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Motivation

— Optimal Control —

Optimal Control
is used for the optimization of dynamical processes,
described by ordinary or partial differential equations.
This is achieved by minimizing a cost functional
(penalizing, e.g. energy consumption, deviation from reference trajectory),

such that a prescribed target
is reached in given or minimal time

whilst complying with given control and state constraints.
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Motivation

— Feedback Control —

Let (xs, us) solve minygy,, J(x, u) s.t. x(t) = f(x(t), u(t)).
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Motivation

W — Feedback Control —

Let (xs, us) solve minygy,, J(x, u) s.t. x(t) = f(x(t), u(t)).

Fundamental observation

Optimized trajectory x.(t; u,) and precomputed optimal control u.(t) will not be attainable in practice
due to

m modeling errors and/or unmodeled dynamics,

m model uncertainties,

external perturbations,

B measurement errors.
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Motivation

W — Feedback Control —

Let (xs, us) solve minygy,, J(x, u) s.t. x(t) = f(x(t), u(t)).

Fundamental observation

Optimized trajectory x.(t; u,) and precomputed optimal control u.(t) will not be attainable in practice
due to

m modeling errors and/or unmodeled dynamics,
m model uncertainties,

m external perturbations,

B measurement errors.

Consequence: need feedback control
u(t) = u.(t) + U(t, x(t) — x(t))

in order to attenuate perturbations/errors!
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Motivation
— Feedback Control —

Example: Optimal control of a simple transport model

Burgers' equation:

atx(ta 5) = Vaffx(t7 5) — X(t7 6) aﬁx(t’g) + B(g)u(t)7
X(tv 0) = X(t7 1) =0, X(Ov é-) = X0(§)7 § € (07 1)7
y(t,§) = Cx(t,8).
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y - ¥ Motivation
w — Feedback Control —

Example: Optimal control of a simple transport model

Burgers' equation:
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afx(t7 5)
x(t,0)
y(t,)

v Ogex(t,€) — x(t,€) ex(t, ) + B(§)u(t),
X(t7 1) = 0: X(07 g) = X0(£)7 £ € (07 1)7
C x(t,8).
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y - ¥ Motivation
w — Feedback Control —

Example: Optimal control of a simple transport model
Burgers' equation:
x(t,6) = v deex(t,€) — x(£,€) dex(t,€) + BE)u(t) + F(E)v(1),
X(tv 0) X(t7 1) =0, X(Oa g) = XO(&) + 77(5)7 §€e (07 1)7
y(t,€) Cx(t,8) + w(t,§).

Nonlinear control (here: MPC-LQG):

0.5 2
00 :

Reduction of tracking error [ [|x(t) — x.(t)|[3 dt by factor > 10.

[BENNER/GORNER, PAMM 2006]; [BENNER/GORNER/SAAK, Springer LNCSE 2006].
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@ The LQR/LQG Controller

The Linear-Quadratic Regulator (LQR) Problem

Minimize J(u) = 3 f( TQy + u"Ru) dt for u € L5(0,00; R™),

subject to
x(t) = Ax(t)+ Bu(t), x(0) = xo,

y(t) = (),
where A € R"™", B € R™*™, C € RPX".
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@ The LAR/LQG Controller

The Linear-Quadratic Regulator (LQR) Problem
oo

Minimize J(u) = 3 [ (y"Qy +uTRu)dt for ue L5(0,00;R™),
0

subject to
x(t) = Ax(t)+ Bu(t), x(0) = xo,

y(t) = (),
where A € R"™", B € R™™, C € RPX".

Solution of finite-dimensional LQR problem: feedback control
u,(t) = =BT X, x(t) = —K.x(t),

where X, = X, > 0 is unique stabilizing® solution of algebraic Riccati equation (ARE)

0=R(X):=CTQC+ATX + XA—- XBR'BTX.

!X is stabilizing < A(A— BBTX) c C~.
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Motivation

— Transport Problems as Dynamical Systems —

m Physical transport is one of the most fundamental dynamical processes in nature.
m Prediction and manipulation of transport processes are important research topics, e.g.,
to
®m avoid stall — for stable and safe flight;
B save energy (or increase attainable speed) by minimizing drag coefficient;
m use fluid flow for optimal transport (e.g., in blood veins).
m Open-loop controllers are widely used in various engineering fields.
— Not robust regarding perturbation

m Dynamical systems are often influenced via so called distributed control.
— Unfeasible in many real-world areas

= Boundary feedback stabilization (closed-loop)
should be used to increase robustness and feasibility.
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1. Introduction

2. Feedback Stabilization for Index-2 DAE Systems
3. Accelerated Solution of Riccati Equations

4. Conclusions
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5 Introduction
— Muilti-Field Flow Stabilization by Riccati Feedback —

m Consider 2D flow problems described by incompressible Navier—Stokes equations.

m Riccati feedback approach requires the solution of an algebraic Riccati equation.

m Conservation of mass introduces a divergence-freeness condition ~» problems with
mathematical basis of control design schemes.

Velocity Magnitude
04 0.8

[ 1.5415038137

Karman vortex street
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Introduction
5 — Multi-Field Flow Stabilization by Riccati Feedback —

Consider 2D flow problems described by incompressible Navier—Stokes equations.

Riccati feedback approach requires the solution of an algebraic Riccati equation.

Conservation of mass introduces a divergence-freeness condition ~» problems with
mathematical basis of control design schemes.

Coupling flow problems with a scalar reaction-advection-diffusion equation.

concentration magnitude
1

0.75

velocity magnitude
0.25 05 075 ]

simplified reactor model © 1.008052
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= Introduction
W; — Auvailable Tools and Necessary Tasks at Project Start! —

@ Functional analytic control approach by Raymond ( [RAymMoND *05-’07]) works in
subspace of divergence-free functions.

!This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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@ Functional analytic control approach by Raymond ( [RAymMoND *05-’07]) works in
subspace of divergence-free functions.

Establish a numerical realization for Leray projection.
® NAVIER: FE package using P»>-P; Taylor—Hood elements.

Incorporate unsteady boundary conditions and boundary control operator.

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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Introduction
: — Auvailable Tools and Necessary Tasks at Project Start! —

@ Functional analytic control approach by Raymond ( [RAymMoND *05-’07]) works in
subspace of divergence-free functions.

Establish a numerical realization for Leray projection.
® NAVIER: FE package using P»>-P; Taylor—Hood elements.
Incorporate unsteady boundary conditions and boundary control operator.

©® LQR theory for generalized state-space systems.

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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Introduction

— Auvailable Tools and Necessary Tasks at Project Start! —

@ Functional analytic control approach by Raymond ( [RAymMoND *05-’07]) works in
subspace of divergence-free functions.

Establish a numerical realization for Leray projection.
® NAVIER: FE package using P»>-P;1 Taylor-Hood elements.

Incorporate unsteady boundary conditions and boundary control operator.
©® LQR theory for generalized state-space systems.

Incorporate a DAE structure without using expensive DAE methods.

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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Introduction

— Auvailable Tools and Necessary Tasks at Project Start! —

@ Functional analytic control approach by Raymond ( [RAYMOND ’05-'07]) works in
subspace of divergence-free functions.

Establish a numerical realization for Leray projection.
® NAVIER: FE package using P»>-P;1 Taylor-Hood elements.

Incorporate unsteady boundary conditions and boundary control operator.
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Incorporate a DAE structure without using expensive DAE methods.

O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.
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Introduction

— Auvailable Tools and Necessary Tasks at Project Start! —

@ Functional analytic control approach by Raymond ( [RAYMOND ’05-'07]) works in
subspace of divergence-free functions.

Establish a numerical realization for Leray projection.
® NAVIER: FE package using P»>-P;1 Taylor-Hood elements.
Incorporate unsteady boundary conditions and boundary control operator.
©® LQR theory for generalized state-space systems.
Incorporate a DAE structure without using expensive DAE methods.
O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.
Incorporate the divergence-free condition without explicit projection.

!This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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Introduction

— Auvailable Tools and Necessary Tasks at Project Start! —

@ Functional analytic control approach by Raymond ( [RAYMOND ’05-'07]) works in
subspace of divergence-free functions.

Establish a numerical realization for Leray projection.
® NAVIER: FE package using P»-P; Taylor—-Hood elements.
Incorporate unsteady boundary conditions and boundary control operator.
©® LQR theory for generalized state-space systems.
Incorporate a DAE structure without using expensive DAE methods.
O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.
Incorporate the divergence-free condition without explicit projection.
® Preconditioned iterative methods to solve stationary Navier—Stokes systems.

Develop techniques to deal with complex-shifted multi-field flow systems.

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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Introduction
: — Auvailable Tools and Necessary Tasks at Project Start! —

(6\ Functional analytic cont

. e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08]
subspace of divergence-

e implicitly project on “hidden manifold”

= Nested iteration: solve large-scale sparse saddle point system
@ |INAVIER: FE package using P>-71 Taylor—Hood elements.

® |LQR theory for generalized state-space systems.

@ |Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.
—/

@ Preconditioned iterative methods to solve stationary Navier—Stokes systems.

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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Introduction
: — Auvailable Tools and Necessary Tasks at Project Start! —

) )

@ Functional analytic conty : ) - i
subspace of divergence-f e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08]
e implicitly project on “hidden manifold”

= Nested iteration: (solve large-scale sparse saddle point system)
® NAVIER: FE package us

no Pr-D: Tavlor—Hood elements

e adapt various ideas from [ELMAN/SILVESTER/ WATHEN ’05]
= develop suitable preconditioner to be used with GMRES
(= efficient preconditioner uses various approximation methods

©® LQR theory for generaliz

~

O Kleinman—Newton-ADI framework for solving generalized algebraic Riccati equations.

Preconditioned iterative methods to solve stationary Navier—Stokes systems.

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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y - ¥ Introduction
: — Available

Tools and Necessary Tasks at Project Start! —

@ Functional analytic cont
subspace of divergence-f

® NAVIER: FE package us

©® LQR theory for generaliz

O Kleinman—Newton-ADI {

©® Preconditioned iterative

- ) )

e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08]
e implicitly project on “hidden manifold”

\#(Nested iteration]: solve large-scale sparse saddle point system |
no D~-"Dy Tavior—Hood elements
e adapt various ideas from [ELMAN/SILVESTER/ WATHEN ’05]

= develop suitable preconditioner to be used with GMRES
(= efficient preconditioner uses various approximation methods |

(e combine [KURSCHNER ’'16], [B./BYERS 98],
and [FEIZINGER/HYLLA/SACHS ’09]
= extended ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT *16/718]
.= develop a highly compatible method to solve Riccati equations)

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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y - ¥ Introduction
: — Available

Tools and Necessary Tasks at Project Start! —

o
@ Functional analytic cont
subspace of divergence-f]

® NAVIER: FE package us
©® LQR theory for generaliZ

O Kleinman—Newton-ADI {

L@ Preconditioned iterative

- 9 )

e use discrete projector from [HEINKENSCHL;SS/SORENSEN/SUN 08]
e implicitly project on “hidden manifold"”

= Nested iteration: solve large-scale sparse saddle point system )
no DP~-Dy [avlior—Hood elements
e adapt various ideas from [ELMAN/SILVESTER/ WATHEN ’05]

= develop suitable preconditioner to be used with GMRES
(= efficient preconditioner uses various approximation methods

e combine [KURSCHNER ’16], [B./BYERs ’98],
and [FEIZINGER/HYLLA/SACHs ’09]
= extended ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT 716/’18]
= develop a highly compatible method to solve Riccati equations

~

(e include feedback into forward simulation within NAVIER
= closed-loop forward flow simulation

! This work started as part of the DFG SPP1253 “Optimization with PDEs” (2007-2013).

©P. Benner/H. Weichelt

Riccati-Based Feedback Control of Nonlinear Unsteady PDEs



Introduction
: — Auvailable Tools and Necessary Tasks at Project Start! —

@ Functional analytic cont

. e use discrete projector from [HEINKENSCHLOSS/SORENSEN/SUN '08]
subspace of divergence-

e implicitly project on “hidden manifold”

= Nested iteration: solve large-scale sparse saddle point system
® NAVIER: FE package using P>-P1 Taylor—Hood elements.

©® LQR theory for generalized state-space systems.

e combine [KURSCHNER ’16], [B./BYERs ’98],
© Kleinman-Newton-ADI'{  ;ng [Fizinaer /HyLLA /SAcHS *09]
= extended ideas in [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16/’18]
@ Preconditioned iterative |= develop a highly compatible method to solve Riccati equations

! This work started as part of the DFG SPP1253 “Optimization with PDEs" (2007-2013).
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2. Feedback Stabilization for Index-2 DAE Systems
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: Feedback Stabilization for Index-2 DAE Systems
@ — Physics of Multi-Field Flow —

Navier-Stokes Equations

ov 1 _
& AV (V-V)V+Vp=Ff

0t Re
divv=0

m defined for time t € (0,00) and space X € Q C R? bounded with I = 9Q

m + boundary and initial conditions

® initial boundary value problem with additional algebraic constraints

Riccati-Based Feedback Control of Nonlinear Unsteady PDEs
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Feedback Stabilization for Index-2 DAE Systems
— Physics of Multi-Field Flow —

Navier-Stokes Equations

ov 1 =

S AV+(7-V)i+Vp=F

ot Re ( ) ?
divVv=0

Linearize + Discretize — Index-2 DAE

M%v(t) — Av(t) + Cp(t) + Bu(t)

M=M" -0
v(t) € R", p(t) € R™
n=n, N=n+np

A, MecR™" G ecR™m
B eR™™ CeR™ "
u(t) € R™, y(t) e R™

0=GTv(t)
rank(@):np o

y(t) = Cv(1)
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Feedback Stabilization for Index-2 DAE Systems
— Physics of Multi-Field Flow —

Navier-Stokes Equations

ov 1 _
& AV (V-V)V+Vp=Ff

0t Re
divv =0
Linearize + Discretize — Index-2 DAE
M-S w(t) = Av() + Ga(t) + Bu(t)
0=GTv(t)
y(t) = Cv(1)

Show that projection in [HEI/Sor/Sun ’08] is dis-

cretized version of Leray projector in [RAY ’06].
MITT = 1IM N HTVZVdiV70

[Bansch/B./SaAK/Stoll/WEICHELT '13,’15]

M=MT >0
v(t) € R", p(t) € R™

n=n, N=n+np

A, MeR™" G eR™™®

B eR™™ CeR™"
u(t) € R™, y(t) € R™
rank (6) = ny
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Feedback Stabilization for Index-2 DAE Systems
@ — Physics of Multi-Field Flow —

Navier-Stokes Equations Concentration Equation

ov 1 _
& AV (V-V)V+Vp=Ff

0t Re
divv =0
Linearize + Discretize — Index-2 DAE
M-S w(t) = Av() + Ga(t) + Bu(t)
0=GTv(t)
y(t) = Cv(1)

Show that projection in [HEI/Sor/Sun ’08] is dis-

cretized version of Leray projector in [RAY ’06].
MITT = 1IM N HTVZVdiV70

[Bansch/B./SaAK/Stoll/WEICHELT '13,’15]

9c(¥) 1

_ (v) 7. (V) —
5 ReScAC +(v-V)c 0

M=MT >0
v(t) € R", p(t) € R™

n=n, N=n+np

A, MeR™" G eR™m

B eR™™ CeR™"
u(t) € R™, y(t) € R™
rank (6) = ny
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Feedback Stabilization for Index-2 DAE Systems
@ — Physics of Multi-Field Flow —

Navier-Stokes Equations Concentration Equation

ov 1 _
& AV (V-V)V+Vp=Ff

0t Re
divv=0

A McR™" G e R Linearize + Discretize — Index-2 DAE M=MT =0
) K d N
nxn, naxXn — =
Be Rn ,Ce Rn M= x(t) = Ax(t) + Gp(t) + Bu(t) X(t) = [vgg] c R
u(t) € R™, y(t) € R™ 0=G"x(t) ¢ N
rank (G) =np y(t) = Cx(t) N e =0

Show that projection in [HEI/Sor/Sun ’08] is dis-

cretized version of Leray projector in [RAY ’06].
MITT = 1IM N HTVZVdMo

[Bansch/B./SaAK/Stoll/WEICHELT '13,’15]
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= Feedback Stabilization for Index-2 DAE Systems
W@ — Physics of Multi-Field Flow —

Navier-Stokes Equations Concentration Equation

a_) 1 -
& AV (V-V)V+Vp=Ff

0t Re
divv=0

A, M e R™" G € R Linearize + Discretize — Index-2 DAE M=MT w0
) d "
nxne Mlaxn M—x(t) = Ax(t) + Gp(t) + Bu(t
BeR™™, CeR 5.X(1) = Ax(t) + Gp(t) + Bu(t) x(t):[V(t)]eRn
u(t) € R™, y(t) € R™ 0= GTx() c(t)
~ n=n,+ne, N=n+np
rank (G) =np y(t) = Cx(t)
Show that projection in [HEI/Sor/Sun ’08] is dis- Extension to coupled flow case, i.e.,
cretized version of Leray projector in [RAY ’06]. = I 0 T o] [v Ve 0
MIIT =IIM A v =vayug “lo 1] M Lo T <]
[Bansch/B./SAaAk/Stoll/ WEICHELT "13,'15] [BANSCH/B./SAAK/WEICHELT ’14]
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Feedback Stabilization for Index-2 DAE Systems
— Physics of Multi-Field Flow —

Linearize + Discretize — Index-2 DAE

M%x(t) — Ax(t) + Cp(t) + Bu(t)

0=GTx(t)
y(t) = Cx(1)
Show that projection in [HEI/Sor/SUN ’08] is dis- Extension to coupled flow case, i.e.,
cretized version of Leray projector in [RAY ’06]. = 7 0 7T o] [v Vo
MIT =M A II7v=vguo H':[o /] " [o /] [c]:[c’]'
[Bansch/B./SAaAk/Stoll/WEICHELT "13,'15] [BANSCH/B./SAAK/WEICHELT ’14]
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@ Feedback Stabilization for Index-2 DAE Systems

— Leray Projection —

Helmholtz Decomposition [GIRAULT/RAVIART ’86]

m Splitting:
(L2(Q))? = H(div, 0) L H(div,0)*

Divergence-free: H(div,0) : = {V € (L*(Q))* | divV =0, V- Ajr = 0}
Curl-free: H(div,0)* = {Vp | p € HY(Q)}
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- % Feedback Stabilization for Index-2 DAE Systems

— Leray Projection —

Helmholtz Decomposition [GIRAULT /RAVIART ’86]

m Splitting:
(L?(Q))? = H(div, 0) L H(div,0)*

Divergence-free: H(div,0) : = {V € (L*(Q))* | divV =0, V- Ajr = 0}
Curl-free: H(div,0)* = {Vp | p € HY(Q)}

Leray Projector P

This splitting is equivalent to V = Vgiv.0 + Vp, where Vgiy 0 and p fulfill
Vdivo +Vp=V inQ,
div ‘7div,0 =0 in Q,
‘7div,0 -A=0 onT.

P: (L2(R2))? — H(div,0) with P : V > Viiy 0.
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@ Feedback Stabilization for Index-2 DAE Systems

— Discrete Leray Projection —

Projection Method [HEINKENSCHLOSS /SORENSEN /SUN ’08]

m Index reduction for Lyapunov-solver.

m Projector:
o’ =1, —M1G(G"M;1G)1G".
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Feedback Stabilization for Index-2 DAE Systems
e

— Discrete Leray Projection —

Projection Method [HEINKENSCHLOSS /SORENSEN /SUN ’08]

m Index reduction for Lyapunov-solver.

m Projector:
o’ =1, —M1G(G"M;1G)1GT.

Recall P: vV — w:
w+ Vp

v~ % k-4
divw =0 G" o||p| | O
p=(G"M;1G)1G"v
w=(l, —M1G(G"M;1G) G v
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Feedback Stabilization for Index-2 DAE Systems
e

— Discrete Leray Projection —

Projection Method [HEINKENSCHLOSS /SORENSEN /SUN ’08]

m Index reduction for Lyapunov-solver.

m Projector:
o’ =1, —M;1G(G"M;1G)1GT.

Recall P: vV — w: . .
w+Vp =V, ~ M, G| |(w| [Mywv
divw =0 G" o||p| | O
p=(G"M;1G)"1G"v
w=(l, —M1G(G"M;1G) G )v

w = P(V), w=1"v,

=
O:dIVVT/ O:GTW
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; Feedback Stabilization for Index-2 DAE Systems
eo y

— LQR for Projected Systems —
Minimize

1 [ee]
Tty = 5 [P+l e

subject to R o d o R
o MO, - X(t) = 0] A6,x(t) + 6] Bu(t)

y(t) = COX(t)

with IT = ©,0] such that ©70, = | € R(=m)x(n=m) and x = é,Tx.
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: Feedback Stabilization for Index-2 DAE Systems
S0 y

— LQR for Projected Systems —

Minimize 1 [
Tty = 5 [P+l e
subject to d
M&?{(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

with M = MT = 0.
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: Feedback Stabilization for Index-2 DAE Systems
S0 y

— LQR for Projected Systems —
Minimize 00
Tty = 5 [P+l e
subject to d
M—x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
with M = MT =~ 0.

Riccati Based Feedback Approach

m Optimal control: u(t) = —Kx(t), with feedback: K = BT XM,
where X is the solution of the generalized continuous-time algebraic Riccati equation

(GCARE)
R(X)=2NCTC+ATXM+ MXA—~ MXBBTXM = 0.
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@ Feedback Stabilization for Index-2 DAE Systems

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.
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Feedback Stabilization for Index-2 DAE Systems

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ A"AM + MX A~ MXBBT XM = 0.

Kleinman—Newton method
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= Feedback Stabilization for Index-2 DAE Systems
ed

— Nested Iteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ A"AM + MX A~ MXBBT XM = 0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma DA — BE™) = —(wm)Tyy(m) (1)

Kleinman—Newton method
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Feedback Stabilization for Index-2 DAE Systems
Qo' @

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.

Step m + 1: Solve the Lyapunov equation
(A — BKM) T (MDA 4 M (mD) (A4 — BEM) = —(w(m)Ty(m) (1)

Kleinman—Newton method
low-rank ADI method
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@ Feedback Stabilization for Index-2 DAE Systems

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.
Step m + 1: Solve the Lyapunov equation
(A = BT (M A Ma D (A — BE™) = —(wm)Tyy(m) (1)

Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

Kleinman—Newton method
low-rank ADI method
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@ Feedback Stabilization for Index-2 DAE Systems

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.
Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma DA — BE™) = —(wm)Tyy(m) (1)
Step £: Solve the projected and shifted linear system
(A—BK™ £ M)V, =Y (2)

Kleinman—Newton method
low-rank ADI method

linear solver
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= Feedback Stabilization for Index-2 DAE Systems
ed

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.
Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma DA — BE™) = —(wm)Tyy(m) (1)
Step £: Solve the projected and shifted linear system
(A—BK™ £ M)V, =Y (2)

Avoid explicit projection using OV, =V, Y= é,T Y, and [HEI/SOR/SUN ’08]:

Kleinman—Newton method
low-rank ADI method

linear solver
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= Feedback Stabilization for Index-2 DAE Systems
ed

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma DA — BE™) = —(wm)Tyy(m) (1)

Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

Avoid explicit projection using OV, =V, Y= é,T Y, and [HEI/SOR/SUN ’08]:
Replace (2) and solve instead the saddle point system (SPS)
AT — (KMTBT + M G

& o 1= 18]

for different ADI shifts g, € C~ for a couple of rhs Y.

Kleinman—Newton method
low-rank ADI method

linear solver
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= Feedback Stabilization for Index-2 DAE Systems
ed

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma DA — BE™) = —(wm)Tyy(m) (1)
Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

Avoid explicit projection using OV, =V, Y= é,T Y, and [HEI/SOR/SUN ’08]:
Replace (2) and solve instead the saddle point system (SPS)
(using Sherman—Morrison—Woodbury formula)

Vel Y

x| |0

AT — (K(MTBT + M G
for different ADI shifts g, € C~ for a couple of rhs Y.

GT 0

Kleinman—Newton method
low-rank ADI method

linear solver
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= Feedback Stabilization for Index-2 DAE Systems
ed

— Nested lteration without Projection —

Determine X = X7 > 0 such that R(X) =C"C+ ATAM + MXA - MXBB" XM = 0.

Step m + 1: Solve the Lyapunov equation
(A = BT (M) a4 pma DA — BE™) = —(wm)Tyy(m) (1)

Step £: Solve the projected and shifted linear system
(A—BK™ + gM)TV, =Y (2)

o
<]
1=
-
c f-_; Avoid explicit projection using érVg =V, V= é,T Y, and [HEI/Sor/SuN ’08]:
§ = Replace (2) and solve instead the saddle point system (SPS)
= o 5 (using Sherman—Morrison-Woodbury formula)
< _> _~ ~
£ « 3 AT +qM G|[v)] [V
E £ § GT ol L*] (O
s : £
g 2 =

for different ADI shifts g, € C~ for a couple of rhs Y.
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Q Feedback Stabilization for Index-2 DAE Systems
S®

— Convergence Result for Kleinman—Newton Method —

Theorem [B./Heinkenschloss/Saak /Weichelt '16]

m assume (A, B; M) stabilizable, (C, A; M) detectable

= = 3 unique, symmetric solution X(*) = ©,X(*)OT with R(X*)) = 0 that stabilizes

A—BBTX®M G| [M 0
C 10 0

GT 0
m for {X(")}:OZO defined by X(¥) := ©,X(AT, (1), and X© symmetric with (A -B (K(O))T : M)
stable, it holds that, for kK > 1,
XD = x@ = ... = XK =0 and lim X*) = x*)

k— 00

m 70 < K < oo such that, for k > 1,
[IXUH —XOle < RIXH — XD
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@ Feedback Stabilization for Index-2 DAE Systems

— Remarks/Open Problems —

Additional Contributions [Bansch/B./Saak/Weichelt '15,'16]

m Suitable approximation framework for Raymond's projected boundary control input.
m Proposed method directly iterates on the feedback matrix K € R,
m Initial feedback for index-2 DAE systems using a special eigenvalue shifting technique.

m Improved ADI shift computation for index-2 DAE systems (Penzl- and projection shifts).
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@ Feedback Stabilization for Index-2 DAE Systems

— Remarks/Open Problems —

Additional Contributions [Bansch/B./Saak/Weichelt '15,’16]

m Suitable approximation framework for Raymond's projected boundary control input.
m Proposed method directly iterates on the feedback matrix K € R"*"r,
m Initial feedback for index-2 DAE systems using a special eigenvalue shifting technique.

m Improved ADI shift computation for index-2 DAE systems (Penzl- and projection shifts).

Problems up to here

m Determination of suitable stopping criteria/tolerances.

m Computation of projected residuals is very costly (=~ 10x ADI step).
= use relative change of feedback matrix [B./L1/PENZL 08|
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@ Feedback Stabilization for Index-2 DAE Systems

— Numerical Examples —

NSE scenario: Re = 500, n = 5468, A\ = 102, tolyewton = 107°

10
102
10° & & & & =g
"'“"0--»-.,
102 e
\\
—4 Y
10 v’\
10-6 [ URXH)Ie UKW — kD) N
lierellr (1K) [ \‘;\
1078 === = = Fglpy =105 T T w7 DD
s x
1010 tolapr = 1077 - %= B0 !
10-12| tolap) = 10~° -%- ‘\“*
‘tO/AD| = 1‘0711 "+— g
0 2 4 6 8 10 12 14 16 18 20

Newton step k
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@ Feedback Stabilization for Index-2 DAE Systems

— Numerical Examples —

NSE scenario: Re = 500, n = 5468, A\ = 102, tolyewton = 107°

10* /%\
102 \‘\‘
100 ¢ ¢ P o S G
it SEL TR T
1072 \‘é\ s
~
10_4 ’*‘b\ \~
~
10-6 [LRXOIe [[K8) — k1)1 RO
llcTelle G <
1078 F2m =~ gl =007 7 T NN
b ~
10—107—*— tO/AD| = 10_7 -%- - :\J »
10_127—9— tolap) = 109 -9- \\“*
— ‘tO/AD| = 1‘0711 —‘+— g
0 2 4 6 8 10 12 14 16 18 20

Newton step k
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3. Accelerated Solution of Riccati Equations

/H. Weichelt Riccati-Based Feedback Control of Nonli



Accelerated Solution of Riccati Equations

— Structure —

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = MT € R" " are sparse.

R(X) = CTC+ A"XM + MXA — MXBBT™ XM
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@ Accelerated Solution of Riccati Equations

— Structure —

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = MT € R" " are sparse.

Velocity Magnitude
0.8 o 1.2

: | e—
0 1.5415038137

Karman vortex street
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@ Accelerated Solution of Riccati Equations

— Structure —

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = MT € R" " are sparse.
m In-/output matrices are rectangular and dense: B € R™ " C € R"*" with n, 4+ n, < n.

Velocity Magnitude
0.8 o 1.2

: | e—
0 1.5415038137

Karman vortex street
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Accelerated Solution of Riccati Equations

— Structure —

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).

m Quadratic system matrices A, M = MT € R" " are sparse.

m In-/output matrices are rectangular and dense: B € R™ " C € R"*" with n, 4+ ny < n.

m Unique stabilizing solution X € R"*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16].

R(X) = CTC+ A"XM + MXA — MXBBT™ XM

[B./KURSCHNER/SAAK '14/°15].
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Accelerated Solution of Riccati Equations

— Structure —

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).

m Quadratic system matrices A, M = MT € R" " are sparse.

m In-/output matrices are rectangular and dense: B € R™ " C € R"*" with n, 4+ ny < n.

m Unique stabilizing solution X € R"*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16].

R(X) = CTC+ A"XM + MXA — MXBBT™ XM

NN TN

[B./KURSCHNER/SAAK '14/°15].
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Accelerated Solution of Riccati Equations

— Structure —

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = MT € R" " are sparse.
m In-/output matrices are rectangular and dense: B € R™ " C € R"*" with n, 4+ ny < n.
m Unique stabilizing solution X € R"*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16].
m Singular values of X decay rapidly [GrasEDyck ’04], [B./BujaNoviC '16]
= X = ZZ7 exists, with Z € R™™ n, +n, < m < n.

R(X) = CTC+ A"XM + MXA — MXBBT™ XM

NN TN

[B./KURSCHNER/SAAK '14/°15].
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— Structure —

@ Accelerated Solution of Riccati Equations

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).
m Quadratic system matrices A, M = MT € R" " are sparse.
m In-/output matrices are rectangular and dense: B € R™ " C € R"*" with n, 4+ ny < n.
m Unique stabilizing solution X € R"*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16].
m Singular values of X decay rapidly [GrasEDyck ’04], [B./BujaNoviC '16]
= X = ZZ7 exists, with Z € R™™ n, +n, < m < n.

R(ZZT)=C"C+A"ZZ"™ + MZZ"A— MZZ"BB"2Z™M

I\l

N\

NN\

[B./KURSCHNER/SAAK '14/°15].
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— Structure —

@ Accelerated Solution of Riccati Equations

m Coefficients of GCARE are large-scale matrices (resulting from FE discretization).

m Quadratic system matrices A, M = MT € R" " are sparse.

m In-/output matrices are rectangular and dense: B € R™ " C € R"*" with n, 4+ ny < n.

m Unique stabilizing solution X € R"*" is symmetric, positive-semidefinite, but dense
[LANCASTER/RODMAN '95], [B./HEINKENSCHLOSS/SAAK/WEICHELT ’16].

m Singular values of X decay rapidly [GrasEDyck ’04], [B./BujaNoviC '16]
= X = ZZ7 exists, with Z € R™™ n, +n, < m < n.

m Residual is of low rank; R(ZZT) = WWT, W € R™k, k <2n, +n, < n

WWT =CTC+A"ZZ™TM + MZZ"A—-MZZ"BB"ZZ™ M

=0 NN NN N TN

[B./KURSCHNER/SAAK '14/°15].
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@ Accelerated Solution of Riccati Equations

— Problems with Nested lteration —

m Nested iteration depends on accuracy of different nesting levels that influence each other.
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— Problems with Nested lteration —

@ Accelerated Solution of Riccati Equations

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]
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Accelerated Solution of Riccati Equations

— Problems with Nested lteration —

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

( e Convergence theory in [FErTzINGER/HYLLA/SAcHS '09] is not applicable in the low-rank case)

©P. Benner/H. Weichelt iccati-Based Feedback Control of Nonlinear Unsteady PDEs



Accelerated Solution of Riccati Equations

— Problems with Nested lteration —

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

m Kleinman—Newton method converges globally, but often

IRXD)[1 > |[R(XO)]|.

( e Convergence theory in [FErtzINGER/HYLLA /SAcHS '09] is not applicable in the low-rank case)

©P. Benner/H. Weichelt iccati-Based Feedback Control of Nonlinear Unsteady PDEs



Accelerated Solution of Riccati Equations

— Problems with Nested lteration —

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

m Kleinman—Newton method converges globally, but often

IRXD)][ > [[RXO)|.
= Kleinman—Newton with exact line search [B./Byers '98]

( e Convergence theory in [FErtzINGER/HYLLA /SAcHS '09] is not applicable in the low-rank case.]
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Accelerated Solution of Riccati Equations

— Problems with Nested lteration —

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

m Kleinman—Newton method converges globally, but often

IRXD)][ > [[RXO)|.
= Kleinman—Newton with exact line search [B./Byers '98]

( e Convergence theory in [FErtzINGER/HYLLA /SAcHS '09] is not applicable in the low-rank case.j

e Step size computation in [B./Byers *98] involves dense residuals, therefore, it is not
applicable in large-scale case.
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@ Accelerated Solution of Riccati Equations

— Problems with Nested lteration —

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

m Kleinman—Newton method converges globally, but often

IRXD)][ > [[RXO)|.
= Kleinman—Newton with exact line search [B./Byers '98]

~

‘= inexact low-rank Kleinman—Newton-ADI with line search
[B./HEINKENSCHLOSS/SAAK/WEICHELT '16/718]

e combination yields convergence proof
e efficient implementation exploits low-rank structure
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Accelerated Solution of Riccati Equations

— Problems with Nested lteration —

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

m Kleinman—Newton method converges globally, but often

IRXD)][ > [[RXO)|.
= Kleinman—Newton with exact line search [B./Byers '98]

~

‘= inexact low-rank Kleinman—Newton-ADI with line search
[B./HEINKENSCHLOSS/SAAK/WEICHELT '16/718]

e combination yields convergence proof
e efficient implementation exploits low-rank structure

e drastically reduced amount of ADI steps + step size computation “for free”
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— Problems with Nested lteration —

@ Accelerated Solution of Riccati Equations

m Nested iteration depends on accuracy of different nesting levels that influence each other.
= inexact Kleinman—Newton method [Feitzinger/Hylla/Sachs '09]

m Kleinman—Newton method converges globally, but often

IRXD)][ > [[RXO)|.
= Kleinman—Newton with exact line search [B./Byers '98]

~

‘= inexact low-rank Kleinman—Newton-ADI with line search
[B./HEINKENSCHLOSS/SAAK/WEICHELT '16/718]

e combination yields convergence proof
e efficient implementation exploits low-rank structure

e drastically reduced amount of ADI steps + step size computation “for free”

e extension to index-2 DAE case “straight forward”
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Accelerated Solution of Riccati Equations
— Convergence Result for inexact Kleinman—Newton Method —

Theorem [B./Heinkenschloss/Saak /Weichelt '16]
Set 74 € (0,1) and assume: (A, B; M) stabilizable, (C, A; M) detectable, and 3 X**1 = 0 Vk that solves

(A — BEMNYT . A 4 mMXE (A — BEW) = —¢Tc — (KW)TW 4 gl
such that
12 e < nil IR(AW))e-
Find & € (0,1] such that ||R(X™ + &SM)||r < (1 — &)||R(X™®)||F and set
XKD — (1 g)x® 4 g Bl

Q IF & > &nin >0Vk = |[R(AW)|F — 0.

@ IF X =0, and (A — BB X" M) stable for k > K >0 = x® — x)
(X™) = 0 the unique stabilizing solution).
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Accelerated Solution of Riccati Equations

— Numerical Examples —

NSE scenario: Re = 500, Level 1, A = 104, tolnewton = 107

10° | t Kleinman—Newt
oo //‘\1\\"\*\“\\ —— exac einman—Newton
103
=l w
SIS} -3 '\‘\"“* ==
=K 10 B
ST
10-°
10712
] N 5 Y S B O O O O B AL

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Newton step k
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Accelerated Solution of Riccati Equations

— Numerical Examples —

NSE scenario: Re = 500, Level 1, A = 104, tolnewton = 107

10° ]
f\”\,\“\‘ —a— exact Kleinman—Newton

10° / T\“\"\ —+— exact Kleinman—Newton with line search

103
=100 —t T
§§ _3 \.\0\ '\‘\"“: s
pe 10 \ ™~
2 \

I T O O, N N N R A

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Newton step k
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Accelerated Solution of Riccati Equations

— Numerical Examples —

NSE scenario: Re = 500, Level 1, A = 104, tolnewton = 107

10° ]
f\*\\. —a— exact Kleinman—Newton

10° "\1;\'\‘ —+— exact Kleinman—Newton with line search
/ - %~ inexact Kleinman—Newton

103
S 100 ke, -
g? 10-3 B \q_*"’“’“*\.
E% \\

I T O O, N N N R A
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— Numerical Examples —

NSE scenario: Re = 500, Level 1, A = 104, tolnewton = 107
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@ Accelerated Solution of Riccati Equations

— Numerical Examples —

NSE scenario: Re = 500, Level 1, A = 104, tolnewton = 107

exact KN | exact KN+LS | inexact KN | inexact KN+LS
# Newt 27 11 27 10
#ADI 3185 1351 852 549
ENewt-ADI 1304.769 540.984 331.871 222.295
tshift 29.998 12.568 7.370 5.507
tLs - -
tiotal | 1334.767 | 553.581 | 339.241 | 227.824 |

Table: Numbers of steps and timings in seconds.
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NSE scenario: Re = 500, Level 1, A = 104, tolnewton = 107

Accelerated Solution of Riccati Equations
— Numerical Examples —

exact KN | exact KN+LS | inexact KN | inexact KN+LS
# Newt 27 11 27 10
#ADI 3185 1351 852 549
ENewt-ADI 1304.769 540.984 331.871 222.295
tshift 29.998 12.568 7.370 5.507
tLs - 0.029 - 0.023
tiotal | 1334.767 | 553.581 | 339.241 | 227.824 |

©P. Benner/H. Weichelt

Table: Numbers of steps and timings in seconds.
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Accelerated Solution of Riccati Equations

Feedback Stabilization for Index-2 DAE systems

NSE scenario: Re = 500, tolap = 10_7, tolewton = 1078
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Accelerated Solution of Riccati Equations

Feedback Stabilization for Index-2 DAE systems

NSE scenario: NSE scenario: Re = 500, tolNewton = 1078, N = 334489
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Accelerated Solution of Riccati Equations

Feedback Stabilization for Index-2 DAE systems

NSE scenario: NSE scenario: Re = 500, tolNewton = 1078, N = 334489
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Main Contributions

m Analyzed Riccati-based feedback for scalar and vector-valued transport problems.

Wide-spread usability tailored for standard inf-sup stable finite element discretizations.
Established specially tailored Kleinman—Newton-ADI that avoids explicit projections.

Ongoing research in similar areas has been incorporated.

|

[

m Suitable preconditioners for multi-field flow problems have been developed.

|

m Major run time improvements due to combination of inexact Newton and line search.
|

Established new convergence proofs that were verified by extensive numerical tests.
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Main Contributions

m Analyzed Riccati-based feedback for scalar and vector-valued transport problems.

Wide-spread usability tailored for standard inf-sup stable finite element discretizations.
Established specially tailored Kleinman—Newton-ADI that avoids explicit projections.

Ongoing research in similar areas has been incorporated.

|

[

m Suitable preconditioners for multi-field flow problems have been developed.

|

m Major run time improvements due to combination of inexact Newton and line search.
|

Established new convergence proofs that were verified by extensive numerical tests.

= Showed overall usability of new approach by a closed-loop forward simulation.
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