)
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@ @ System Classes

Control-Affine (Autonomous) Systems

x(t) = f(t,xu) = A(x(t))+B(x(t))u(t), A:R"->R™, B:R”—>R™,
y(t) = g(t,x,u) = C(x(t))+D(x(t))u(t), C:R" >R D:R" R,

Quadratic-Bilinear (QB) Systems

x(t) = f(t,x,u) = Ax(t)+H (x(t)®x(t)) + X7 ui(t)Aix(t) + Bu(t),
A A e R™" HeR™™ BeR™™
y(t) = g(t,x,u) = Cx(t)+ Du(t), C e R D eR™™.
Written in control-affine form:
A(x) = Ax+H((x®x), B(x) [AL,...,An](In®x)+ B
C(x) = Cx, D(x) := Dx.
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@ Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:

X = A(x) + Bu with A(0) =0,
y = Cx+ Du.
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@ Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:

X = A(x) + Bu with A(0) = 0.

Taylor expansion of state equation about x = 0 yields

X=Ax+H(x®x)+...+Bu.
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@ Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:
X = A(x) + Bu with A(0) = 0.
Taylor expansion of state equation about x = 0 yields

X=Ax+H(x®x)+...+Bu.

Instead of truncating Taylor expansion, Carleman (bi)linearization takes into account K
higher order terms (h.o.t.) by introducing new variables:

(k-1) times

Here: K =2, i.e., z:= x? = x@x.

Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:
X = A(x) + Bu with A(0) = 0.
Taylor expansion of state equation about x = 0 yields

X=Ax+H(x®x)+...+Bu.

Instead of truncating Taylor expansion, Carleman (bi)linearization takes into account
K =2 higher order terms (h.o.t.) by introducing new variables: =z := x® = x®x.
Then z satisfies

z=x®@x+x®%=(Ax+Hz+...+Bu)®@x+x® (Ax+ Hz+ ...+ Bu)
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@ Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:
X = A(x) + Bu with A(0) =0,
y = Cx+ Du.

Instead of truncating Taylor expansion, Carleman (bi)linearization takes into account

K =2 higher order terms (h.o.t.) by introducing new variables: =z := x® = x®x.

Then z satisfies
z=x®@x+x®%=(Ax+Hz+...+Bu)®@x+x® (Ax+ Hz+ ...+ Bu)

. - . T 2
Ignoring h.o.t. = bilinear system with state x® := [XT,ZT] eR™™:

d o [A H o 0 0], e . [B
ar” ‘[o A®I,,+I,,®A]X +[B®I,,+In®B o](x Jut|o]

y® = [C O]x® + Du.
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‘\ @ Carleman Bilinearization

Consider smooth nonlinear, control-affine system with m = 1:

X = A(x) + Bu with A(0) =0,

y = Cx+ Du.
Instead of truncating Taylor expansion, Carleman (bi)linearization takes into account
K =2 higher order terms (h.o.t.) by introducing new variables: =z := x?@ = x@x.
Then z satisfies

z=x®@x+x®%=(Ax+Hz+...+Bu)®@x+x® (Ax+ Hz+ ...+ Bu)

. - . T 2
Ignoring h.o.t. == bilinear system with state x® := [XT,ZT] eR™™:

d o [A H o 0 0], e . [B
ar ‘[o A®I,,+I,,®A]X +[B®I,,+In®B o](x Jut|o]

y® = [C O]x® + Du.

Bilinear systems directly occur, e.g., in biological systems, PDE control problems with
mixed boundary conditions, " control via coefficients”, networked control systems,

(© Peter Benner
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@ Quadratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS '03].

B c cu QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

. Feng, X. Zeng, C. iang, D. Zhou, an . Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings o 2004,
B LF X.Z C. Ch D. Zh d Q. F Di li d ducti ith variational analysis. In: P d f DATE
pp. 1316-1321.

B Jir Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.
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@ Quadratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS "03].

But exact representation of smooth nonlinear systems possible:

heorem [G /711]

Assume that the state equation of a nonlinear system is given by

X = aox + a1g1(x) + ... + akgk(x) + Bu,

where gj(x) : R” - R" are compositions of uni-variable rational, exponential, logarithmic,
trigonometric or root functions, respectively. Then, by iteratively taking derivatives and

adding algebraic equations, respectively, the nonlinear system can be transformed into a
QB(DAE) system.

B cocu QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

B L Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

B Jir Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.
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@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

x1 = exp(—x2) -\/x2 +1, X0 = =X + U.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

x1 = exp(—x2) -\/x2 +1, X0 = =X + U.

71 = exp(—x2), z:=/x? +1.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:

o Lift to higher dimensions using const. - n additional variables,
@ convex relaxation.

x1 = exp(—x2) -\/x2 +1, X0 = =X + U.
71 = exp(—x2), Zp =
X1=21" 2,

X1

).(2 =—Xp + U,

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.

Peter Benner

MOR for Nonlinear Systems Using Ti

fer Functions



@ Quadratic-Bilinearization

McCormick Relaxation

Idea borrowed from non-convex optimization:

o Lift to higher dimensions using const. - n additional variables,
@ convex relaxation.

x1 = exp(—x2) -\/x2 +1, X0 = =X + U.

71 = exp(—x2), z:=/x? +1.
).(1 =212y, ).(2=—X2+U,
1 =-z1- (=% +u), By= AR = . 7.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.

Peter Benner

MOR for Nonlinear Systems Using Ti fer Functions



@ Quadratic-Bilinearization

McCormick Relaxation

Idea borrowed from non-convex optimization:

o Lift to higher dimensions using const. - n additional variables,
@ convex relaxation.

x1 = exp(—x2) -\/x2 +1, X0 = =X + U.

71 = exp(—x2), z:=/x? +1.
).(1 =712, ).(2=—X2+U,
1 =-z1- (=% +u), By= AR = . 7.

Alternatively, polynomial-bilinear system can be obtained using iterated Lie
brackets [Gu ’11].

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.

Peter Benner
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@ Some QB-transformable Systems

FitzHugh-Nagumo model Sine-Gordon equation
0.1 T T
0.2
5.1072 .
E 0.1
= 0
0 —2
1 — 09 —5.1072 | i
0 .
—0.1 | | | |
v 0 < 0 02 04 06 08 1
length

@ Model describes activation and

o Applications in biomedical studies,
de-activation of neurons.

mechanical transmission lines, etc.

@ It contains a cubic nonlinearity,
which can be transformed to QB
form.

@ It contains sin function, which can
also be rewritten into QB form.

MOR for Nonlinear Systems Using Transfer Functions



“ @ Linear Systems and their Transfer Functions

The Laplace transform

Definition

The Laplace transform of a time domain function f € Lj joc with dom (f) =R§ is

L:fF, F(s):=L{f(t)}(s):= fowe‘“f(t)dt, seC.

F is a function in the (Laplace or) frequency domain.

Note: With ?s =0 and Js > 0, w := Js takes the role of a frequency (in [rad/s], i.e.,
w = 27v with v measured in [Hz]).

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Linear Systems and their Transfer Functions

The Laplace transform

Definition
The Laplace transform of a time domain function f € Lj joc with dom (f) =R§ is

L:fF, F(s):=L{f(t)}(s):= fowe‘“f(t)dt, seC.

F is a function in the (Laplace or) frequency domain.

Note: With ?s =0 and Js > 0, w := Js takes the role of a frequency (in [rad/s], i.e.,
w = 27v with v measured in [Hz]).

Lemma

L{f(t)}(s) = sF(s) - f(0).

MOR for Nonlinear Systems Using Transfer Functions
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@ Linear Systems and their Transfer Functions

The Laplace transform

Definition

The Laplace transform of a time domain function f € Lj joc with dom (f) =R§ is
L:feF, F(s)=L{f(D)}(s) = fo etf(t)dt, seC.
F is a function in the (Laplace or) frequency domain.

Lemma

L{F(t)}(s) = sF(s) - F(0).

Note: for ease of notation, in the following we will use lower-case letters for both,
a function and its Laplace transform!

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Linear Systems and their Transfer Functions

Transfer functions of linear systems

Linear Systems in Frequency Domain
Application of Laplace transform  (x(t) = x(s), x(t) = sx(s) — x(0)) to linear system

X(t) = Ax(t) + Bu(t), y(t)=Cx(t)+ Du(t)
with x(0) =0 yields:

sx(s) = Ax(s) + Bu(s), y(s)=Cx(s)+ Du(s),

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Linear Systems and their Transfer Functions

Transfer functions of linear systems

Linear Systems in Frequency Domain
Application of Laplace transform  (x(t) = x(s), x(t) = sx(s) — x(0)) to linear system

X(t) = Ax(t) + Bu(t), y(t)=Cx(t)+ Du(t)
with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
= 1/O-relation in frequency domain:

y(s) = (Clsh— A B+ D )u(s).
=:G(s)

G(s) is the transfer function of X.
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” @ Linear Systems and their Transfer Functions

Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) = x(s), x(t) = sx(s) — x(0)) to linear system
X(t) = Ax(t) + Bu(t), y(t)=Cx(t)+ Du(t)

with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s)=Cx(s)+ Du(s),

== |/O-relation in frequency domain:

y(s) = (Clsh— A B+ D )u(s).
—_
=:G(s)
G(s) is the transfer function of X.

Model reduction in frequency domain: Fast evaluation of mapping u — y.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



” @ Linear Systems and their Transfer Functions

Formulating model reduction in frequency domain
Approximate the dynamical system

X
y

Ax+Bu, AeR™" BeR™m
Cx+Du, CeRI*" DeRI*M

by reduced-order system

£ AR+ Bu, AeR™ BeR™M,
¥ Cx+Du, CeR¥" DecR™

of order r << n, such that

ly =9l = 16u~Gul <G =G - u] < tolerance - |u].

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



” @ Linear Systems and their Transfer Functions

Formulating model reduction in frequ
Approximate the dynamical system

X = Ax+Bu, AeR™" BeR™™M
y Cx+Du,  CeRI" DeR™M,

by reduced-order system

£ A%+ Bu, AeR™, BeR™M,
¥ Cx+Du, CeR¥" DecR™

of order r << n, such that
ly =9l = |Gu-Gu| < |G - G| - |ul < tolerance - |lu].

— Approximation problem:  min |G - G]|.
order (G)<r

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions
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5. References

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Balanced Truncation for Linear Systems

Basic concept
Xx(t) = Ax(t) + Bu(t),
y(t) = Cx(1),

is balanced, if system Gramians, i.e., solutions P, @ of the Lyapunov equations

@ System X : { with A stable, i.e., A(A) cC",

AP+ PA" + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0n) with 01 >02>...>0,>0.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Balanced Truncation for Linear Systems

Basic concept
Xx(t) = Ax(t) + Bu(t),
y(t) = Cx(1),

is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

@ System X : { with A stable, i.e., A(A) cC",

AP+ PA" + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0n) with 01 >02>...>0,>0.
@ {o1,...,0,} are the Hankel singular values (HSVs) of X.
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@ Balanced Truncation for Linear Systems

Basic concept
Xx(t) = Ax(t) + Bu(t),
y(t) = Cx(1),

is balanced, if system Gramians, i.e., solutions P, @ of the Lyapunov equations

@ System X : { with A stable, i.e., A(A) cC",

AP+ PA" + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0n) with 01 >02>...>0,>0.
@ {01,...,0,} are the Hankel singular values (HSVs) of X.

o Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) w— (TAT ', TB,CTH)

N FEA RS
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@ Balanced Truncation for Linear Systems

Basic concept
Xx(t) = Ax(t) + Bu(t),
y(t) = Cx(1),

is balanced, if system Gramians, i.e., solutions P, @ of the Lyapunov equations

@ System X : { with A stable, i.e., A(A) cC",
AP+ PA" + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0n) with 01 >02>...>0,>0.
@ {01,...,0,} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) w— (TAT ', TB,CTH)
A A B:
- G G ).

@ Truncation ~ (A, B, €) = (Aw, B1, G1).

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



“ @ Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H: Lp(—00,0) > L5(0,00) : u_ > y,.

” functional analyst’s point of view”
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@ Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H: Lp(—00,0) > L5(0,00) : u_ > y,.

” functional analyst’s point of view”

Minimum energy to reach xp in balanced coordinates:

inf / u(t) u(t)dt =x3 P 'xo = Z xoj
ueL%O()—oc,O] 1
x(0)=xq
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@ Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H:Ly(=00,0) = Lr(0,00): u_ = y,.

” functional analyst’s point of view”

Minimum energy to reach xp in balanced coordinates:

. 9 . |
inf f u(t) u(t)dt =x3 P 'xo = —xgj
uely(=00,0] J—o0o j=10j '

x(0)=xg

Energy contained in the system if x(0) = xo and u(t) =0 in balanced coordinates:

oo n
3= [ y(®) Ty (e de = x5 @0 = Y 0,

J=1

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



” @ Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H:Ly(=00,0) = Lr(0,00): u_ = y,.

” functional analyst’s point of view”

In balanced coordinates, energy transfer from u_ to y, is

[y(t)Ty(t)dt .
[E o= 0 _ 2.2
= Sup 0 = UJ XO,_]'
uely(—e0,0] T ”XO ”2 j=1
=0 [ u(t)Tu(t)dt

" engineer’s point of view”

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



<S4 @ Balanced Truncation for Linear Systems

Motivation:

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H:Ly(=00,0) = Lr(0,00): u_ = y,.

” functional analyst’s point of view”

In balanced coordinates, energy transfer from u_ to y, is

[y®OTvwd
E.- 0 _ 2.2
= sup  — = 0 Xp,j-
uely(—o=,0] T ”XO ”2 j 1
x(0)=xq f U(t) U(i’) dt

" engineer’s point of view”

— Truncate states corresponding to “small” HSVs

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



“ @ Balanced Truncation for Linear Systems

Properties

o Reduced-order model is stable with HSVs o7, ..., 0,.
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“ @ Balanced Truncation for Linear Systems

Properties

o Reduced-order model is stable with HSVs o7, ..., 0,.

o Adaptive choice of r via computable error bound:

ly =912 <16 = Gla lul2 < (23,1 0%) lul2-
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@ Balanced Truncation for Linear Systems

Properties

o Reduced-order model is stable with HSVs o7, ..., 0,.

o Adaptive choice of r via computable error bound:

ly =912 <16 = Gla lul2 < (23,1 0%) lul2-

Practical implementation

@ Rather than solving Lyapunov equations for P, @ (n? unknowns!), find
S,R € R™* with s <« n such that P~ SST, Q ~ RR".

o Reduced-order model directly obtained via small-scale (s x s) SVD of RTS!

o No O(n®) or O(n?) computations necessary!

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Interpolatory Model Reduction

Computation of reduced-order model by projection
Given linear (descriptor) system Ex = Ax + Bu, y = Cx with transfer function

G(s) = C(sE-A)'B,

a ROM is obtained using truncation matrices V, W ¢ R™" with WV = [,
(~ (VWWT)2 = VWT is projector) by computing

E-WTEV, A=wW'AV, B=W'B, C=CV.

Petrov-Galerkin-type (two-sided) projection: W # V/,
Galerkin-type (one-sided) projection: W = V.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



w @ Interpolatory Model Reduction

Computation of reduced-order model by projection
Given linear (descriptor) system Ex = Ax + Bu, y = Cx with transfer function

G(s) = C(sE-A)'B,

a ROM is obtained using truncation matrices V, W ¢ R™" with WV = [,
(~ (VWWT)2 = VWT is projector) by computing

E-WTEV, A=wW'AV, B=W'B, C=CV.

Petrov-Galerkin-type (two-sided) projection: W # V/,
Galerkin-type (one-sided) projection: W = V.

Rational Interpolation/Moment-Matching
Choose V/, W such that

G(s,-)=@(s,-), j=1,...,k,
and
G(J)— G(sJ) i=1,...,K, j=1,... k.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Interpolatory Model Reduction

[GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span{(siE-A)"'B,...,(skE -A)'B} ¢ Ran(V),
span{(le—A)_TCT,...,(skE—A)_TCT} c Ran(W),

then J J
G(s) =G(s): £ G(s) = —-G(s), forj=1,....k

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Interpolatory Model Reduction

[GRIMME ’97, VILLEMAGNE/SKELTON ’

span{(siE-A)"'B,...,(skE -A)'B} ¢ Ran(V),
span{(le—A)_TCT,...,(skE—A)_TCT} c Ran(W),

then J J
G(s) = G(s)), EG(S‘I‘) = EG(SJ'), forj=1,... k.

Remarks:
computation of VW from rational Krylov subspaces, e.g.,
— dual rational Arnoldi/Lanczos [GrRIMME '97],

— lterative Rational Krylov Algorithm (IRKA) computes Hz-optimal model of given
order r, i.e., solves transfer function approximation problem in H,-norm, using
tangential rational interpolation [ANTOULAS/BEATTIE/GUGERCIN "06/°08].

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Interpolatory Model Reduction

[GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span{(siE-A)"'B,...,(skE -A)'B} ¢ Ran(V),
span{(le—A)_TCT,...,(skE—A)_TCT} c Ran(W),

then J J
G(s) =G(s): £ G(s) = —-G(s), forj=1,....k

Remarks:

using Galerkin /one-sided projection (W = V) yields G(s;) = G(s;), but in general

—G(SJ)% G(sj)

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Interpolatory Model Reduction

[GRIMME ’97, VILLEMAGNE/SKELTON ’87]

span{(siE-A)"'B,...,(skE -A)'B} ¢ Ran(V),
span{(le—A)_TCT,...,(skE—A)_TCT} c Ran(W),

then
G(s)=6(s), SG(s)=26(s), forj=1,...k

Remarks:

k =1, standard Krylov subspace(s) of dimension K:
range (V) = Ki((s1E = A)™', (st E - A) ' B).

~> moment-matching methods/Padé approximation [FREUND/FELDMANN ‘95],
%G(sl) = %G(sl), i=0,... K-1(+K).

(© Peter Benner
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@ Interpolatory Model Reduction

Remarks:
k =1, standard Krylov subspace(s) of dimension K:
range (V) = K ((s1E - A)™', (siE - A) ' B).
~ moment-matching methods/Padé approximation [FREUND/FELDMANN '95],

d d - .

EG(Sl)=EG(S1), I=0,...,K—1(+K).

Recent developments:

Adaptive choice of interpolation points and number of moments to be matched based on

dual-weighted residual based error estimate!

L. Feng, J. G. Korvink, P. Benner.

A Fully Adaptive Scheme for Model Order Reduction Based on Moment-Matching. |/EEE Transactions on
Components, Packaging, and Manufacturing Technology, 5(12):1872-1884, 2015.

L. Feng, A. C. Antoulas, P. Benner.

Some a posteriori error bounds for reduced order modelling of (non-)parametrized linear systems. MP/
Magdeburg Preprints MPIMD /15-17, October 2015.
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@ Balanced Truncation for Nonlinear Systems

Approaches

@ Nonlinear balancing based on energy functionals [ScherpeN "93, GrRAY/MESKO '96].

Definition [ScHERPEN ’93, GRAY/MESKO 96]

The reachability energy functional, Lc(xo), and observability energy functional, L,(xo) of
a system are given as:

Loo)= i 2 [P, Lo =3 [ Iy
0= 0] 2 e : 0)=5 WY :
x(=o0)=0, X(0)=%

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.
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@ Balanced Truncation for Nonlinear Systems

Approaches

@ Nonlinear balancing based on energy functionals [ScherpeN "93, GrRAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL '99, WILLCOX/PERAIRE "02].

Example: controllability Gramian from time domain data (snapshots)

1. Define reachability Gramian of the system

P= [ x(t)x(t)"dt, where x(t) solves x = f(x,3), x(0) = x.
Use time-domain integrator to produce snapshots xx ~ x(tx), k=1,..., K.
Approximate P =~ Zszo wkxkx,;r with positive weights wk.

Analogously for observability Gramian.
Compute balancing transformation and apply it to nonlinear system.

Gl gm @

Disadvantage: Depends on chosen training input (e.g., d(to)) like other POD
approaches.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Balanced Truncation for Nonlinear Systems

Approaches

@ Nonlinear balancing based on energy functionals [ScherpeN "93, GrRAY/MESKO '96].
Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL '99, WILLCOX/PERAIRE "02].
Disadvantage: Depends on chosen training input (e.g., d(to)) like other POD
approaches.

@ ~ Goal: computationally efficient and input-independent method!

B ws. Gray and J. P. Mesko. Controllability and observability functions for model r ion of lii systems. In Proc. of the Conf. on Information
Sci. and Sys., pp. 1244-1249, 1996.

B s Lall, J. Marsden, and S. Glavaski. A subspace approach to balanced truncation for model reduction of nonlinear control systems. [NTERNATIONAL
JOURNAL OF ROBUST AND NONLINEAR CONTROL, 12:519-535, 2002.

B imA Scherpen. Balancing for nonlinear systems. Systins & CONTROL LETTERS, 21:143-153, 1993,

B K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA JourNAL, 40:2323-2330, 2002.
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@ New ” Gramians”

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.
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@ New ” Gramians”

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For example, (locally) Lc(x0) > %XOTIN’_lxo, where P=P7 >0 [GRAY/MESKO "96].

@ For bilinear systems, such local bounds were derived in [B./Damum '11] using the
solutions to the Lyapunov-plus-positive equations:

AP+ PAT + ¥ APAT + BBT =0,
ATQ+ QAT + ¥ ATQA +CTC=0.

(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

o Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN 13, SHANK/SIMONCINI/SzYLD ’16, KURSCHNER ’17].
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@ New ” Gramians”

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For example, (locally) Lc(x0) > %XOTﬁ_lxo, where P=P7 >0 [GRAY/MESKO "96].
@ For bilinear systems, such local bounds were derived in [B./Damum '11] using the
solutions to the Lyapunov-plus-positive equations:
AP+ PAT + 7 APAT + BBT =0,
ATQ+QAT + ™ AT QA +CTC=0.
(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

o Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN 13, SHANK/SIMONCINI/SzYLD ’16, KURSCHNER ’17].
@ Here we aim at determining algebraic Gramians for QB systems, which
e provide bounds for the energy functionals of QB systems,
o generalize the Gramians of linear and bilinear systems, and

o allow us to find the states that are hard to control as well as hard to
observe in an efficient and reliable way.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Gramians for QB Systems

Controllability Gramians

@ Consider input — state map of QB system (m=1, N = A;):
X(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) =0.

@ Integration yields
t

¢
x(t):feAUlBu(t—al)dal+feA”1Nx(t—0'1)u(t—01)d0'1
0 0

¢
+ / N Hx(t - 1) ® x(t — o1)do
0

[RucH ’81]
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@ Gramians for QB Systems

Controllability Gramians

@ Consider input — state map of QB system (m=1, N = A;):
X(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) =0.

@ Integration yields
t

¢
x(t):feAUlBu(t—al)dal+feA”1Nx(t—0'1)u(t—01)d0'1
0 0

¢
+ / N Hx(t - 1) ® x(t — o1)do
0

t t t-o1
:feAalBu(t—al)d01+f / eI Ne* 2 Bu(t - o1 )u(t — o1 — 02)dordo
0 0 0
t t—-oyt-o1
+f f f eAalH(eAazB®eAJ3B)u(t—a'1—O'Q)U(t—ol—0’3)d0’1d0’2d0’3+...
0 0 0

[RucH ’81]
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@ Gramians for QB Systems

Controllability Gramians

@ Consider input — state map of QB system (m=1, N = A;):
X(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) =0.

@ Integration yields
t

¢
x(t):feAUlBu(t—al)dal+feA01Nx(t—0'1)u(t—01)d0'1
0 0

¢
+ / N Hx(t - 1) ® x(t — o1)do
0

t t t-o1
:feAalBu(t—al)d01+f / eI Ne* 2 Bu(t - o1 )u(t — o1 — 02)dordo
0 0 0
t t—-oyt-o1
+f f f eAalH(eAazB®eAJ3B)u(t—a'1—O'Q)U(t—ol—0’3)d0’1d0’2d0’3+...
0 0 0

@ By iteratively inserting expressions for x(t —e), we obtain the Volterra series
expansion for the QB system. [Ruch '81]

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions /



@ Gramians for QB Systems

Controllability Gramians ...
Using the Volterra kernels, we can define the controllability mappings
My(t1) = e™B, Ma(ty, t2) := €™ N1 (1),
Ms(t1, to, t3) = eAtl[H(l_h(tQ) ®@Mi(t3)), NMa(ty, t2)], .- .

and a candidate for a new Gramian:

P::ZPk, where Pk:f f I'Ik(tl,...,tk)l'lk(tl,...,tk)Tdtl...dtk.
k=1 0 0

© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Gramians for QB Systems

Controllability Gramians
Using the Volterra kernels, we can define the controllability mappings
My(t1) = e™B, Ma(ty, t2) := €™ Ny (1),
Ms(t1, to, t3) = eAtl[H(l_l1(t2) ®@Mi(t3)), NMa(ty, t2)], ...

and a candidate for a new Gramian:

P:=S P, where Pk=f f M(tey - )Mty 1) dta ... dii.
k=1 0 0

[B./GoOYAL ’16]

If it exists, the new controllability Gramian P for QB (MIMO) systems with stable A
solves the quadratic Lyapunov equation

AP+ PAT + Y APA] + HP® P)H" + BBT = 0.
k=1

Note: H =0 ~ "bilinear reachability Gramian”; if additionally, all A, =0 ~ linear one.
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@ Gramians for QB Systems

Dual systems and observability Gramians [FusiMoTo ET AL. *02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.
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@ Gramians for QB Systems

Dual systems and observability Gramians [FusiMoTo ET AL. *02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.

o Employ close relation between port-Hamiltonian systems and dual systems of
nonlinear systems.
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@ @ Gramians for QB Systems

Dual systems and observability Gramians [FusmoTo ET AL. '02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.

o Employ close relation between port-Hamiltonian systems and dual systems of
nonlinear systems.

o Allows to define dual systems for QB systems:

x(t) = Ax(t) + Hx(t) ® x(t) + Y Aex(t)u(t) + Bu(t), x(0) =0,
%g(t) = =ATxa(t) - HOx(t) ® xa(t) = 37 Al xa(t)u(t) - CTug(t), xa(o0) =0,
ya(t) = B xq(t),

where H(® is the mode-2 matricization of the QB Hessian.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Gramians for QB Systems

Dual systems and observability Gramians for QB systems [B./GovAL 16]

o Writing down the Volterra series for the dual system ~» observability
mapping.

@ This provides the observability Gramian Q for the QB system. It solves

ATQ+QA+Y AT QA+ HA (P& Q) (H®)  + cTC =0.
k=1
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@ Gramians for QB Systems

Dual systems and observability Gramians for QB systems [B./GovAL '16]

@ Writing down the Volterra series for the dual system ~ observability
mapping.

@ This provides the observability Gramian Q for the QB system. It solves

ATQ+QA+ Y ATQA+ HA (P& Q) (H?) +cTC=0.
k=1

Remarks:

— Observability Gramian depends on controllability Gramian!
— For H =0, obtain "bilinear observability Gramian”, and if also all A, =0, the
linear one.
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’\4}@ Gramians and Energy Functionals

Bounding the energy functionals:

[B./GoyAL ’16]

In a neighborhood of the stable equilibrium, B.(0),
Lc(x0) 2 %XOTP_lxo, Lo(x0) < %XOTQXm xo € B-(0),

for "small signals” and xp pointing in unit directions.
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@ Gramians and Energy Functionals

Bounding the energy functionals:
Lemma [B./GoYAL ’16]

In a neighborhood of the stable equilibrium, B.(0),

Lc(x0) > %XJ—P_]'X(), Lo(xp) < %XOTQX(), xo € B=(0),

for "small signals” and xp pointing in unit directions.

Another interpretation of Gramians in terms of energy functionals

1. If the system is to be steered from 0 to xg, where xg ¢ range (P), then
Lc(xp) = oo for all input functions u.

2. If the system is (locally) controllable and xg € ker (Q), then L,(xo) = 0.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Gramians and Energy Functionals

lllustration using a scalar system

x(t) = ax(t) + hx?(t) + nx(t)u(t) + bu(t), y(t) = cx(t).
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@ Gramians and Energy Functionals

lllustration using a scalar system

x(t) = ax(t) + hx?(t) + nx(t)u(t) + bu(t), y(t) = cx(t).

1072 1072
T T
3 —— Actual energy 4 6k —— Actual energy g
-------- Via Gramians : wee Via Gramians ]

2 -
1 -
O |

-0.2 0 0.2

X X
(2) Input energy lower bound. (b) Output energy upper bound.

Figure: Comparison of energy functionals for —a=b=c=2,h=1,n=0.
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@ Truncated Gramians

o Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



@ Truncated Gramians

o Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

o Fix point iteration scheme can be employed but it still very expensive.
[Damm "08]
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@ Truncated Gramians

o Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

o Fix point iteration scheme can be employed but it still very expensive.
[Damm "08]

@ To overcome this issue, we propose truncated Gramians for QB systems.
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@ Truncated Gramians

o Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

o Fix point iteration scheme can be employed but it still very expensive.
[Damm "08]

@ To overcome this issue, we propose truncated Gramians for QB systems.

Definition (Truncated Gramians) [B./GoyaL ’16]

The truncated Gramians P7 and Q7 for QB systems satisfy

APr + PrAT =-BBT - """ N PN] - H(P @ P)HT,
ATQr+QrA=-CTC-Y7 NI QN - HP (P ® Q)(H®)T,

here
v AP+ PAT=-BBT and ATQ+QA=-CTC.
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@ Truncated Gramians

o T-Gramians approximate energy functionals better than the actual Gramians.
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@ Truncated Gramians

o T-Gramians approximate energy functionals better than the actual Gramians.

1072 1072
3 | —— Actual energy 1 6 ™| —— Actual energy

o\ [ Via Gramians B [ Via Gramians
2 - -- Via T-Gramians 4L~ |--- Via T-Gramians | &
I
0 |

-0.2 0 0.2

X X
(a) Input energy lower bounds. (b) Output energy upper bounds.

Figure: Comparison of energy functionals for —a=b=c=2,h=1,n=0.
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@ Truncated Gramians

@ T-Gramians approximate energy functionals better than the actual Gramians.

e g;(P-Q)>ci(Pr-Qy) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.
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@ Truncated Gramians

@ T-Gramians approximate energy functionals better than the actual Gramians.

e g;(P-Q)>ci(Pr-Qy) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

@ Most importantly, we need solutions of only four standard Lyapunov
equations.
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@ Truncated Gramians

o T-Gramians approximate energy functionals better than the actual Gramians.

o 0i(P-Q)>0c;(Pr- Q) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

@ Most importantly, we need solutions of only four standard Lyapunov
equations.

o Interpretation of controllability /observability of the system via T-Gramians:

o If the system is to be steered from 0 to xo, where xo ¢ range (Pr), then
Lc(Xo) = 090.

o If the system is controllable and xp € ker (Q7), then Lo(x0) = 0.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A, B, C.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py~ SST and Q7 ~ RR'.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py~ SST and Q7 ~ RR'.

3. Compute SVD of STR:
STR=UZVT =[U; Us]diag(X1,%2)[Vi Vo]T.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).

1: Input: A, H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py~ SST and Q7 ~ RR'.

3. Compute SVD of STR:

STR=UZVT = [U; Us]diag(X1,%5)[Vi Vo]T.

4: Construct the projection matrices )V and W:

(© Peter Benner

V=SUs; " and W= RV
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A, H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py~ SST and Q7 ~ RR'.

3. Compute SVD of STR:
STR=UZVT = [U; Us]diag(X1,%5)[Vi Vo]T.
4: Construct the projection matrices )V and W:
V=SUT; " and W= RV; 3 2.
5: Output: reduced-order matrices:
A=WTAY, H=WTH(VeV), A=WTAV,
B=wTB, C=cCV.

Remark: There are efficient ways to compute H, avoiding the explicit computation
of Vo V. [B./BREITEN 15, B./GOYAL/GUGERCIN. '16]
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@ Numerical Results

Chafee-Infante equation

VetV = v v, (0,L)x (0, T), 2

v(0,)=u(t),  (0.T). ’
v(L,.) =0, 0, 7).

v(x,0) = v (x), (0,L). > "'”T';,’,;i};j' ’

Figure: Chafee-Infante equation.

o Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN *15]
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@ Numerical Results

Chafee-Infante equation

e+ v v+ v, (0,L)x (0, T), 2
v(0,)=u(t),  (0.T), ’
vi(L,.) =0, (0, T), o

V(X7O) = VO(X)v (0» L) P ,ﬁsu

Time [s] oo

Figure: Chafee-Infante equation.

o Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN *15]
@ The transformed QB system is of order n=1,000.

@ The output of interest is the response at right boundary at x = L.
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@ Numerical Results

Chafee-Infante equation

Ve + V3 = vy + v, (0,L)x (0, T), 2,

v(0,.) = u(t), (0,7), :,‘

VX(L,‘):07 (O’ T)7 01

v(x,0) = vo(x), (0,L). Y 0.25
Time [s] 0o )

Figure: Chafee-Infante equation.

o Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN *15]
@ The transformed QB system is of order n=1,000.
@ The output of interest is the response at right boundary at x = L.

o We determine the reduced-order system of order r = 10.

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



<X @ Numerical Results

Chafee-Infante equation

|— Original System  ——BT  —— One-sided proj. = —— Two-sided proj.

Transient response Relative error
T T T 10t T T T

Time [s] Time [s]

Figure: Boundary control for a control input u(t) = 5t exp(-t).
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<X @ Numerical Results

Chafee-Infante equation

|— Original System  ——BT  —— One-sided proj. = —— Two-sided proj.

Transient response Relative error

3 10! T T T

Time [s] Time [s]

Figure: Boundary control for a control input u(t) = 25(1 +sin(27t))/2.
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<X @ Numerical Results

evi(x, t) = v (x, 1) + F(v(x, 1)) = w(x, t) +q,
Wt(Xa t) = hV(Xv t) —yw(x, t) +q,

with a nonlinear function 0.2
0.1
F(v(x,t)) = v(v-0.1)(1 - v). ’
0
The boundary conditions are as follows: 1 . o 0.2
) .

vi(0,t) = ip(t), w(L,t)=0, t>0,

where € = 0.015, h = 0.5, v =2, g = 0.05,
L=0.2.

o Input ig(t) =5-10*t3 exp(—~15t) serves as actuator.

MOR for Nonlinear Systems Using Transfer Functions
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<X @ Numerical Results

« Reduced system (BT) (r = 20) |

0.2

0
1.5 x. 0.2 0
v05 0.1z “ 04 0 04 08 1.2
0 v
(a) Limit-cycles at various x. (b) Projection onto the v—w plane.

Figure: Comparison of the limit-cycles obtained via the original and reduced-order (BT)
systems. The reduced-order systems constructed by moment-matching methods were
unstable.
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@ Conclusions — Balanced Truncation

@ BT extended to bilinear and QB systems.

@ Local Lyapunov stability is preserved.

@ As of yet, only weak motivation by bounding energy functionals.

@ No error bounds in terms of "Hankel” singular values.

o Computationally efficient (as compared to nonlinear balancing), and input
independent.

o To do:

error bound,
conditions for existence of new QB Gramians,
extension to descriptor systems,

o
)
)
o time-limited versions.
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@ Rational Interpolation for Nonlinear Systems

@ Applying multivariate Laplace transform to Volterra kernels yields generalized
transfer functions.
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@ Rational Interpolation for Nonlinear Systems

@ Applying multivariate Laplace transform to Volterra kernels yields generalized
transfer functions.

@ Rational interpolation of transfer functions using (rational) Krylov subspaces yields
moment-matching for bilinear systems:

@ 2005-10: [CONDON/IVANOV, PHILLIPS, BAI/SKOOGH, B./FENG, BREITEN/DAMM],

@ Hy-optimal model reduction via bilinear IRKA [B./BREITEN '12],

o extension to bilinear descriptor systems [B./GovAaL '16, AuMAD/B./GOYAL ’17].
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@ 2005-10: [CONDON/IVANOV, PHILLIPS, BAI/SKOOGH, B./FENG, BREITEN/DAMM],
@ Hy-optimal model reduction via bilinear IRKA [B./BREITEN '12],
o extension to bilinear descriptor systems [B./GovAaL '16, AuMAD/B./GOYAL ’17].

@ Analogously, for QB systems,

@ moment-matching via one-sided [PHILLIPS 03, FENG ET AL '05, Gu ’11] and
two-sided (SISO case) [B./BREITEN '12,’15] projection
— extension to MIMO systems: talk by M. Cruz Varona, today, 16h,

@ extension to special descriptor systems (" Stokes-type")
[AuMAD/B./GOYAL/HEILAND ’15],

o using Volterra series interpolation instead of transfer function interpolation

[AHMAD/B./JAIMOUKHA ’16, AHMAD/BAUR/B. ’17],

o Hs-quasi-optimal model reduction via TQB-IRKA [B./GoyAaL/GUGERCIN ’16]

— talk by P. Goyal, today, 16:30h,

(© Peter Benner MOR for Nonlinear Systems Using Transfer Functions



“ @ Rational Interpolation for Nonlinear Systems

@ Applying multivariate Laplace transform to Volterra kernels yields generalized
transfer functions.

@ Rational interpolation of transfer functions using (rational) Krylov subspaces yields
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@ Hy-optimal model reduction via bilinear IRKA [B./BREITEN '12],
o extension to bilinear descriptor systems [B./GovAaL '16, AuMAD/B./GOYAL ’17].

@ Analogously, for QB systems,

@ moment-matching via one-sided [PHILLIPS 03, FENG ET AL '05, Gu ’11] and
two-sided (SISO case) [B./BREITEN '12,’15] projection
— extension to MIMO systems: talk by M. Cruz Varona, today, 16h,

@ extension to special descriptor systems (" Stokes-type")
[AuMAD/B./GOYAL/HEILAND ’15],

o using Volterra series interpolation instead of transfer function interpolation

[AHMAD/B./JAIMOUKHA ’16, AHMAD/BAUR/B. ’17],

o Hs-quasi-optimal model reduction via TQB-IRKA [B./GoyAaL/GUGERCIN ’16]
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@ Rational interpolation of bilinear and QB systems using Loewner pencil framework
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