

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

LOW-RANK METHODS FOR PDE-CONSTRAINED OPTIMIZATION UNDER UNCERTAINTY

Peter Benner

Joint work with Sergey Dolgov (U Bath). Martin Stoll (TU Chemnitz) and Akwum Onwunta (MPI DCTS Magdeburg, moving to U Maryland) IA 14 Warkshop on Applied & Industrial Mathematics 2018 Drexel University, Philadelphia May 10–11, 2018

- 1. Introduction
- 2. Unsteady Heat Equation
- 3. Conclusions

• Physical, biological, chemical, etc. processes involve uncertainties.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

• available data are incomplete;

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

- available data are incomplete;
- data are predictable, but difficult to measure, e.g., porosity above oil reservoirs;

- Physical, biological, chemical, etc. processes involve uncertainties.
- Models of these processes should account for these uncertainties.
- PDEs governing the processes can involve uncertain coefficients, or uncertain sources, or uncertain geometry.
- Uncertain parameters modeled as random variables → random PDEs, potentially also containing uncertain inputs (controls) → (generalized) polynomial chaos approach → high-dimensional PDE!
- Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy or ... processes!

Uncertainty arises because

- available data are incomplete;
- data are predictable, but difficult to measure, e.g., porosity above oil reservoirs;
- data are unpredictable, e.g, wind shear.

Solvers Motivation I: Low-Rank Solvers

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d .

 \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with $x = \operatorname{vec}(X)$ and $b = \operatorname{vec}(B)$ with low-rank right hand side $B \approx b_1 b_2^T$.

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

• Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g.,

[Penzl '00, Grasedyck '04].

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

• Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g.,

[Penzl '00, Grasedyck '04].

• We solve this using low-rank Krylov subspace solvers. These essentially require matrix-vector multiplication and vector computations.

Curse of Dimensionality

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \quad \iff \quad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

- Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g., [PENZL '00, GRASEDYCK '04].
- We solve this using low-rank Krylov subspace solvers. These essentially require matrix-vector multiplication and vector computations.
- Hence, $\mathcal{A} \operatorname{vec} (X_k) = \mathcal{A} \operatorname{vec} (V_k W_k^T) = \operatorname{vec} \left([AV_k, V_k] [W_k, AW_k]^T \right)$

Motivation I: Low-Rank Solvers

Curse of Dimensionality

CSC

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Consider $-\Delta u = f$ in $[0, 1] \times [0, 1] \subset \mathbb{R}^2$, uniformly discretized as

 $(I \otimes A + A \otimes I) x =: Ax = b \qquad \Longleftrightarrow \qquad AX + XA^T = B$

with x = vec(X) and b = vec(B) with low-rank right hand side $B \approx b_1 b_2^T$.

- Low-rankness of $\tilde{X} := VW^T \approx X$ follows from properties of A and B, e.g., [PENZL '00, GRASEDYCK '04].
- We solve this using low-rank Krylov subspace solvers. These essentially require matrix-vector multiplication and vector computations.
- Hence, $\mathcal{A} \operatorname{vec} (X_k) = \mathcal{A} \operatorname{vec} (V_k W_k^T) = \operatorname{vec} \left([AV_k, V_k] [W_k, AW_k]^T \right)$

 The rank of [AV_k V_k] ∈ ℝ^{n,2r}, [W_k AW_k] ∈ ℝ^{nt,2r} increases but can be controlled using truncation. → Low-rank Krylov subspace solvers. [KRESSNER/TOBLER, B/BREITEN, SAVOSTYANOV/DOLGOV, ...].

We consider the problem:

$$\min_{y \in \mathcal{Y}, u \in \mathcal{U}} \mathcal{J}(y, u) \quad \text{subject to} \quad c(y, u) = 0,$$

where

- c(y, u) = 0 represents a (linear or nonlinear) PDE (system) with uncertain coefficient(s).
- The state y and control u are random fields.
- The cost functional *J* is a real-valued Fréchet-differentiable functional on *Y* × *U*.

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain viscosity).

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain viscosity). Would require ≈ 10 petabytes (PB) = 10,000 TB to store the solution vector!

[Bellman '57]

Increase matrix size of discretized differential operator for $h \rightarrow \frac{h}{2}$ by factor 2^d . \rightsquigarrow **Rapid Increase of Dimensionality**, called **Curse of Dimensionality** (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has $n = 1.29 \cdot 10^{15}$ unknowns (KKT system for unsteady incompressible Navier-Stokes control problem with uncertain viscosity). Would require ≈ 10 **petabytes (PB)** = 10,000 **TB** to store the solution vector! Using low-rank tensor techniques, we need $\approx 7 \cdot 10^7$ **bytes** = 70 **GB** to solve the KKT system in MATLAB in less than one hour!

Consider the optimization problem

$$\mathcal{J}(t, y, u) = \frac{1}{2} ||y - \bar{y}||^2_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)} + \frac{\alpha}{2} ||\mathsf{std}(y)||^2_{L^2(0, T; \mathcal{D})} + \frac{\beta}{2} ||u||^2_{L^2(0, T; \mathcal{D}) \otimes L^2(\Omega)}$$

subject, \mathbb{P} -almost surely, to

$$\begin{cases} \frac{\partial y(t, \mathbf{x}, \omega)}{\partial t} - \nabla \cdot (\mathbf{a}(\mathbf{x}, \omega) \nabla y(t, \mathbf{x}, \omega)) = u(t, \mathbf{x}, \omega), & \text{in } (0, T] \times \mathcal{D} \times \Omega, \\ y(t, \mathbf{x}, \omega) = 0, & \text{on } (0, T] \times \partial \mathcal{D} \times \Omega, \\ y(0, \mathbf{x}, \omega) = y_0, & \text{in } \mathcal{D} \times \Omega, \end{cases}$$

where

- for any z : D × Ω → ℝ, z(x, ·) is a random variable defined on the complete probability space (Ω, F, ℙ) for each x ∈ D,
- $\exists 0 < a_{\min} < a_{\max} < \infty \text{ s.t. } \mathbb{P}(\omega \in \Omega : a(x, \omega) \in [a_{\min}, a_{\max}] \ \forall x \in D) = 1.$

We discretize and then optimize the stochastic control problem.

• Under finite noise assumption we can use *N*-term (truncated) Karhunen-Loève expansion (KLE)

$$a \equiv a(\mathbf{x}, \omega) \approx a_N(\mathbf{x}, \xi(\omega)) \equiv a_N(\mathbf{x}, \xi_1(\omega), \xi_2(\omega), \dots, \xi_N(\omega)).$$

• Assuming a known continuous covariance $C_a(\mathbf{x}, \mathbf{y})$, we get the KLE

$$a_N(\mathbf{x},\xi(\omega)) = \mathbb{E}[a](\mathbf{x}) + \sigma_a \sum_{i=1}^N \sqrt{\lambda_i} \varphi_i(\mathbf{x}) \xi_i(\omega),$$

where (λ_i, φ_i) are the dominant eigenpairs of C_a .

- Doob-Dynkin Lemma allows same parametrization for solution y.
- Use linear finite elements for the spatial discretization and implicit Euler in time.

This is used within a stochastic Galerkin FEM (SGFEM) approach.

Weak formulation of the random PDE

Seek $y \in H^1(0, T; H^1_0(\mathcal{D}) \otimes L^2(\Omega))$ such that, \mathbb{P} -almost surely,

$$\langle y_t, v \rangle + \mathcal{B}(y, v) = \ell(u, v) \quad \forall v \in H^1_0(\mathcal{D}) \otimes L^2(\Omega),$$

with the coercive¹ bilinear form

$$\mathcal{B}(y,v) := \int_{\Omega} \int_{\mathcal{D}} a(\mathbf{x},\omega) \nabla y(\mathbf{x},\omega) \cdot \nabla v(\mathbf{x},\omega) d\mathbf{x} d\mathbb{P}(\omega), \quad v,y \in H^{1}_{0}(\mathcal{D}) \otimes L^{2}(\Omega),$$

and

$$\begin{split} \ell(u,v) &= \langle u(\mathbf{x},\omega), v(\mathbf{x},\omega) \rangle \\ &=: \int_{\Omega} \int_{\mathcal{D}} u(\mathbf{x},\omega) v(\mathbf{x},\omega) d\mathbf{x} \, d\mathbb{P}(\omega), \quad u,v \in H^1_0(\mathcal{D}) \otimes L^2(\Omega). \end{split}$$

Coercivity and boundedness of \mathcal{B} + Lax-Milgram \implies unique solution exists.

¹due to the positivity assumption on $a(\mathbf{x}, \omega)$

Weak formulation of the optimality system

Theorem

[Chen/Quarteroni '14, B./Onwunta/Stoll '18]

Under appropriate regularity assumptions, there exists a unique adjoint state p and optimal solution (y, u, p) to the optimal control problem for the random unsteady heat equation, satisfying the stochastic optimality conditions (KKT system) for $t \in (0, T]$ \mathbb{P} -almost surely

$$\begin{aligned} \langle y_t, v \rangle + \mathcal{B}(y, v) &= \ell(u, v), \\ \langle p_t, w \rangle - \mathcal{B}^*(p, w) &= \ell\left((y - \bar{y}) + \frac{\alpha}{2}\mathcal{S}(y), w\right), \\ \ell(\beta u - p, \tilde{w}) &= 0, \end{aligned} \qquad \qquad \forall v \in H_0^1(\mathcal{D}) \otimes L^2(\Omega), \\ \forall w \in H_0^1(\mathcal{D}) \otimes L^2(\Omega), \\ \forall \tilde{w} \in L^2(\mathcal{D}) \otimes L^2(\Omega), \end{aligned}$$

where

- S(y) is the Fréchet derivative of ||std(y)||²_{L²(0,T;D)};
- \mathcal{B}^* is the adjoint operator of \mathcal{B} .

Discretization of the random PDE

• *y*, *p*, *u* are approximated using standard Galerkin ansatz, yielding approximations of the form

$$z(t,\mathbf{x},\omega) = \sum_{k=0}^{P-1} \sum_{j=1}^{J} z_{jk}(t)\phi_j(\mathbf{x})\psi_k(\xi) = \sum_{k=0}^{P-1} z_k(t,\mathbf{x})\psi_k(\xi).$$

Here,

- $\{\phi_j\}_{j=1}^J$ are linear finite elements;
- $\{\psi_k\}_{k=0}^{P-1}$ are the $P = \frac{(N+n)!}{N!n!}$ multivariate Legendre polynomials of degree $\leq n$.
- Implicit Euler/dG(0) used for temporal discretization with constant time step τ .

The Fully Discretized Optimal Control Problem

Discrete first order optimality conditions/KKT system

$$\begin{bmatrix} \tau \mathcal{M}_1 & 0 & -\mathcal{K}_t^T \\ 0 & \beta \tau \mathcal{M}_2 & \tau \mathcal{N}^T \\ -\mathcal{K}_t & \tau \mathcal{N} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \tau \mathcal{M}_\alpha \bar{\mathbf{y}} \\ \mathbf{0} \\ \mathbf{d} \end{bmatrix},$$

where

CSC

•
$$\mathcal{M}_1 = D \otimes G_\alpha \otimes M =: D \otimes \mathcal{M}_\alpha$$
, $\mathcal{M}_2 = D \otimes G_0 \otimes M$
• $\mathcal{K}_t = I_{n_t} \otimes \left[\sum_{i=0}^N G_i \otimes \widehat{K}_i \right] + (C \otimes G_0 \otimes M)$,
• $\mathcal{N} = I_{n_t} \otimes G_0 \otimes M$,

and

- $G_0 = \operatorname{diag}\left(\langle \psi_0^2 \rangle, \langle \psi_1^2 \rangle, \dots, \langle \psi_{P-1}^2 \rangle\right), \quad G_i(j,k) = \langle \xi_i \psi_j \psi_k \rangle, \quad i = 1, \dots, N,$ • $G_\alpha = G_0 + \alpha \operatorname{diag}\left(0, \langle \psi_1^2 \rangle, \dots, \langle \psi_{P-1}^2 \rangle\right) \quad (\text{with first moments } \langle . \rangle \text{ w.r.t. } \mathbb{P}),$
- $\hat{K}_0 = M + \tau K_0$, $\hat{K}_i = \tau K_i$, i = 1, ..., N,

M, K_i ∈ ℝ^{J×J} are the mass and stiffness matrices w.r.t. the spatial discretization, where K_i corresponds to the contributions of the *i*th KLE term to the stiffness,

•
$$C = -\text{diag}(\text{ones}, -1), \quad D = \text{diag}\left(\frac{1}{2}, 1, \dots, 1, \frac{1}{2}\right) \in \mathbb{R}^{n_t \times n_t}.$$

The Fully Discretized Optimal Control Problem

Discrete first order optimality conditions/KKT system

$$\begin{bmatrix} \tau \mathcal{M}_1 & \mathbf{0} & -\mathcal{K}_t^T \\ \mathbf{0} & \beta \tau \mathcal{M}_2 & \tau \mathcal{N}^T \\ -\mathcal{K}_t & \tau \mathcal{N} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \tau \mathcal{M}_\alpha \bar{\mathbf{y}} \\ \mathbf{0} \\ \mathbf{d} \end{bmatrix},$$

Linear system with 3JPn_t unknowns!

CSC

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$

• Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}.$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.
- Famous three-iterations-convergence result [MURPHY/GOLUB/WATHEN '00]: using ideal preconditioner

$$\mathcal{P} := \left[egin{array}{cc} A & 0 \\ 0 & -S \end{array}
ight] \qquad ext{with the Schur complement} \quad S := -BA^{-1}B^T,$$

MINRES finds the exact solution in at most three steps.

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}.$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.
- Famous three-iterations-convergence result [MURPHY/GOLUB/WATHEN '00]: using ideal preconditioner

$$\mathcal{P} := \begin{bmatrix} A & 0 \\ 0 & -S \end{bmatrix} \quad \text{with the Schur complement} \quad S := -BA^{-1}B^{T},$$

MINRES finds the exact solution in at most three steps.

• Motivates to use approximate Schur complement preconditioner $\begin{bmatrix} \hat{A} & 0\\ 0 & \hat{S} \end{bmatrix}$.

$$\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}.$$

- Very large scale setting, (block-)structured sparsity \rightsquigarrow iterative solution.
- Krylov subspace methods for indefinite symmetric systems: MINRES,
- Requires good preconditioner.
- Famous three-iterations-convergence result [MURPHY/GOLUB/WATHEN '00]: using ideal preconditioner

$$\mathcal{P} := \begin{bmatrix} A & 0 \\ 0 & -S \end{bmatrix} \quad \text{with the Schur complement} \quad S := -BA^{-1}B^{T}$$

MINRES finds the exact solution in at most three steps.

• Motivates to use approximate Schur complement preconditioner $\begin{bmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{bmatrix}$.

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ with approximate Schur complement preconditioner $\begin{bmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{bmatrix}$.
 - How to approximate the application of the inverse Schur complement efficiently?

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix} \quad \text{with approximate Schur complement preconditioner } \begin{bmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{bmatrix}.$
 - How to approximate the application of the inverse Schur complement efficiently?
 - Pioneering work by Elman, Ernst, Ullmann, Powell, Silvester, ...

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ with approximate Schur complement preconditioner $\begin{bmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{bmatrix}$.
- - How to approximate the application of the inverse Schur complement efficiently? ۰
 - Pioneering work by ELMAN, ERNST, ULLMANN, POWELL, SILVESTER, ...

Theorem

Let $\alpha \in [0, +\infty)$ and

$$\tilde{S} = \frac{1}{\tau} \left(\mathcal{K} + \tau \gamma \mathcal{N} \right) \mathcal{M}_1^{-1} \left(\mathcal{K} + \tau \gamma \mathcal{N} \right)^T,$$

where $\gamma = \sqrt{(1+\alpha)/\beta}$ and $\mathcal{K} = \sum_{i=0}^{N} G_i \otimes K_i$. Then the eigenvalues of $\tilde{S}^{-1}S$ satisfy

$$\lambda(\tilde{S}^{-1}S) \subset \left[rac{1}{2(1+lpha)}, 1
ight), \quad orall lpha < \left(rac{\sqrt{\kappa(\mathcal{K})}+1}{\sqrt{\kappa(\mathcal{K})}-1}
ight)^2 - 1.$$

- $\begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ with approximate Schur complement preconditioner $\begin{bmatrix} \ddot{A} & 0 \\ 0 & \hat{S} \end{bmatrix}$.
- - How to approximate the application of the inverse Schur complement efficiently? ۰
 - Pioneering work by ELMAN, ERNST, ULLMANN, POWELL, SILVESTER, ...

Corollary

Let \mathcal{A} be the KKT matrix from the stochastic Galerkin approach, and \mathcal{P} the preconditioner using the Schur complement approximation \tilde{S} (and exact A). Then

$$\lambda(\mathcal{P}^{-1}\mathcal{A}) \subset \{1\} \cup \mathcal{I}^+ \cup \mathcal{I}^-,$$

where

$$\mathcal{I}^{\pm} = rac{1}{2} \left(1 \pm \left[\sqrt{1 + rac{2}{1 + lpha}} \,, \, \sqrt{5}
ight]
ight).$$

Separation of variables and low-rank approximation

• Approximate:
$$\underbrace{\mathbf{x}(i_1, \dots, i_d)}_{\text{tensor}} \approx \underbrace{\sum_{\alpha} \mathbf{x}_{\alpha}^{(1)}(i_1) \mathbf{x}_{\alpha}^{(2)}(i_2) \cdots \mathbf{x}_{\alpha}^{(d)}(i_d)}_{\text{tensor product decomposition}}$$

Goals:

- Store and manipulate x
- Solve equations Ax = b

 $\mathcal{O}(dn)$ cost instead of $\mathcal{O}(n^d)$. $\mathcal{O}(dn^2)$ cost instead of $\mathcal{O}(n^{2d})$.

CSC Data Compression in 2D: Low-Rank Matrices

• Discrete separation of variables:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{bmatrix} = \sum_{\alpha=1}^{r} \begin{bmatrix} v_{1,\alpha} \\ \vdots \\ v_{n,\alpha} \end{bmatrix} \begin{bmatrix} w_{\alpha,1} & \cdots & w_{\alpha,n} \end{bmatrix} + \mathcal{O}(\varepsilon).$$

• Diagrams:

Rank r ≪ n.

- $mem(v) + mem(w) = 2nr \ll n^2 = mem(x).$
- Singular Value Decomposition (SVD) $\implies \epsilon(r)$ optimal w.r.t. spectral/Frobenius norm.

CSC Data Compression in Higher Dimensions

Tensor Trains/Matrix Product States

[WILSON '75, WHITE '93, VERSTRAETE '04, OSELEDETS '09/'11]

For indices

$$\overline{i_p \dots i_q} = (i_p - 1)n_{p+1} \dots n_q + (i_{p+1} - 1)n_{p+2} \dots n_q + \dots + (i_{q-1} - 1)n_q + i_q,$$

the TT format can be expressed as

$$\mathbf{x}(\overline{i_1\dots i_d}) = \sum_{\alpha=1}^{\mathsf{r}} \mathbf{x}_{\alpha_1}^{(1)}(i_1) \cdot \mathbf{x}_{\alpha_1,\alpha_2}^{(2)}(i_2) \cdot \mathbf{x}_{\alpha_2,\alpha_3}^{(3)}(i_3) \cdots \mathbf{x}_{\alpha_{d-1},\alpha_d}^{(d)}(i_d)$$

or

$$\mathbf{x}(\overline{i_1\ldots i_d}) = \mathbf{x}^{(1)}(i_1)\cdots \mathbf{x}^{(d)}(i_d), \quad \mathbf{x}^{(k)}(i_k) \in \mathbb{R}^{r_{k-1}\times r_k} \text{ w/ } r_0, r_d = 1,$$

or

Storage: $\mathcal{O}(dnr^2)$ instead of $\mathcal{O}(n^d)$.

Always work with factors $\mathbf{x}^{(k)} \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$ instead of full tensors.

Sum z = x + y → increase of tensor rank r_z = r_x + r_y.
TT format for a high-dimensional operator

$$A(\overline{i_1 \dots i_d}, \overline{j_1 \dots j_d}) = \mathbf{A}^{(1)}(i_1, j_1) \cdots \mathbf{A}^{(d)}(i_d, j_d)$$

- *Matrix-vector* multiplication y = Ax; \rightsquigarrow tensor rank $r_y = r_A \cdot r_x$.
- Additions and multiplications *increase* TT ranks.
- Decrease ranks quasi-optimally via QR and SVD.

Solving KKT System using TT Format

The dimensionality of the saddle point system is vast \Rightarrow use tensor structure and low tensor ranks.

Solving KKT System using TT Format

The dimensionality of the saddle point system is vast \Rightarrow use tensor structure and low tensor ranks.

Use tensor train format to approximate the solution as

$$\mathbf{y}(i_1,\ldots,i_d) \approx \sum_{\alpha_1\ldots\alpha_{d-1}=1}^{r_1\ldots r_{d-1}} \mathbf{y}_{\alpha_1}^{(1)}(i_1) \mathbf{y}_{\alpha_1,\alpha_2}^{(2)}(i_2) \cdots \mathbf{y}_{\alpha_{d-2},\alpha_{d-1}}^{(d-1)}(i_{d-1}) \mathbf{y}_{\alpha_{d-1}}^{(d)}(i_d),$$

and represent the coefficient matrix as

$$\mathcal{A}(i_{1}\cdots i_{d}, j_{1}\cdots j_{d}) \approx \sum_{\beta_{1}\dots\beta_{d-1}=1}^{R_{1}\dots R_{d-1}} \mathbf{A}_{\beta_{1}}^{(1)}(i_{1}, j_{1}) \mathbf{A}_{\beta_{1},\beta_{2}}^{(2)}(i_{2}, j_{2})\cdots \mathbf{A}_{\beta_{d-1}}^{(d)}(i_{d}, j_{d}),$$

where the multi-index $\mathbf{i} = (i_1, \dots, i_d)$ is implied by the parametrization of the approximate solutions of the form

$$\mathbf{z}(t,\xi_1,\ldots,\xi_N,\mathbf{x}), \quad \mathbf{z}=\mathbf{y},\mathbf{u},\mathbf{p},$$

i.e., solution vectors are represented by *d*-way tensor with d = N + 2.

Mean-Based Preconditioned TT-MinRes

TT-MINRES	# iter (t)	# iter (t)	# iter (t)	
n _t	2 ⁵	2 ⁶	2 ⁸	
$\dim(\mathcal{A}) = 3JPn_t$	10,671,360	21, 342, 720	85, 370, 880	
$\alpha = 1, \text{ tol} = 10^{-3}$				
$\beta = 10^{-5}$	6 (285.5)	6 (300.0)	8 (372.2)	
$eta = 10^{-6}$	4 (77.6)	4 (130.9)	4 (126.7)	
$eta = 10^{-8}$	4 (56.7)	4 (59.4)	4 (64.9)	
$\alpha = 0, \text{ tol} = 10^{-3}$				
$\beta = 10^{-5}$	4 (207.3)	6 (366.5)	6 (229.5)	
$eta = 10^{-6}$	4 (153.9)	4 (158.3)	4 (172.0)	
$\beta = 10^{-8}$	2 (35.2)	2 (37.8)	2 (40.0)	

- Low-rank tensor solver for unsteady heat (and Navier-Stokes) equations with uncertain viscosity.
- Similar techniques already used for 30 Stokes(-Brinkman) optimal control problems.
- With 1 stochastic parameter, the scheme reduces complexity by up to 2–3 orders of magnitude.
- To consider next:

- Low-rank tensor solver for unsteady heat (and Navier-Stokes) equations with uncertain viscosity.
- Similar techniques already used for <u>Stokes</u>(-Brinkman) optimal control problems.
- With 1 stochastic parameter, the scheme reduces complexity by up to 2–3 orders of magnitude.
- To consider next:
 - many parameters coming from uncertain geometry or Karhunen-Loève expansion of random fields; Initial results: the more parameters, the more significant is the complexity reduction w.r.t. memory — up to a factor of 10⁹ for the control problem for a backward facing step.
 - exploit multicore technology in efficient parallelization.

	P. Benner, S. Dolgov, A. Onwunta, and M. Stoll. Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 304:26–54, 2016.
Ē	P. Benner, A. Onwunta, and M. Stoll.
	Low rank solution of unsteady diffusion equations with stochastic coefficients. SIAM/ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 3(1):622–649, 2015.
Ē	P. Benner, A. Onwunta, and M. Stoll.
	Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 37(2):491–518, 2016.
Ē	P. Benner, S. Dolgov, A. Onwunta, and M. Stoll.
	Solving optimal control problems governed by random Navier-Stokes equations using low-rank methods.
	arXiv Preprint arXiv:1703.00097, March 2017.
	P. Benner, A. Onwunta, and M. Stoll.
	On the existence and uniqueness of the solution of parabolic optimal control problems with uncertain inputs. May 2018.
	M. Stoll and T. Breiten.

A low-rank in time approach to PDE-constrained optimization. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 37(1):B1–B29, 2015.

CSC 3D Stokes-Brinkman control problem

