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Introduction
Stabilization of the Cylinder Wake

Consider the cylinder wake at moderate Reynolds numbers.
The steady state is a solution, but unstable  transition to turbulent
flow due to unavoidable perturbations, if they are not attenuated.
Goal: Stabilizing feedback controller that works in experiments.
Thus, the simulation needs to cope with:

Ù limited measurements,
Ù short evaluation times,

Ù system uncertainties.
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Introduction

Idea: Linearization based feedback to stabilize a steady-state:

v̇ + (v · ∇)v − 1
Re ∆v +∇p = Bu

∇ · v = 0

linearization
and

(semi-)
discretization

v̇ + Av + JT p = Bu
Jv = 0

see [Raymond’05, ’06] for theory concerning flows;
see [PB&JH’15] for low-rank output-based feedback;
see also [Breiten&Kunisch’14].

7 Fragility of Observer-Based Controllers
LQG controllers have no guaranteed robustness margins and will likely fail
in the presence of system uncertainties.
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Introduction
Cylinder Wake, Re = 80, Velocity Measurements in the Wake
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corrupted linearization – about the not quite converged steady state
visually undistinguishable from the exact linearization point
relative difference in norm: 5%
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Introduction

Uncertainty A∆ in the linearization A...

ẋ = Ax + Bu
y = Cx

Ù ẋ = [A + A∆]x + Bu
y = Cx

or

G0(s) = C(sI − A)−1B Ù G(s) = C(sI − A− A∆)−1B
= G0(s) + G∆(s)

with G∆(s) = CA∆(sI − A)−1(sI − A− A∆)−1B

... is an additive uncertainty in the transfer function.
Ù Robust H∞controllers can compensate for that.
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Robust Control
H∞ Control

Linear Time-Invariant Systems (finite or infinite)

Σ :


ẋ = Ax + B1w + B2u,
z = C1x + D11w + D12u,
y = C2x + D21w + D22u,

where A, Bj , Ci , and Dij are matrices of suitable sizes, j , i ∈ {1, 2}.

x – states of the system,
w – exogenous inputs
u – control inputs,
z – performance outputs
y – measured outputs
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Robust Control
Transfer functions

Laplace transform =⇒ transfer function (in frequency domain)

G(s) =
[
G11(s) G12(s)
G21(s) G22(s)

]
≡

 A B1 B2
C1 D11 D12
C2 D21 D22

 ,
where for x(0) = 0, Gij are the transfer functions

Gij(s) = Ci (sI − A)−1Bj + Dij

with i , j ∈ {1, 2}, describing the transfer from inputs to outputs of Σ via

z(s) = G11(s)w(s) + G12(s)u(s),
y(s) = G21(s)w(s) + G22(s)u(s).
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Robust Control
The H∞-Optimization Problem

Consider closed-loop system,
where K (s) is an internally
stabilizing controller, i.e., K
stabilizes G for w ≡ 0.

G(s)-
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Goal:
Find robust controller, i.e., K that minimizes error outputs

z =
(
G11 + G12K (I − G22K )−1G21

)
w =: F(G ,K )w ,

where F(G ,K ) is the linear fractional transformation of G , K .
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H∞-optimal Control Problem:

min
K stabilizing

‖F(G ,K )‖H∞
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Find robust controller, i.e., K that minimizes error outputs

z =
(
G11 + G12K (I − G22K )−1G21

)
w =: F(G ,K )w ,

where F(G ,K ) is the linear fractional transformation of G , K .

H∞-Suboptimal Control Problem:
For given constant γ > 0, find all internally stabilizing controllers satisfying

‖F(G ,K )‖H∞ < γ.

P. Benner, benner@mpi-magdeburg.mpg.de LQG and H∞ Balanced Truncation for Active Flow Control 9/19



Robust Control
The Solution to the H∞-Optimization Problem

Simplifying Assumptions

1. D11 = 0

2. D22 = 0

3. (A,B1) stabilizable, (C1,A) detectable

4. (A,B2) stabilizable, (C2,A) detectable (=⇒ Σ internally stabilizable)

5. DT
12 [ C1 D12 ] = [ 0 I ]

6.
[

B1
D21

]
DT

21 =
[

0
I

]

Remark. 1.,2.,5.,6. only for notational convenience, 3. can be relaxed, but
derivations get even more complicated.
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Robust Control
The Solution to the H∞-Optimization Problem

Theorem [Doyle/Glover/Khargonekar/Francis ’89, Van Keulen ’93]
Given the Assumptions 1.–6., there exists an admissible controller K (s) solving
the H∞-suboptimal control problem ⇐⇒

(i) There exists a stabilizing solution X∞ = X T
∞ ≥ 0 to the Riccati equation

CT
1 C1 + AT X + XA + X (γ−2B1BT

1 − B2BT
2 )X = 0.

(ii) There exists a stabilizing solution Y∞ = Y ∗∞ ≥ 0 to the Riccati equation

B1BT
1 + AY + YAT + Y (γ−2CT

1 C1 − CT
2 C2)Y = 0.

(iii) γ2 > ρ(X∞Y∞).

H∞-optimal Control
Find minimal γ for which (i)–(iii) are satisfied  γ-iteration based on solving the
Riccati equations above repeatedly for different γ.
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Robust Control
The Solution to the H∞-Optimization Problem

H∞-(sub-)optimal Controller
If (i)–(iii) hold, a suboptimal controller is given by

K̂ (s) =
[

Â B̂
Ĉ 0

]
= Ĉ(sI − Â)−1B̂,

where for

Z∞ := (I − γ−2Y∞X∞)−1,

Â := A + (γ−2B1BT
1 − B2BT

2 )X∞ − Z∞Y∞CT
2 C2,

B̂ := Z∞Y∞CT
2 ,

Ĉ := −BT
2 X∞.

K̂ (s) is the central or minimum entropy controller.
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Reduced-Order Controllers
LQGBT and H∞ Balanced Truncation [Mustafa/Glover ’91]

Balancing Related Methods

1. Solve the primal and dual matrix equations defining the characteristic
matrices P and Q.

2. Balance the system with respect to P and Q.
3. Truncate states corresponding to small characteristic values of PQ.

LQG:
AT PLQG + PLQGA− PLQGB2BT

2 PLQG + CT
1 C1 = 0,

AQLQG + QLQGAT − QLQGCT
2 C2QLQG + B1BT

1 = 0
H∞:

AT PH∞ + PH∞A + PH∞(γ−2B1BT
1 − B2BT

2 )PH∞ + CT
1 C1 = 0,

AQH∞ + QH∞AT + QH∞(γ−2CT
1 C1 − CT

2 C2)QH∞ + B1BT
1 = 0
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Numerical Realization
Application to Incompressible Flows

The H∞ controller design for the stabilization of incompressible flows
comes with two immediate numerical challenges:

1. High-dimensional model equations
Ùdirect approach not feasible because of memory constraints

Ù low-rank Riccati iteration

2. Differential-algebraic structure
Ùdue to the incompressibility constraint

Ù implicit realization of the discrete Leray projector
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Numerical Realization
Riccati Iteration

Low-Rank Riccati Iteration [Lanzon/Feng/Anderson ’07, B. ’08/’12]

1. Solve the ARE

CT
1 C1 + AT Z0 + Z0A− Z0B2BT

2 Z0 = 0

using Newton-ADI / RADI, yielding Y0 with Z0 ≈ Y0Y T
0 .

2. Set R1 := Y0. {% R1RT
1 ≈ X1}

3. FOR k = 1, 2, . . .
(i) Set Ak = A + UkV T

k := A + γ−2B1(BT
1 Rk)RT

k − B2(BT
2 Rk)RT

k .
(ii) Solve the ARE

γ−2Zk−1B1BT
1 Zk−1 + AT

k Zk + ZkAk − ZkB2BT
2 Zk = 0

using Newton-ADI / RADI, yielding Yk with Zk ≈ YkY T
k .

(iii) Set Rk+1 := rrqr ([ Rk , Yk ], τ). {% Rk+1RT
k+1 ≈ Xk+1}

(iv) IF ‖(BT
1 Yk)Y T

k ‖2 < tol THEN Stop.
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Numerical Realization
Implicit Realization of the Projections

Under standard assumptions, the semi-discrete incompressible
(Navier-)Stokes equations can be realized as an ODE:

v̇ = Av + JT p + Bu
0 = Jv

Ù v̇ = ΠAv + ΠBu

with Π := I − JT (JJT )−1J .

In turn, the feedback defined via the Π-based Riccati equations can be
realized via constrained Riccati equations [PH&JH’17]:

AT ΠX + XΠA
−XΠBBT ΠX = −CT C

Ù

AT X + XA− XBBT X
+JT Y + Y T J = −CT C ,

JX = 0, XJ = 0,

avoiding Π altogether.

P. Benner, benner@mpi-magdeburg.mpg.de LQG and H∞ Balanced Truncation for Active Flow Control 14/19



Simulation Setup

Ωo
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2D cylinder wake
Navier-Stokes equations
Re = 90
Taylor-Hood finite
elements
19500 velocity nodes

Boundary control at 2 outlets at the
cylinder periphery
Distributed observation:

3 sensors in the wake
measuring both v -components each

H∞-BT reduced controller
Target: stabilization of the steady-state
solution
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Numerical Realization
Simulation Results
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Controller of dimension 14 (left) and 8 (middle)
Based on an inexact linearization

only 3 Picard iteration on the Stokes steady-state
relative difference to the exact linearization point: 8%

Random perturbation of the initial value to trigger instabilities

P. Benner, benner@mpi-magdeburg.mpg.de LQG and H∞ Balanced Truncation for Active Flow Control 16/19



Conclusions

Summary

H∞-BT reduced controllers are
output based and of low dimensions,
robust against system uncertainties – as opposed to LQG.

The application to flow stabilization becomes feasible with
low-rank Riccati iterations,
implicit realization of the incompressibility constraint.

Code Availability:
The Riccati iteration will be available in the
M-M.E.S.S. library version 2.0.
H∞-BT and LQGBT implementations can be
found in the MORLAB toolbox.
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