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Xx—Ax=f
Consider the solution of a PDE:
x € L3(I;L3(Q))

with I C R ... the time-interval
Q c R" ... the spatial domain
and its numerical approximation:

xeS VY

with S c L2(]) ... discretized time
Y c L3(Q) ... a FE space

Task: Find S ¢ S and ¥/ ¢ Y of much smaller dimension to express X.
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PDE solution x € L2(/; L3(R))
S c L2(J) ... discretized time
Y c L3(Q) ... a FE space

Consider finite dimensional subspaces

S= Span{lﬂb e ,Ws} - L2(I)
Y = span{vy,--- ,vq} € L3(Q)

with the mass matrices

Mg = [(l//i, ‘//I)Lz];,jﬂ

.....

and the product space
S-Y c L3(I;L3(Q)).
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‘\ @ ammmss. Space-Time Spaces

We represent a function
q
X= ZZX,‘.jVil/lj €S- Y
j=1 i=1
via its matrix of coefficients

j=1.....s s
- [x,,] i=1.. €RY

and vice versa.
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Optimal Space Time Product Bases
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@@ ammesy. Space-Time Spaces

Lemma

The space-time L2-orthogonal projection x = MNs.yX of a function
X € L3(I;L3(Q)) onto X is given as

((ory))sy - (X v1ds))sy
X =My : : Mg,
((vg¥1))sy - ((X.vqds))sy

where

(6 vig)sy = ((X.vi)y. ¥j)s i=fl(fQX(§,T)Vi(§) dé)y;(r) dr.
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Lemma (Space-time discrete L?-product)

Let x', x2 € S- Y. Then, with
01yl 6 Wt ¢ ¢ T _. ¢
X = [x1.1,...,xq,1, X X B Xig---»Xgs] =:vec(X"),

the inner product in S - Y is given as
(X = [ [ X2 dg dr = ()T (Ms & My)
and the induced norm as
Xy = XUy gom, = My 2X M2,

t=1,2.
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”@ aensrss. Optimal Bases

Lemma (Optimal low-rank bases in space)

Given x € S - Y and the associAated matrix of coefficients X. The
best-approximating subspace Y in the sense that |l ¢ ;X — x|s.y is minimal

over all subspaces of Y of dimension q is given as span{?;}i—1 g, Where
V4 V4
RV TR G
9y P
Va Vq

and Vy is the matrix of the § leading right singular vectors of

1/2 1/2
M}/2XMY2.
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”@ aensrss. Optimal Bases

The same arguments apply to the transpose of X:

Lemma (Optimal low-rank bases in time')

Given x € S - Y and the associated matrix of coefficients X. The
best-approximating subspace S in the sense that|[l¢ ., X — X||s.y is minimal

.....

'%1 /g
lﬂQ Try=il/2 l//2
o U§ MS :

‘;[’ 5 Us
where U; is the matrix of the § leading left singular vectors of

1/2ypn1/2
M, “XMg“.

1See © MB&PB&JH '18: SISC 40(3):A1611-A1641, 2018
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Section 3

Relation to POD
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The solution of a spatially discretized PDE
x: 7 RY
is projected to S - RY via

(X1, ¥1)2 . (X1, )2
Ns.yX = : : M.
(Xg: 1)1z .. (Xgo¥s)L2

In the (degenerated) case that y; is a delta distribution centered at 7; € |,
the coefficient matrix degenerates to

X1(T1) X1(T5)

xo(T1) - Xo(rs)

— the standard POD snapshot matrix!
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Section 4

Space-Time Galerkin-POD for Optimal Control
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COMPUTATIONAL METHODS IN . . . q
; @ SYSTEMS AND CONTROL THeory  OPace-Time Galerkin with Tensorized (POD reduced) Bases

m PDE:
X(7,€) + 9ex(1,6) =0 onIxQ

m Ansatz: x€ S/
= x(1.€) = X2, 2L Xy (7)9i(9)
- X = [l/A/1 l/?a]@[% flg]x = [\TJT®'?‘T]X
— time derivative: x = [ZUT @ TT]x

m Space-Time Galerkin Projection:
— Testfunction vj = §ii¥;, j=1,...,8,i=1,...,§
— Galerkin projection

T s iAT T — _ 7, s T T 2
fffﬂ[wc;'r][drw 7] dr déx fjfﬂ[uwﬂaf([\u ® TTIx)? dr de

Peter Benner Space-time Galerkin POD



Q‘@ Ao one by Tensorization of Quadratic Nonlinearities

With
(T TTIR)? =" e TV e TTix = %"V e TTT%,
the ji-th component of the nonlinearity

f f Vi - 902 dr d¢
7JQ
= [ [ iy 0197 e TR dr e
=X'[ v,\II\IIT dre® f Ji0:(TTT)? dé]x,
can be efficiently assembled by precomputing

f 50T dr  and f Fi(To:TT + 0:(T)TT) de.
i Q

— Exact hyper-reduction!
— The reduced model is independent of the full dimensions.
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Sattmems contmocreeony  Target: A Space-time Heart Shape

0.0 0.0 0.0

0.3 0.3 0.3
- S S

0.6 0.6 0.6

1.0 1.0 1.0
0.0 03 06 1.0 0.0 03 06 1.0 0.0 0.3 06 1.0

13 13 13
0.0 0.0 0.0
N
0.3 0.3 0.3
S S S
0.6 0.6 0.6

\

1.0 . 1.0 1.0
00 03 06 1.0 0.0 03 0.6 1.0 0.0 03 06 1.0
3 3 3

Figure: lllustration of the state, the adjoint, and the target and their approximation
via POD-reduced space-time bases.
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@ Seteme b contnomaeony  Finite Horizon Optimal Control of PDEs

For a target trajectory x* € L2(I; L?(Q2)) and a penalization parameter
a > 0, consider

I 1 %112 @ 2 .
J(xu) = Slx =Xl + Sllullz = e

subject to the generic PDE

X—Ax+N(x)=f+u, x(0)=0. (FWD)

If the nonlinearity is smooth, then necessary optimality conditions for
(x, u) are given through u = %/l, where A solves the adjoint equation

“A= A+ DyN(x)"A+x=x*, A(T)=0. (BWD)
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Q‘@ vaTeve b conmmomacony  Space-time POD for Suboptimal Controls

Algorithm (space-time-pod):
Offline Phase
1. Do standard forward/backward solves to compute the matrix of
measurements for x and A.
2. Compute optimal low-dimensional spaces S, R, /, and A for the
space and time discretization of the state x and the adjoint state A.
Online Phase

3. Solve the space-time Galerkin projected necessary optlmallty
conditions (FWD)-(BWD)? for the reduced costate .
Evaluation

— Inflate G := 11 and apply it in the full order simulation.

1
a

2(FWD)-(BWD) is a two-point boundary value problem with initial and terminal
conditions for which time stepping schemes like RKM do not apply.
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ey Benchmark: POD and SQP

Algorithm (sqp-pod):
Offline Phase

1. Do standard forward solves to compute the matrix of measurements
for x.

2. Compute optimal low-dimensional space Y of dimension q via POD.

3. Identify a (manually optimized) time grid of size n; on which the input
is linearly interpolated

— suboptimal control as minimizer G € R¥™ of J(u) := J(x(u), u).
Online Phase
4. Solve J(u) — min,gan, by SQP with BFGS® for G € R&™
Evaluation
— Inflate G and apply it in the full order simulation.

3Here, we use MINPACK routines as interfaced in the SciPy optimization module.
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The PDE The full model
m 1D Burger’s equation m Equidistant space and time grids
m/=(0,1],Q2=(0,1) m S =R... 120 linear hat functions
m Viscosity: v=5-1073 m Y = A ... 220 linear hat functions
m Step function as initial value
m Zero Dirichlet conditions The rAedUC‘fd model
m Y =A..ofdimensiong=p
The optimization m S#R... of dimensions § = 7
m o = 1073 (space-time-pod) mQ,p, 8, F .. varying
m o =6-10"° (sqp-pod) ® n; ... varying
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Performance of the Suboptimal Control
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Caption:

The achieved tracking vs.
the time needed to
compute the suboptimal
controls by means of

V0, © ... sqp-pod
v, ® ... space-time-pod.

Parameters:
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m The space-time Galerkin POD approach allows for
m construction of optimized Galerkin bases in space and time
m in a functional analytical framework
m The resulting space-time Galerkin discretization
m approximates PDEs by a small system of algebraic equations
m and naturally extends to boundary value problems in time
m can be used for efficient computations of (sub)optimal controls

m Future work:

m Use the functional analytical framework for error estimates.

m Exploit the freedom of the choice of the measurement functions in Y,

m to produce, e.g., optimal measurements or to compensate for
stochastic perturbations.
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SIAM J. Sci. Comput.(40). 2018.

M. Baumann, J. Heiland, and M. Schmidt.
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In P. Benner et al., editors, Numerical Algebra, Matrix Theory,
Differential-Algebraic Equations and Control Theory. Springer, 2015.

& J. Heiland and M. Baumann.
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