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1. Introduction

Model Reduction for Control Systems
System Classes

How general are these system classes?
Linear Systems and their Transfer Functions

Peter Benner
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@.«@ Introduction

Model Reduction for Control Systems

Nonlinear Control Systems

s { Ex(t) = f(t,x(t),u(t)), Ex(to)= Exo,
Loy = gt x(t), u(t))
with
o (generalized) states x(t) € R”,
o inputs u(t) € R”,
@ outputs y(t) € R9.
If E singular ~~ descriptor system. Here, E = [, for simplicity.

y
———

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@@ Model Reduction for Control Systems

f x(t) = f(t, x(t), u(t)),
> {y(r) = g(t.x(8), u(t)).

o states x(t) € R,

@ inputs u(t) € R,

@ outputs y(t) € RY.
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”‘@ Model Reduction for Control Systems

Original System (E = /,) Reduced-Order Model (ROM)

- {x‘(t) — (e, x(0), u(1)), c {?(t) = Fe.%(2), u(t).
y(t) = g(t, x(t), u(t)). y(t) = g(t, x(t), u(t)).
o states x(t) € R, o states X(t) € R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RY. o outputs y(t) € RY.

{%

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@&!@ Model Reduction for Control Systems

Original System (E = /,) Reduced-Order Model (ROM)

- {x‘(t) — (e, x(0), u(1)), c {?(t) = Fe.%(2), u(t).
y(t) = g(t, x(t), u(t)). y(t) = g(t, x(t), u(t)).
o states x(t) € R, o states X(t) € R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RY. o outputs y(t) € RY.

{%

lly — 7|l < tolerance - ||u|| for all admissible input signals.
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@&!@ Model Reduction for Control Systems

Original System (E = I,) Reduced-Order Model (ROM)

x(t) = f(t, x(t), u(t)), o [ X(t) = F(t, %(¢), u(t)),
R B {508 2 e oy
o states x(t) € R, o states X(t) € R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RY. @ outputs y(t) € RY.

N

lly = ¥l < tolerance - ||u|| for all admissible input signals.

Secondary goal: reconstruct approximation of x from X.
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@&f@ System Classes

Control-Affine (Autonomous) Systems

x(t) f(t, x, u) A(x(t)) + B(x(t))u(t), A:R"—=R" B:R"— R™",
y(t) g(t,x, u) C(x(t)) + D(x(t))u(t), C:R" =R, D:R" — RI*".
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@@ System Classes

Control-Affine (Autonomous) Systems

x(t) = f(t,x,u) A(x(t)) + B(x(t))u(t), A:R"—=R" B:R"— R™",
y(t) = g(t,x,u) C(x(t)) + D(x(t))u(t), C:R" =R, D:R" — RI*".

Linear, Time-Invariant (LTI) Systems

x(t) = f(t,x,u) = Ax(t)+ Bu(t), AER™" BeR™",
y(t) = g(t, x,u) Cx(t) + Du(t), CeRY" DeRI™.
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\' @ System Classes

Control-Affine (Autonomous) Systems

x(t) = f(t,x,u) A(x(t)) + B(x(t))u(t), A:R"—=R" B:R"— R™",
y(t) = g(t,x,u) C(x(t)) + D(x(t))u(t), C:R" =R, D:R" — RI*".

Linear, Time-Invariant (LTI) Systems

x(t) = f(t,x,u) = Ax(t)+ Bu(t), AER™" BeR™",
y(t) = g(t, x,u) Cx(t) + Du(t), CeRY" DeRI™.

Bilinear Systems

f(t,x, u) Ax(t) + D7, ui(t)Aix(t) + Bu(t), A,Ai e R™", B e R™™,
g(t,x,u) = Cx(t)+ Du(t), C eRY", D e RI*™.

-
~
=
N
Il

<

N
~

=
Il
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\' @ System Classes

Linear, Time-Invariant (LTI) Systems

x(t) = f(t,x,u) = Ax(t)+ Bu(t), AeR™" BeR™™,
y(t) = g(t,x,u) = Cx(t)+ Du(t), C eRIY*" D eRI*™.

Bilinear Systems

x(t) = f(t,x,u) = Ax(t)+ > i ui(t)Aix(t) + Bu(t), A, A €R™" BeR™™,
y(t) = g(t,x,u) = Cx(t)+ Du(t), C eRI*", D e R™*™.

Quadratic-Bilinear (QB) Systems

x(t) = f(t,x,u) = Ax(t)+ H (x(t) ® x(t)) + >, ui(t)Aix(t) + Bu(t),
A,Ai e Rnxn, H E Rnxnz, B e Rnxm,
y(t) = g(t,x,u) = Cx(t)+ Du(t), C e R¥*" D e RI*™,
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\' @ System Classes

x(t) f(t, x, u) A(x(t)) + B(x(t))u(t), A:R" - R" B:R" - R™",
y(t) g(t,x, u) C(x(t)) + D(x(t))u(t), C:R"—=RI D:R" — RI*".

Quadratic-Bilinear (QB) Systems

x(t) = f(t,x,u) Ax(t) + H (x(t) ® x(t)) + >, wi(t)Aix(t) + Bu(t),
A,Ai c Rnxn’ He Ranz’ Be ]Rnxm’

y(t) = g(t,x,u) = Cx(t)+ Du(t), C e R, D € R7*™,
Written in control-affine form:
Ax) = Ax+H((x®x), B(x) = [A1,...,An](In®x)+ B
C(x) = Cx, D(x) := D.
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atic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS '03].

B cou QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

B L Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

B Jir Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.
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QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS '03].

But exact representation of smooth nonlinear systems possible:

Assume that the state equation of a nonlinear system is given by

X = aox + a1g1(x) + ... + akgk(x) + Bu,

where gi(x) : R” — R" are compositions of uni-variable rational, exponential,
logarithmic, trigonometric or root functions, respectively. Then, by iteratively taking
derivatives and adding algebraic equations, respectively, the nonlinear system can be
transformed into a QB(DAE) system.

B coau QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

B L Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

B Jr Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.

(@© Peter Benner based MOR for Classes of Not



@ Quadratic-Bilinearization

McCormick Relaxation | .
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

x1 = exp(—x2) - \/x¢ + 1, X = —Xo + U.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

x1 = exp(—x2) - \/x¢ + 1, X = —Xo + U.
71 = exp(—x2), 7= /X + 1

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

x1 = exp(—x2) - \/x¢ + 1, X = —Xo + U.
71 = exp(—x2), 7= /X + 1

X1 =21 2, Xo = —Xo + U,

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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@ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

x1 = exp(—x2) - \/x¢ + 1, X = —Xo + U.
71 = exp(—x2), 7= /X + 1

X1 =21 2, Xp = —Xo + U,
. . Deszo5z10
Z1=—Z1'(—X2+U), 22:%222:)(1.21.

G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part |, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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w. @ Quadratic-Bilinearization

McCormick Relaxation
Idea borrowed from non-convex optimization:
o Lift to higher dimensions using const. - n additional variables,

@ convex relaxation.

x1 = exp(—x2) - \/x¢ + 1, X = —Xo + U.
71 = exp(—x2), 7= /X + 1

X1 =21 2, Xp = —Xo + U,
. . Deszo5z10
Z1=—Z1'(—X2+U), 22:%222:)(1.21.

Alternatively, polynomial-bilinear system can be obtained using iterated Lie
brackets [Gu '11].

B G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I, convex
underestimating problems. MATHEMATICAL PROGRAMMING, 10(1):147-175, 1976.
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@ Some QB-transformable Systems

FitzHugh-Nagumo model Sine-Gordon equation
0.1 T T
0.2
5-1072 | a
B 0.1
= 0
0 —2
B = 02 ~5.1072 | 8
0 .
—0.1 I I I I
v 0 < 01002 04 06 08 1
length
@ Model describes activation and @ Applications in biomedical studies,
de-activation of neurons. mechanical transmission lines, etc.
@ Contains a cubic nonlinearity, o Contains sin function, which can
which can be transformed to QB also be rewritten into QB form.
form.
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@ Linear Systems and their Transfer Functions

The Laplace transform

The Laplace transform of a time domain function f € Lj joc with dom (f) = RZ{ is

L:fes F, F(s):= L{F(£)}(s) = /Ooo e~tf(t)dt, secC.

F is a function in the (Laplace or) frequency domain.

Note: With Rs = 0 and s > 0, w := s takes the role of a frequency (in [rad/s], i.e.,
w = 27v with v measured in [Hz]).
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"@ Linear Systems and their Transfer Functions

The Laplace transform

+ .

The Laplace transform of a time domain function f € Ly joc with dom (f) =Ry is

L:fes F, F(s):= L{F(£)}(s) = /ooo etf(t)dt, seC.

F is a function in the (Laplace or) frequency domain.

Note: With Rs = 0 and s > 0, w := s takes the role of a frequency (in [rad/s], i.e.,
w = 27v with v measured in [Hz]).

Lemma

L{F(£)}(s) = sF(s) — £(0).
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"@ Linear Systems and their Transfer Functions

The Laplace transform

The Laplace transform of a time domain function f € Lj joc with dom (f) = RZ{ is

Lo F, F(s) = LIF(D)}(s) = / e=tf(t)dt, seC.
0
F is a function in the (Laplace or) frequency domain.

LLF(£)}(s) = sF(s) — £(0).

Note: for ease of notation, in the following we will use lower-case letters for both,
a function and its Laplace transform!
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@ Linear Systems and their Transfer Functions

Transfer functions of linear systems

Linear Systems in Frequency Domain
Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to linear system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



"@ Linear Systems and their Transfer Functions

Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to linear system
x(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
= |/O-relation in frequency domain:

y(s) = ( C(sl,— A)'B + D)u(s).

=:G(s)

G(s) is the transfer function of X.
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s

@ Linear Systems and their Transfer Functions

v

Transfer functions of linear systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to linear system
x(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)
with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s)+ Du(s),
= |/O-relation in frequency domain:

y(s) = ( C(sl,— A)'B + D)u(s).

=:G(s)

G(s) is the transfer function of X.

Model reduction in frequency domain: Fast evaluation of mapping u — y.

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@ Linear Systems and their Transfer Functions

Formulating model reduction in frequency domain

Approximate the dynamical system

x = Ax+ Bu, AeR™" B e RM™M,
y = Cx+ Du, C e RI*" D e RI*™

by reduced-order system

X = AR+ Bu, AeR™ BeR™m
9 = Cx+Du, CecR", DeRI*m

of order r < n, such that

ly =9Il = 16u = Gull < |G — G| - [lu| < tolerance - |lu].

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@ Linear Systems and their Transfer Functions

Formulating model reduction in frequency domain
Approximate the dynamical system

x = Ax-+ Bu, AeR™" B e R™™m,
y = Cx+ Du, C e RI*" D e RI*™

by reduced-order system

% = A%+Bu, AeR™, BeR*m
y = Cx+Du, CeRI, DeRIm

of order r < n, such that
ly =9Il = |Gu — Gul| < [|G — G| - ||ul| < tolerance - ||u].

— Approximation problem:  min |G — G|
order (G)<r

Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



2. Gramian-based Model Reduction for Linear Systems
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%. @ Balanced Truncation for Linear Systems

() = Ax(t) + Bu(t),
@ System X : {X() x() + Bu(t)

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, @ of the Lyapunov equations

with A stable, i.e., A(A) C C™,

AP+ PA"T + BBT = 0, ATQ+QA+C'C = o,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
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%. @ Balanced Truncation for Linear Systems

() = Ax(t) + Bu(t),
@ System X : {X() x() + Bu(t)

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

with A stable, i.e., A(A) C C™,

AP+ PA"T + BBT = 0, ATQ+QA+C'C = o,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
o {01,...,0n} are the Hankel singular values (HSVs) of X.

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



w. @ Balanced Truncation for Linear Systems

() = Ax(t) + Bu(t),
@ System X : {X() x() + Bu(t)

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

with A stable, i.e., A(A) C C™,

AP+ PA"T + BBT = 0, ATQ+QA+C'C = o,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
o {01,...,0n} are the Hankel singular values (HSVs) of X.

o Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) — (TAT ', TB,CT™Y)

- (& 2][8]ts ).
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w. @ Balanced Truncation for Linear Systems

() = Ax(t) + Bu(t),
@ System X : {X() x() + Bu(t)

y(t) = Cx(t),
is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

with A stable, i.e., A(A) C C™,

AP+ PA"T + BBT = 0, ATQ+QA+C'C = o,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02> ... > 0, > 0.
o {01,...,0n} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(AB,C) — (TAT ', TB,CT™Y)
_ Aun A By
= ([ 8] te @)

@ Truncation ~ (A, B, €) = (A1, Bi, Gi).
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@ Balanced Truncation for Linear Systems

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H : Ly(—00,0) = Lr(0,00) : u_ > y,.

" functional analyst’s point of view”

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



w. @ Balanced Truncation for Linear Systems

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H : Ly(—00,0) — Ly(0,00) : u_ > yy.
" functional analyst’s point of view”
Minimum energy to reach xp in balanced coordinates:
inf i u(t) u(t)dt =xg P 'xo = iix?
u€ly(—o0,0] XO 9 o 0.j

x(0)=x9 - j=1

(@© Peter Benner
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HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

@ Balanced Truncation for Linear Systems

H : Ly(—00,0) = L3(0,00) : u_ >y,

" functional analyst’s point of view”

Minimum energy to reach xp in balanced coordinates:

inf /0 u(t)Tu(t)dt = xg P~ 'x0 = 2": lx(ij
0j

vely(—o0,0] J_

x(0)=xq J=t

Energy contained in the system if x(0) = xo and u(t) = 0 in balanced coordinates:

oo n
IvIE = / V(&) () de = x] Qo = 3 0y
0 =

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



%. @ Balanced Truncation for Linear Systems

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H : Ly(—00,0) = L3(0,00) : u_ >y,
" functional analyst’s point of view”

In balanced coordinates, energy transfer from u_ to y, is

Ty(t)Ty(t) dt

E:= sup E a X2
uELy(—o0.0] || o||2 0.
x)=x0 f u(t)Tu(t) dt

” engineer’s point of view”

(© Peter Benner
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w. @ Balanced Truncation for Linear Systems

HSV are system invariants: they are preserved under 7 and determine the energy
transfer given by the Hankel map

H : Ly(—00,0) = L3(0,00) : u_ >y,
" functional analyst’s point of view”

In balanced coordinates, energy transfer from u_ to y, is

7° y()Ty(t) dt \

1
E:= sup = Zafxgd
u€Ly(—o0,0] ||Xo||2 -
x(0)=x0 f u(t)Tu(t) dt =

” engineer’s point of view”

— Truncate states corresponding to “small” HSVs

(© Peter Benner
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@ Balanced Truncation for Linear Systems

@ Reduced-order model is stable with HSVs o7, ..., 0.

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@ Balanced Truncation for Linear Systems

@ Reduced-order model is stable with HSVs o7, ..., 0.

o Adaptive choice of r via computable error bound:

~ A n
ly = lle <16 = Gllaelivllz < (2377 k) lull-
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ww@ Balanced Truncation for Linear Systems

@ Reduced-order model is stable with HSVs o7, ..., 0.

o Adaptive choice of r via computable error bound:

~ A n
ly = lle <16 = Gllaelivllz < (2377 k) lull-

Practical implementation

@ Rather than solving Lyapunov equations for P, @ (n2 unknowns!), find
S, R € R™* with s < n such that P~ SST, Q ~ RR”.

o Reduced-order model directly obtained via small-scale (s x s) SVD of RTS!

e No O(n?®) or O(n?) computations necessary!

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



3. Balanced Truncation for QB Systems
Balanced Truncation for Nonlinear Systems
Gramians for QB Systems
Truncated Gramians
Numerical Results

Peter Benner Gramian-based M for Classes of Nonlinear Systems



@ Balanced Truncation for Nonlinear Systems

Approaches

@ Nonlinear balancing based on energy functionals [ScurrpeNn 93, GrAY/MESKO '96].

Definition [SCHERPEN ’93, GRAY/MESKO '96]

The reachability energy functional, Lc(xo), and observability energy functional, L,(xo) of
a system are given as:

Le(x0) = 5[ luerd Lo =3 [ v

inf
uely(—o00,0] 2
x(—00)=0, x(0)=xo

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@ Nonlinear balancing based on energy functionals [ScurrpeNn 93, GrAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL '99, WiLLCOX/PERAIRE "02].

Example: controllability Gramian from time domain data (snapshots)

1. Define reachability Gramian of the system
P = [° x(t)x(t)"dt, where x(t) solves x = f(x,5), x(0) = xo.

2. Use time-domain integrator to produce snapshots xx ~ x(tx), k=1,..., K.
3. Approximate P ~ Z,’f=o Wixkx, with positive weights w.

4. Analogously for observability Gramian.

5. Compute balancing transformation and apply it to nonlinear system.

Disadvantage: Depends on chosen training input (e.g., 6(to)) like other POD
approaches.

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@ Nonlinear balancing based on energy functionals [ScurrpeNn 93, GrAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL '99, WiLLCOX/PERAIRE "02].

Disadvantage: Depends on chosen training input (e.g., d(to)) like other POD
approaches.

@ ~~ Goal: computationally efficient and input-independent method!

B w.s. Gray and J. P. Mesko. Controllability and observability functions for model reduction of nonlinear systems. In Proc. of the Conf. on Information
Sci. and Sys., pp. 1244-1249, 1996.

B ¢ Himpe emgr — The empirical Gramian framework. ALGORITHMS 11(7): 91, 2018. doi:10.3390/a11070091.

B S. Lall, J. Marsden, and S. Glavaski. A subspace approach to balanced truncation for model reduction of nonlinear control systems. INTERNATIONAL
JOURNAL OF ROBUST AND NONLINEAR CONTROL, 12:519-535, 2002.

ERERYS Scherpen. Balancing for nonlinear systems. SysTEns & CONTROL LETTERS, 21:143-153, 1993.

B K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. ATAA JourRNAL, 40:2323-2330, 2002.
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@ Nonlinear balancing based on energy functionals [ScurrpeNn 93, GrAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL '99, WiLLCOX/PERAIRE "02].

Disadvantage: Depends on chosen training input (e.g., d(to)) like other POD
approaches.

@ ~~ Goal: computationally efficient and input-independent method!

@ For recent developments on empirical Gramians: next talk by C. Himpe!

B w.s. Gray and J. P. Mesko. Controllability and observability functions for model reduction of nonlinear systems. In Proc. of the Conf. on Information
Sci. and Sys., pp. 1244-1249, 1996.

B ¢ Himpe emgr — The empirical Gramian framework. ALGORITHMS 11(7): 91, 2018. doi:10.3390/a11070091.

B S. Lall, J. Marsden, and S. Glavaski. A subspace approach to balanced truncation for model reduction of nonlinear control systems. INTERNATIONAL
JOURNAL OF ROBUST AND NONLINEAR CONTROL, 12:519-535, 2002.

ERERYS Scherpen. Balancing for nonlinear systems. SysTEns & CONTROL LETTERS, 21:143-153, 1993.

B K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. ATAA JourRNAL, 40:2323-2330, 2002.
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@ Balanced Truncation for QB Systems

Gramians for QB Systems

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.
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@ Balanced Truncation for QB Systems

Gramians for QB Systems

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For bilinear systems, such local bounds were derived in [B./Damwm ’11] using the
solutions to the Lyapunov-plus-positive equations:

AP+ PAT + "7 APA] + BB =0,
ATQ+ QAT+ " ATQA +CTC=0.
(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

@ Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN ’13, SHANK/SIMONCINI/SZYLD ’16].
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@ Balanced Truncation for QB Systems

Gramians for QB Systems

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For bilinear systems, such local bounds were derived in [B./Damwm ’11] using the
solutions to the Lyapunov-plus-positive equations:

AP+ PAT + "7 APA] + BB =0,
ATQ+ QAT+ " ATQA +CTC=0.

(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)
@ Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN ’13, SHANK/SIMONCINI/SZYLD ’16].
@ Here we aim at determining algebraic Gramians for QB (and polynomial)
systems, which
e provide bounds for the energy functionals of QB systems,
o generalize the Gramians of linear and bilinear systems, and
o allow us to find the states that are hard to control as well as hard to
observe in an efficient and reliable way.
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@ Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m=1, N = A;):
x(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) = 0.

@ Integration yields

¢ t
x(t) = /eAg1 Bu(t — o1)doy + / "I Nx(t — o1)u(t — o1)doy
0

0 t

+ / ATUHK(t — 01) © x(t — o1)don
0

[RucH '81]
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@ Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m=1, N = A;):
x(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) = 0.

@ Integration yields

¢ t
x(t) = /eAg1 Bu(t — o1)doy + / "I Nx(t — o1)u(t — o1)doy
0

0 t

+ / ATUHK(t — 01) © x(t — o1)don
0
t t t—op

= /eAUlBu(t — o1)doy + / / 1 NeAUZBu(t — o1)u(t — o1 — 03)dordos
0 0
t t—opt—o

+ / / / "1 H(eAUZB ® 73 B)u(t — o1 — o2)u(t — o1 — 03)dordoados + . ..
o o 0

[RucH '81]
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@ Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m=1, N = A;):
x(t) = Ax(t) + Hx(t) ® x(t) + Nx(t)u(t) + Bu(t), x(0) = 0.

@ Integration yields

¢ t
x(t) = /eAg1 Bu(t — o1)doy + / 1 Nx(t — o1)u(t — o1)doy
0

0 t

+/eAUle(t—01)®x(t—01)d01
0
t t t*o’l

= /eAUlBu(t — o1)doy + / / 1 NeAUZBu(t — o1)u(t — o1 — 03)dordos
0 0

t t—opt—oq

+ / / / "1 H(eAUZB ® 73 B)u(t — o1 — o2)u(t — o1 — o3)dordoados + . ..
o o 0

@ By iteratively inserting expressions for x(t — @), we obtain the Volterra series
expansion for the QB system. [Rucn *81]
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@ Gramians for QB Systems

Controllability Gramians
Using the Volterra kernels, we can define the controllability mappings
Mi(t) = eAtlB, Ma(ty, &) == eAthI_Il(tg),
Ma(tr, to, t5) i= e [H(M1(t2) ® Mi(ts)), NMa(t1, t2)], .. .

and a candidate for a new Gramian:

PZ:ZPk, where PkZ/ / I'Ik(tl,...,tk)l'lk(tl,...,tk)Tdtl...dtk.
k=1 0 0

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@@ Gramians for QB Systems

Controllability Gramians
Using the Volterra kernels, we can define the controllability mappings
Mi(t) == e™B, Ma(t1, 1) := €™ NNy (1),
Ns(t1, o, 1) := €™ [H(M1(t2) @ My(t3)), NMa(t1, 1)], - . .

and a candidate for a new Gramian:

PZ:ZPk, where PkZ/ / I'Ik(tl,...,tk)l'lk(tl,...,tk)Tdtl...dtk.
k=1 0 0

[B./GOYAL ’
If it exists, the new controllability Gramian P for QB (MIMO) systems with stable A
solves the quadratic Lyapunov equation

AP+ PAT +> " AcPA; + H(P© P)H™ + BBT =0.
k=1

Note: H = 0 ~~ "bilinear reachability Gramian™; if additionally, all Ax = 0 ~~ linear one.

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems 18/39



@ Gramians for QB Systems

Dual systems and observability Gramians [FusMoTo ET AL. '02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.
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@ Gramians for QB Systems

Dual systems and observability Gramians

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.

o Employ close relation between port-Hamiltonian systems and dual systems of
nonlinear systems.

(© Peter Benner Gramian-based

for Classes of Nonlinear Systems



@ Gramians for QB Systems

Dual systems and observability Gramians [FusiMOTO ET AL. '02]

o Controllability energy functional (Gramian) of the dual system <
observability energy functional (Gramian) of the original system.

o Employ close relation between port-Hamiltonian systems and dual systems of
nonlinear systems.

@ This allows to define dual systems for QB systems:
x(t) = Ax(t) + Hx(t) ® x(t) + Z::1 Arx(t)uk(t) + Bu(t), x(0) =0,

Xa(t) = —ATxq(t) = HOx(8) ® xy(t) = D

.yd(t) = BTXd(t)7

:’zl AT xq(t)ui(t) — CTug(t), xq(00) =0,

where H® is the mode-2 matricization of the QB Hessian.

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@ Gramians for QB Systems

Dual systems and observability Gramians for QB systems [B./GovYAL ’16]

o Writing down the Volterra series for the dual system ~» observability
mapping.

@ This provides the observability Gramian Q for the QB system. It solves

m T
ATQ+ QA+ ALQA+HO(P© Q) (H®) +cTc=o.
k=1
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@ Gramians for QB Systems

Dual systems and observability Gramians for QB systems [B./GovYAL ’16]

@ Writing down the Volterra series for the dual system ~~ observability
mapping.

@ This provides the observability Gramian Q for the QB system. It solves

m T
ATQ+ QA+ ATQA+HO(P@ Q) (H®) +cTc=o.

k=1

Remarks:

— Observability Gramian depends on controllability Gramian!
— For H = 0, obtain "bilinear observability Gramian”, and if also all Ax =0, the
linear one.
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@ Gramians and Energy Functionals

Bounding the energy functionals:

Lemma [B./GoYAL ’16]
In a neighborhood of the stable equilibrium, B.(0),

Le(xo) > %XOTP_lxo, Lo(xp) < %XJ—QX(), X0 € B:(0),

for "small signals” and xp pointing in unit directions.
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w. @ Gramians and Energy Functionals

Bounding the energy functionals:
Lemma [B./GoYAL ’16]
In a neighborhood of the stable equilibrium, B.(0),

Le(xo) > %XOTP_lxo, Lo(xp) < %XJ—QX(), X0 € B:(0),

for "small signals” and xp pointing in unit directions.

Another interpretation of Gramians in terms of energy functionals

1. If the system is to be steered from 0 to xg, where xp & range (P), then
Lc(xo) = oo for all feasible input functions u.

2. If the system is (locally) controllable and xo € ker (@), then Ly(xp) = 0.

(@© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



@ Gramians and Energy Functionals

lllustration using a scalar system

x(t) = ax(t) + hx2(t) + nx(t)u(t) + bu(t), y(t) = ex(t).
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@ Gramians and Energy Functionals

lllustration using a scalar system

x(t) = ax(t) + hx2(t) + nx(t)u(t) + bu(t), y(t) = ex(t).

102 102
T

—— Actual energy >
-------- Via Gramians

—— Actual energy ki
-------- Via Gramians

&~ [e)]
ooof

2 - - ]
1N @ S
ol e

-0.2 0 0.2

(a) Input energy lower bound. (b) Output energy upper bound.

Figure: Comparison of energy functionals for —-a=b=c=2,h=1,n=0.
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@ Truncated Gramians

@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.
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@ Truncated Gramians

@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

@ Fix point iteration scheme can be employed but very expensive.
[DammM 08|
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@ Truncated Gramians

@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

@ Fix point iteration scheme can be employed but very expensive.
[DammM 08|

@ To overcome this issue, we propose truncated Gramians for QB systems.

(© Peter Benner Gramian-based MOR for Classes of Nonlinear Systems



w. @ Truncated Gramians

@ Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

@ Fix point iteration scheme can be employed but very expensive.
[DammM 08|

@ To overcome this issue, we propose truncated Gramians for QB systems.

Definition (Truncated Gramians) [B./GovaL ’16]
The truncated Gramians P7 and Q7 for QB systems satisfy

APr+ PrAT = —BBT ~ 3" APAL — H(Pi@ PYHT,

ATQr+QrA=—CTC=3"" AlQA—HA(P o Q)H®)T,

here
M AP+ PAT=-BBT  and  ATQ+QA=-CTC.
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@ Truncated Gramians

o T-Gramians approximate energy functionals better than the actual Gramians.
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@ Truncated Gramians

o T-Gramians approximate energy functionals better than the actual Gramians.

1072 1072
3 —— Actual energy 1 6k | —— Actual energy ]

o\ [ Via Gramians K R Via Gramians
2 - == Via T-Gramians 4 - == Via T-Gramians
1p |
0 L

—-0.2 0 0.2

X X
(a) Input energy lower bounds. (b) Output energy upper bounds.

Figure: Comparison of energy functionals for —a=b=c=2,h=1,n=0.
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@ Truncated Gramians

@ T-Gramians approximate energy functionals better than the actual Gramians.

e 0i(P- Q) > oi(Py - Qr) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.
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@ Truncated Gramians

@ T-Gramians approximate energy functionals better than the actual Gramians.

e 0i(P- Q) > oi(Py - Qr) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

@ Most importantly, we need solutions of only four standard Lyapunov
equations.
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@ Truncated Gramians

o T-Gramians approximate energy functionals better than the actual Gramians.

e 0i(P- Q) > 0i(Pr - Q1) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

@ Most importantly, we need solutions of only four standard Lyapunov
equations.

o Interpretation of controllability /observability of the system via T-Gramians:

o If the system is to be steered from 0 to xo, where xo ¢ range (P7), then
Lc(x0) = oo.

o If the system is controllable and xg € ker (Q7), then Lo(xo) = 0.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.

3: Compute SVD of STR:
STR UZVT [Ul U2]d1ag(21,22)[V1 V2]T
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).

1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.

3: Compute SVD of STR:

N

(@© Peter Benner

STR UZVT [Ul U2]d1ag(21,22)[V1 V2]T

. Construct the projection matrices VV and W:

_ /2 _ /2
Y =5SUix; *and W= RV X %
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@ Balanced Truncation Algorithm

Algorithm 1 Balanced Truncation MOR for QB Systems (Truncated Gramians).
1: Input: A H, A, B, C.

2: Compute low-rank factors of T-Gramians: Py ~ SST and Qr ~ RR”.

3: Compute SVD of STR:
STR=UXVT = [U; Uo]diag(Xy, X)[Vi Vo]T.
4. Construct the projection matrices VV and W:
V=SUx; 2 and W= RVE; /2.
5: OQutput: reduced-order matrices:
=WTAY, A=WTHYV®V), Ac=WTAY,
B=WTB, C=CV.

Remark: There are efficient ways to compute A, avoiding the explicit computation
of V& V. [B./BREITEN 15, B./GOYAL/GUGERCIN. '16]
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Time [s] oo

Figure: Chafee-Infante equation.

@ Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN ’15’]
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@ Numerical Results

Chafee-Infante equation

Ve + v = v 4 v, (

v(0,.) = u(t), (0. 7). ’
vi(L,.) =0, (0, ), oL

V(X;O) = VO(X)a (O’ L) ° 777'2.5"" . ,ﬁsu

Time [s] oo

Figure: Chafee-Infante equation.

@ Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN ’15’]
@ The transformed QB system is of order n = 1,000.

@ The output of interest is the response at right boundary at x = L.
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@ Numerical Results

Chafee-Infante equation

Ve + v = v 4 v, (0,L) x (0, T), 2,

v(0,.) = u(t), (0. 7). ’
vi(L,.) =0, (0, 7), oL

v(x,0) = vo(x), (0,L1). g BT

- 0.25
Time [s] 00 -

Figure: Chafee-Infante equation.
@ Cubic nonlinearity that can be rewritten into QB form. [B./BREITEN ’15’]
@ The transformed QB system is of order n = 1,000.
@ The output of interest is the response at right boundary at x = L.

o We determine the reduced-order system of order r = 10.
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S54 Numerical Results

Chafee-Infante equation

|— Original System  ——BT  —— One-sided proj. = —— Two-sided proj.

Transient response Relative error
101 T T T

10°3 h

! ! ! —7 ! !
0 1 2 3 4100 1 2 3 4

Time [s] Time [s]

Figure: Boundary control for a control input u(t) = 5t exp(—t).
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S54 Numerical Results

Chafee-Infante equation

|— Original System  ——BT  —— One-sided proj. = —— Two-sided proj.

Transient response Relative error
3 101 T T T

10°3

Time [s] Time [s]

Figure: Boundary control for a control input u(t) = 25(1 + sin(2nt))/2.
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S54 Numerical Results

evi(x, t) = Ev(x, t) + F(v(x, 1)) — w(x,t) + g,
we(x, t) = hv(x,t) — yw(x, t) + q,

with a nonlinear function 0.2
E 0.1
f(v(x,t)) =v(v—=0.1)(1—v).
0
The boundary conditions are as follows: 1 . " 0.2
. .

vi(0,t) = ip(t), wx(L,t)=0, t>0,

where ¢ = 0.015, h=0.5, v =2, g = 0.05,
L=0.2.

@ Input ig(t) = 5-10*t3 exp(—15t) serves as actuator.

Gramian-based MOR for Classes of Nonlinear Systems
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\' @ Numerical Results

| = QOriginal system (n = 1500) = Reduced system (BT) (r = 20) |

0.2

0
1.5 3 0.2 0
0 0.1z -04 0 04 08 12
0 v
(a) Limit-cycles at various x. (b) Projection onto the v—w plane.

Figure: Comparison of the limit-cycles obtained via the original and reduced-order (BT)
systems. The reduced-order systems constructed by moment-matching methods were
unstable.
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4. Balanced Truncation for Polynomial Systems
Polynomial Control Systems
Gramians for PC Systems
Truncated Gramians
Numerical Example
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@ Polynomial Control Systems

Now, consider the class of polynomial control (PC) Systems:

x(t) = Ax(t) + Zp H; ((X)jx(t)) n ZP i NE (®jx(t)> uk(t) + Bu(t),
j=2 j=2 k=1

y(t) = (1), x(0) =0,

where
@ np is the degree of the polynomial part of the system,
x(t) €R", @x(t) = x(t) ® - - - @ x(t),
j-times
u(t) € R™, and y(t) € RP, n>> m, p.
AER™", H, Nf e R™” B eR™ and C € RP*".
Assumption: A is supposed to be Hurwitz = local stability.
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@ Polynomial Control Systems

Now, consider the class of polynomial control (PC) Systems:

m

x(t) = Ax(t) + Zp H; ((X)jx(t)) n ZP 3N (®jx(t)> uk(t) + Bu(t),

y(t) = (1), x(0) =0,

where
@ np is the degree of the polynomial part of the system,
x(t) €R", @x(t) = x(t) ® - - - @ x(t),
j-times
u(t) € R™, and y(t) € RP, n>> m, p.
° AcR™", H;, Nf e R™” B cR™ and C € RP*".
@ Assumption: A is supposed to be Hurwitz = local stability.

Examples: FitzHugh-Nagumo and Chafee-Infante equations lead to cubic control
systems; cubic-quintic Allen-Cahn equation to quintic control system.
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@ Gramians for PC Systems

The reachability Gramian

Expanding the response of the PC system into a Volterra series representation and
following the same ideas as in the QB case, we define the reachability Gramian as

PZZ /Sk(tl,...,tk)lsk(tl,...,tk)Tdtl...dtk,
k=1 0 0
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@ Gramians for PC Systems

The reachability Gramian

Expanding the response of the PC system into a Volterra series representation and
following the same ideas as in the QB case, we define the reachability Gramian as

PZZ /Sk(tl,...,tk)lsk(tl,...,tk)Tdtl...dtk,
k=1 0 0

m
where ,51(1.'1) = eAtlB, :52(1'1, l'g) = Z eAtl N{(GAQB,
k=1
P3(t1, t, t3) = et Hye2B @ €A B, ... are the kernels of the Volterra series.
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@ Gramians for PC Systems

The reachability Gramian

Expanding the response of the PC system into a Volterra series representation and
following the same ideas as in the QB case, we define the reachability Gramian as

P:Z /Sk(tl,...,tk)lsk(tl,...,tk)Tdtl...dtk,
k=1 0 0

m
where ,51(1.'1) = eAtlB7 :52(1'1, l'g) = Z eAtl N{(GAQB,
k=1
P3(t1, t, t3) = et Hye2B @ €A B, ... are the kernels of the Volterra series.

The reachability Gramian P of a PC system solves the polynomial Lyapunov equation

AP+PAT+BBT+§;M(®jP) ’-IjTJr,i:gNjk (®fP) (Njk)TZO.
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@@ Gramians for PC Systems

Dual system and observability Gramian

The Observability Gramian is defined as follows
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\'

Dual system and observability Gramian

The Observability Gramian is defined as

o First, we write the adjoint system as

follows

@ Gramians for PC Systems

[FusmMoTO ET. AL. '02]

— Ax(t +ZHX®(t)+ZZNx

j=1k=1
p p
2
xg(t) = —ATxg(0) = S MG (0 — 3
j=2 j=t

(t) + Bu(t),
i( k(z)

k=1

(Dug g (1) — c’ ug(t),

x4(o0) =0,
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@ Gramians for PC Systems

Dual system and observability Gramian

The Observability Gramian is defined as follows

o First, we write the adjoint system as [FusmMoTO ET. AL. '02]
— Ax(t +ZHX®(t)+ZZNX (t) + Bu(t),
j=1k=1
np p m o
5q0) = =ATxg() = S MDD 0 = 30 30 (M0P) a0 t0) = €Tugle), xglo) =0,
j=2 j=1k=1

o Then, by taking the kernel of Volterra series, one has

Let P be the reachability Gramian. Then, the observability Gramian Q of a PC system
solves the polynomial Lyapunov equation

ATQ+QA+CTC+HZPHJ-(2)(®J'71P®Q>(H(Z) +ZZNk(2)(®J P®Q)( k(Z))

=2 j=2 k=1
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@ Truncated Gramians

@ Polynomial Lyapunov equations are very expensive to solve.

@ As for QB systems, we thus propose truncated Gramians that only involve a
finite number of kernels.

np+1

PTZ Z Pk(tl,...,tk)ﬁk(tl,...7tk)7—dt1...dtk,
k=1 70 0

Truncated Gramians

The reachability truncated Gramian solves

" ; B & ; T
APy + PrAT + BBT + > H&/PH + > S NP, (Nf) —0.
j=2 j=2 k=1

where AP, + PLAT + BBT =0

o Advantage: Only need to solve a finite number of (linear) Lyapunov
equations.
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@ Balanced Truncation for Polynomial Systems

Numerical Example, the FitzHugh-Nagumo model, revisited

eve(x, t) = (X, t) + F(v(x, t)) — w(x, t) + q,
we(x, t) = hv(x, t) — yw(x, t) + q,

with a nonlinear function

f(v(x,t)) = v(v—0.1)(1 - v). 0.2

The boundary conditions are as follows: 5 0.1

v (0,t) = ip(t), w(L,t)=0, t>0, 0
where ¢ = 0.015, h=10.5, vy =2, g = 0.05, L = 0.2. 1v 0 ) 0.1 02

X

@ After discretization we obtain a PC system with cubic nonlinearity of order
npe = 600. [B./BREITEN '15]
@ The transformed quadratic-bilinear (QB) system is of order ng, = 900.
@ The outputs of interest v(0, t), w(0, t) are the responses at the left boundary at
x =0.
@ We compare balanced truncation for PC and QB systems.
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@ Numerical Example

Singular values decay

= BT for QB systems = BT for PC systems
102 | | |

1077

—16 I | | |
10 0 20 40 60 80 100

@ Decay singular values for PC systems is faster = smaller reduced order
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@&2 Numerical Example

Time-domain simulations

‘ mmm Qriginal PC system === BT for QB systems === BT for PC systems ‘
% . v T TR
e o i . A
g 5 hesadids,palisl
= @ 4k ™ "'-lu l "qm ]
- g 104 7 g
5 = i
& = i
g &
= _8 1 1
10 0 5 10 15
Time (1) Time (1)

@ Original PC system of order 600. Original QB system of order 900.
@ Reduced PC system of order 10. Reduced QB system of order 10.
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@&2 Numerical Example

Time-domain simulations

‘ mmm Original PC system

=== BT for QB systems

=== BT for PC systems

Transient response

]

TR Sy
§ :":i I ] » &
6] |ore _;.4,{,‘:,} Y s is,
¢ jo-1 b =g 1
=1
= ' |
x 1]

_8 | |

10 0 5 10 15
Time (1)

o Original PC system of order 600. Original QB system of order 900.
@ Reduced PC system of order 10. Reduced QB system of order 30.
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@&2 Numerical Example

Time-domain simulations

‘ e Original PC system

=== BT for QB systems

=== BT for PC systems ‘

Transient response

Time (t)

100 T T
S by ol
5 RO Lo ] ‘
2 04 7}_'1 i,{.; .;:M-Lii# u
= ¥ :
£ T '

T
10 0 E") 1|0 15
Time (t)

@ Original PC system of order 600. Original QB system of order 900.
o Reduced PC system of order 10. Reduced QB system of order 43.
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o BT extended to bilinear, QB, and polynomial systems.

@ Local Lyapunov stability is preserved.
@ As of yet, only weak motivation by bounding energy functionals.
@ No error bounds in terms of "Hankel” singular values.
o Computationally efficient (as compared to nonlinear balancing), and input
independent.
o To do:
o improve efficiency of Lyapunov solvers with many right-hand sides further;
e error bound;
o conditions for existence of new QB Gramians;
o extension to descriptor systems;
o time-limited versions.

(@© Peter Benner
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