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Introduction

PDEs with stochastic coefficients for UQ

Physical, biological, chemical, etc. processes involve uncertainties.

Models of these processes should account for these uncertainties.

PDEs governing the processes can involve uncertain coefficients, or uncertain
sources, or uncertain geometry.

Uncertain parameters modeled as random variables  random PDEs,
potentially also containing uncertain inputs (controls)  (generalized)
polynomial chaos approach  high-dimensional PDE!

Here: no stochastic PDEs in the sense of dynamics driven by Wiener or Lévy
or . . . processes!

Uncertainty arises because

available data are incomplete;

data are predictable, but difficult to measure, e.g., porosity above oil
reservoirs;

data are unpredictable, e.g, wind shear.
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Motivation I: Low-Rank Solvers

Curse of Dimensionality [Bellman ’57]

Increase matrix size of discretized differential operator for h→ h
2 by factor 2d .

 Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Consider −∆u = f in [ 0 , 1 ]× [ 0 , 1 ] ⊂ R2, uniformly discretized as

(I ⊗ A + A⊗ I ) x =: Ax = b ⇐⇒ AX + XAT = B

with x = vec (X ) and b = vec (B) with low-rank right hand side B ≈ b1b
T
2 .

Low-rankness of X̃ := VW T ≈ X follows from properties of A and B, e.g.,
[Penzl ’00, Grasedyck ’04].

We solve this using low-rank Krylov subspace solvers. These essentially require
matrix-vector multiplication and vector computations.

Hence, Avec (Xk) = Avec
(
VkW

T
k

)
= vec

(
[AVk , Vk ] [Wk , AWk ]T

)
The rank of [AVk Vk ] ∈ Rn,2r , [Wk AWk ] ∈ Rnt ,2r increases but can be
controlled using truncation.  Low-rank Krylov subspace solvers.

[Kressner/Tobler, B/Breiten, Savostyanov/Dolgov, . . . ].
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Motivation II: Optimization under Uncertainty

We consider the problem:

min
y∈Y,u∈U

J (y , u) subject to c(y , u) = 0,

where

c(y , u) = 0 represents a (linear or nonlinear) PDE (system) with
uncertain coefficient(s).

The state y and control u are random fields.

The cost functional J is a real-valued Fréchet-differentiable functional
on Y × U .
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This Talk

Curse of Dimensionality [Bellman ’57]

Increase matrix size of discretized differential operator for h→ h
2 by factor 2d .

 Rapid Increase of Dimensionality, called Curse of Dimensionality (d > 3).

Goal of this talk

Apply low-rank iterative solvers to discrete optimality systems resulting from

PDE-constrained optimization problems under uncertainty,

and go one step further applying low-rank tensor (instead of matrix) techniques.

Take home message

Biggest problem solved so far has n = 1.29 · 1015 unknowns (KKT system for
unsteady incompressible Navier-Stokes control problem with uncertain viscosity).

Would require ≈ 10 petabytes (PB) = 10, 000 TB to store the solution vector!

Using low-rank tensor techniques, we need ≈ 7 · 107 bytes = 70 GB to solve the
KKT system in MATLAB in less than one hour!
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Unsteady Heat Equation

Consider the optimization problem

J (t, y , u) =
1

2
||y − ȳ ||2L2(0,T ;D)⊗L2(Ω) +

α

2
||std(y)||2L2(0,T ;D) +

β

2
||u||2L2(0,T ;D)⊗L2(Ω)

subject, P-almost surely, to
∂y(t, x, ω)

∂t
−∇ · (a(x, ω)∇y(t, x, ω)) = u(t, x, ω), in (0,T ]×D × Ω,

y(t, x, ω) = 0, on (0,T ]× ∂D × Ω,

y(0, x, ω) = y0, in D × Ω,

where

for any z : D × Ω→ R, z(x, ·) is a random variable defined on the complete
probability space (Ω,F ,P) for each x ∈ D,

∃ 0 < amin < amax <∞ s.t. P(ω ∈ Ω : a(x , ω) ∈ [amin, amax] ∀ x ∈ D) = 1.
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Discretization

We discretize and then optimize the stochastic control problem.

Under finite noise assumption we can use N-term (truncated)
Karhunen-Loève expansion (KLE)

a ≡ a(x, ω) ≈ aN(x, ξ(ω)) ≡ aN(x, ξ1(ω), ξ2(ω), . . . , ξN(ω)).

Assuming a known continuous covariance Ca(x, y), we get the KLE

aN(x, ξ(ω)) = E[a](x) + σa

N∑
i=1

√
λiϕi (x)ξi (ω),

where (λi , ϕi ) are the dominant eigenpairs of Ca.

Doob-Dynkin Lemma allows same parametrization for solution y .

Use linear finite elements for the spatial discretization and implicit Euler in
time.

This is used within a stochastic Galerkin FEM (SGFEM) approach.
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Stochastic Galerkin Finite Element Method

Weak formulation of the random PDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Seek y ∈ H1
(
0,T ;H1

0 (D)⊗ L2(Ω)
)

such that, P-almost surely,

〈yt , v〉+ B(y , v) = `(u, v) ∀ v ∈ H1
0 (D)⊗ L2(Ω),

with the coercive1 bilinear form

B(y , v) :=

∫
Ω

∫
D
a(x, ω)∇y(x, ω) · ∇v(x, ω)dx dP(ω), v , y ∈ H1

0 (D)⊗ L2(Ω),

and

`(u, v) = 〈u(x, ω), v(x, ω)〉

=:

∫
Ω

∫
D
u(x, ω)v(x, ω)dx dP(ω), u, v ∈ H1

0 (D)⊗ L2(Ω).

Coercivity and boundedness of B + Lax-Milgram =⇒ unique solution exists.
1due to the positivity assumption on a(x, ω)
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Stochastic Galerkin Finite Element Method

Weak formulation of the optimality system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem [Chen/Quarteroni ’14, B./Onwunta/Stoll ’18]

Under appropriate regularity assumptions, there exists a unique adjoint state p
and optimal solution (y , u, p) to the optimal control problem for the random
unsteady heat equation, satisfying the stochastic optimality conditions (KKT
system) for t ∈ (0,T ] P-almost surely

〈yt , v〉+ B(y , v) = `(u, v), ∀ v ∈ H1
0 (D)⊗ L2(Ω),

〈pt ,w〉 − B∗(p,w) = `
(

(y − ȳ) +
α

2
S(y),w

)
, ∀w ∈ H1

0 (D)⊗ L2(Ω),

`(βu − p, w̃) = 0, ∀ w̃ ∈ L2(D)⊗ L2(Ω),

where

S(y) is the Fréchet derivative of ‖std(y)‖2
L2(0,T ;D);

B∗ is the adjoint operator of B.

c©Peter Benner, benner@mpi-magdeburg.mpg.de PDE-constrained optimization under uncertainty 10/22

mailto:benner@mpi-magdeburg.mpg.de


Stochastic Galerkin Finite Element Method

Discretization of the random PDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y , p, u are approximated using standard Galerkin ansatz, yielding
approximations of the form

z(t, x, ω) =
P−1∑
k=0

J∑
j=1

zjk(t)φj(x)ψk(ξ) =
P−1∑
k=0

zk(t, x)ψk(ξ).

Here,

{φj}Jj=1 are linear finite elements;

{ψk}P−1
k=0 are the P = (N+n)!

N!n! multivariate Legendre polynomials of
degree ≤ n.

Implicit Euler/dG(0) used for temporal discretization with constant
time step τ .
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The Fully Discretized Optimal Control Problem

Discrete first order optimality conditions/KKT system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . τM1 0 −KT
t

0 βτM2 τNT

−Kt τN 0

 y
u
p

 =

 τMαȳ
0
d

 ,
where

M1 = D ⊗ Gα ⊗M =: D ⊗Mα, M2 = D ⊗ G0 ⊗M,

Kt = Int ⊗
[∑N

i=0 Gi ⊗ K̂i

]
+ (C ⊗ G0 ⊗M),

N = Int ⊗ G0 ⊗M,

and

G0 = diag
(〈
ψ2

0

〉
,
〈
ψ2

1

〉
, . . . ,

〈
ψ2

P−1

〉)
, Gi (j , k) = 〈ξiψjψk〉 , i = 1, . . . ,N,

Gα = G0 + α diag
(
0,
〈
ψ2

1

〉
, . . . ,

〈
ψ2

P−1

〉)
(with first moments 〈 . 〉 w.r.t. P),

K̂0 = M + τK0, K̂i = τKi , i = 1, . . . ,N,

M,Ki ∈ RJ×J are the mass and stiffness matrices w.r.t. the spatial discretization,
where Ki corresponds to the contributions of the ith KLE term to the stiffness,

C = −diag(ones,−1), D = diag
(

1
2
, 1, . . . , 1, 1

2

)
∈ Rnt×nt .
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The Fully Discretized Optimal Control Problem

Discrete first order optimality conditions/KKT system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . τM1 0 −KT
t

0 βτM2 τNT

−Kt τN 0

 y
u
p

 =

 τMαȳ
0
d

 ,

Linear system with 3JPnt unknowns!
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Solving the KKT System

Optimality system leads to saddle point problem[
A BT

B 0

]
.

Very large scale setting, (block-)structured sparsity  iterative solution.

Krylov subspace methods for indefinite symmetric systems: MINRES, . . . .

Requires good preconditioner.

Famous three-iterations-convergence result [Murphy/Golub/Wathen ’00]: using
ideal preconditioner

P :=

[
A 0
0 −S

]
with the Schur complement S := −BA−1BT ,

MINRES finds the exact solution in at most three steps.

Motivates to use approximate Schur complement preconditioner

[
Â 0

0 Ŝ

]
.

Here, A ∼ mass matrices  application of A−1 is approximated using a small
number of Chebyshev semi-iterations.

c©Peter Benner, benner@mpi-magdeburg.mpg.de PDE-constrained optimization under uncertainty 13/22

mailto:benner@mpi-magdeburg.mpg.de


Solving the KKT System

Optimality system leads to saddle point problem[
A BT

B 0

]
.

Very large scale setting, (block-)structured sparsity  iterative solution.

Krylov subspace methods for indefinite symmetric systems: MINRES, . . . .

Requires good preconditioner.

Famous three-iterations-convergence result [Murphy/Golub/Wathen ’00]: using
ideal preconditioner

P :=

[
A 0
0 −S

]
with the Schur complement S := −BA−1BT ,

MINRES finds the exact solution in at most three steps.

Motivates to use approximate Schur complement preconditioner

[
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]
.

Here, A ∼ mass matrices  application of A−1 is approximated using a small
number of Chebyshev semi-iterations.

c©Peter Benner, benner@mpi-magdeburg.mpg.de PDE-constrained optimization under uncertainty 13/22

mailto:benner@mpi-magdeburg.mpg.de


Solving the KKT System

Optimality system leads to saddle point problem[
A BT

B 0

]
.

Very large scale setting, (block-)structured sparsity  iterative solution.

Krylov subspace methods for indefinite symmetric systems: MINRES, . . . .

Requires good preconditioner.

Famous three-iterations-convergence result [Murphy/Golub/Wathen ’00]: using
ideal preconditioner

P :=

[
A 0
0 −S

]
with the Schur complement S := −BA−1BT ,

MINRES finds the exact solution in at most three steps.

Motivates to use approximate Schur complement preconditioner

[
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Solving the KKT System

Optimality system leads to saddle point problem[
A BT

B 0

]
with approximate Schur complement preconditioner

[
Â 0

0 Ŝ

]
.

How to approximate the application of the inverse Schur complement efficiently?

Pioneering work by Elman, Ernst, Ullmann, Powell, Silvester, . . .
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Solving the KKT System

Optimality system leads to saddle point problem[
A BT

B 0

]
with approximate Schur complement preconditioner

[
Â 0

0 Ŝ

]
.

How to approximate the application of the inverse Schur complement efficiently?

Pioneering work by Elman, Ernst, Ullmann, Powell, Silvester, . . .

Theorem [B./Onwunta/Stoll ’16]

Let α ∈ [0,+∞) and

S̃ =
1

τ
(K + τγN )M−11 (K + τγN )T ,

where γ =
√

(1 + α)/β and K =
∑N

i=0 Gi ⊗ Ki .

Then the eigenvalues of S̃−1S satisfy

λ(S̃−1S) ⊂
[

1

2(1 + α)
, 1

)
, ∀α <

(√
κ(K) + 1√
κ(K)− 1

)2

− 1 .
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Solving the KKT System

Optimality system leads to saddle point problem[
A BT

B 0

]
with approximate Schur complement preconditioner

[
Â 0

0 Ŝ

]
.

How to approximate the application of the inverse Schur complement efficiently?

Pioneering work by Elman, Ernst, Ullmann, Powell, Silvester, . . .

Corollary [B./Onwunta/Stoll ’16]

Let A be the KKT matrix from the stochastic Galerkin approach, and P the
preconditioner using the Schur complement approximation S̃ (and exact A). Then

λ(P−1A) ⊂ {1} ∪ I+ ∪ I−,

where

I± =
1

2

(
1±

[√
1 +

2

1 + α
,
√

5

])
.
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Tensor Techniques

Separation of variables and low-rank approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n  

Approximate: x(i1, . . . , id)︸ ︷︷ ︸
tensor

≈
∑
α

x(1)
α (i1)x(2)

α (i2) · · · x(d)
α (id)︸ ︷︷ ︸

tensor product decomposition

.

Goals:

Store and manipulate x O(dn) cost instead of O(nd).

Solve equations Ax = b O(dn2) cost instead of O(n2d).
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Data Compression in 2D: Low-Rank Matrices

Discrete separation of variables:x1,1 · · · x1,n
...

...
xn,1 · · · xn,n

 =
r∑

α=1

v1,α
...

vn,α

 [wα,1 · · · wα,n
]

+O(ε).

Diagrams:

x

i1 i2

≈ v w
α

i1
i2

Rank r � n.

mem(v) + mem(w) = 2nr � n2 = mem(x).

Singular Value Decomposition (SVD)
=⇒ ε(r) optimal w.r.t. spectral/Frobenius norm.
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Data Compression in Higher Dimensions

Tensor Trains/Matrix Product States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[Wilson ’75, White ’93, Verstraete ’04, Oseledets ’09/’11]

For indices

ip . . . iq = (ip − 1)np+1 · · · nq + (ip+1 − 1)np+2 · · · nq + · · ·+ (iq−1 − 1)nq + iq,

the TT format can be expressed as

x(i1 . . . id) =
r∑

α=1

x(1)
α1

(i1) · x(2)
α1,α2

(i2) · x(3)
α2,α3

(i3) · · · x(d)
αd−1,αd

(id)

or

x(i1 . . . id) = x(1)(i1) · · · x(d)(id), x(k)(ik) ∈ Rrk−1×rk w/ r0, rd = 1,

or

x(k) x(k+1) x(d)x(k−1)x(2)x(1)
α1 α2 αk−2 αk−1 αk αk+1 αd−1

i1 i2 ik−1 ik ik+1 id

Storage: O(dnr 2) instead of O(nd).
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Overloading Tensor Operations

Always work with factors x(k) ∈ Rrk−1×nk×rk instead of full tensors.

Sum z = x + y  increase of tensor rank rz = rx + ry .

TT format for a high-dimensional operator

A(i1 . . . id , j1 . . . jd) = A(1)(i1, j1) · · ·A(d)(id , jd)

Matrix-vector multiplication y = Ax ;  tensor rank ry = rA · rx .

Additions and multiplications increase TT ranks.

Decrease ranks quasi-optimally via QR and SVD.
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Solving KKT System using TT Format

The dimensionality of the saddle point system is vast ⇒ use tensor structure and
low tensor ranks.

Use tensor train format to approximate the solution as

y(i1, . . . , id) ≈
r1...rd−1∑

α1...αd−1=1

y(1)
α1

(i1)y(2)
α1,α2

(i2) · · · y(d−1)
αd−2,αd−1

(id−1)y(d)
αd−1

(id),

and represent the coefficient matrix as

A(i1 · · · id , j1 · · · jd) ≈
R1...Rd−1∑
β1...βd−1=1

A
(1)
β1

(i1, j1)A
(2)
β1,β2

(i2, j2) · · ·A(d)
βd−1

(id , jd),

where the multi-index i = (i1, . . . , id) is implied by the parametrization of the
approximate solutions of the form

z(t, ξ1, . . . , ξN , x), z = y,u,p,

i.e., solution vectors are represented by d-way tensor with d = N + 2.
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Numerical Results

Mean-Based Preconditioned TT-MinRes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TT-MINRES # iter (t) # iter (t) # iter (t)

nt 25 26 28

dim(A) = 3JPnt 10, 671, 360 21, 342, 720 85, 370, 880

α = 1, tol = 10−3

β = 10−5 6 (285.5) 6 (300.0) 8 (372.2)

β = 10−6 4 (77.6) 4 (130.9) 4 (126.7)

β = 10−8 4 (56.7) 4 (59.4) 4 (64.9)

α = 0, tol = 10−3

β = 10−5 4 (207.3) 6 (366.5) 6 (229.5)

β = 10−6 4 (153.9) 4 (158.3) 4 (172.0)

β = 10−8 2 (35.2) 2 (37.8) 2 (40.0)
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Conclusions & Outlook

Low-rank tensor solver for unsteady heat (and Navier-Stokes)
equations with uncertain viscosity.

Similar techniques already used for 3D Stokes(-Brinkman) optimal
control problems.

With 1 stochastic parameter, the scheme reduces complexity by up to
2–3 orders of magnitude.

To consider next:

many parameters coming from uncertain geometry or Karhunen-Loève
expansion of random fields;
Initial results: the more parameters, the more significant is the
complexity reduction w.r.t. memory — up to a factor of 109 for the
control problem for a backward facing step.
exploit multicore technology in efficient parallelization.
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3D Stokes-Brinkman control problem

State

Control

Mean Standard deviation

Full size: nxnξnt ≈ 3 · 109. Reduction:
mem(TT )

mem(full)
= 0.002. return
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