

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

LQG and H_∞ Balanced Truncation for Active Flow Control Peter Benner Jan Heiland Steffen W. R. Werner 14th Viennese Conference on Optimal Control and Dynamic Games Vienna, July 3–6, 2018

Supported by:

DFG-Graduiertenkolleg MATHEMATISCHE KOMPLEXITÄTSREDUKTION

- 1. Introduction
- 2. Robust Control
- 3. Reduced-Order Controllers
- 4. Numerical Realization
- 5. Conclusions

- Consider the cylinder wake at moderate *Reynolds* numbers.
- The steady state is a solution, but unstable ~→ transition to turbulent flow due to unavoidable perturbations, if they are not attenuated.
- Goal: Stabilizing feedback controller that works in experiments.
- Thus, the simulation needs to cope with:
 - → limited measurements,
 - → short evaluation times,
 - → system uncertainties.

Idea: Linearization based feedback to stabilize a steady-state:

$$\dot{v} + (v \cdot \nabla)v - \frac{1}{Re}\Delta v + \nabla p = Bu$$

$$\nabla \cdot v = 0$$
linearization
and

$$\dot{v} + Av + J^T p = Bu$$

$$\nabla \cdot v = 0$$
(semi-)
discretization

$$Jv = 0$$

- see [RAYMOND'05, '06] for theory concerning flows;
- see [PB&JH'15] for low-rank output-based feedback;
- **see also** [BREITEN&KUNISCH'14].

X Fragility of Observer-Based Controllers

LQG controllers have no guaranteed robustness margins and will likely fail in the presence of system uncertainties.

CSC Introduction Cylinder Wake, Re = 80, Velocity Measurements in the Wake

corrupted linearization – about the not quite converged steady state

- visually undistinguishable from the exact linearization point
- relative difference in norm: 5%

Uncertainty A_{Δ} in the linearization A_{\cdots}

$$\dot{x} = Ax + Bu$$

 $y = Cx$
 $\dot{x} = [A + A_{\Delta}]x + Bu$
 $y = Cx$
 $y = Cx$

or

$$G_0(s) = C(sI - A)^{-1}B \qquad \leftarrow \qquad G(s) = C(sI - A - A_\Delta)^{-1}B \\ = G_0(s) + G_\Delta(s)$$

with $G_{\Delta}(s) = CA_{\Delta}(sI - A)^{-1}(sI - A - A_{\Delta})^{-1}B$

... is an additive uncertainty in the transfer function.

→ Robust \mathcal{H}_{∞} controllers can compensate for that.

Linear Time-Invariant Systems (finite or infinite)

$$\Sigma: \begin{cases} \dot{x} = Ax + B_1w + B_2u, \\ z = C_1x + D_{11}w + D_{12}u, \\ y = C_2x + D_{21}w + D_{22}u, \end{cases}$$

where A, B_j , C_i , and D_{ij} are matrices of suitable sizes, $j, i \in \{1, 2\}$.

- x states of the system,
- w exogenous inputs
- u control inputs,
- z performance outputs
- y measured outputs

Laplace transform \implies transfer function (in frequency domain)

$$G(s) = egin{bmatrix} G_{11}(s) & G_{12}(s) \ G_{21}(s) & G_{22}(s) \end{bmatrix} \equiv egin{bmatrix} A & B_1 & B_2 \ \hline C_1 & D_{11} & D_{12} \ C_2 & D_{21} & D_{22} \end{bmatrix},$$

where for x(0) = 0, G_{ij} are the transfer functions

$$G_{ij}(s) = C_i(sI - A)^{-1}B_j + D_{ij}$$

with $i, j \in \{1, 2\}$, describing the transfer from inputs to outputs of Σ via

$$z(s) = G_{11}(s)w(s) + G_{12}(s)u(s),$$

$$y(s) = G_{21}(s)w(s) + G_{22}(s)u(s).$$

P. Benner, benner@mpi-magdeburg.mpg.de

Goal:

Find robust controller, i.e., *K* that minimizes error outputs

$$z = (G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21})w =: \mathcal{F}(G, K)w,$$

where $\mathcal{F}(G, K)$ is the linear fractional transformation of G, K.

Goal:

Find robust controller, i.e., K that minimizes error outputs

$$z = (G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21})w =: \mathcal{F}(G, K)w,$$

where $\mathcal{F}(G, K)$ is the linear fractional transformation of G, K.

\mathcal{H}_{∞} -optimal Control Problem:

$$\min_{K \text{ stabilizing}} \left\| \mathcal{F}(G,K) \right\|_{\mathcal{H}_{\infty}}$$

P. Benner, benner@mpi-magdeburg.mpg.de

Goal:

Find robust controller, i.e., K that minimizes error outputs

$$z = (G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21})w =: \mathcal{F}(G, K)w,$$

where $\mathcal{F}(G, K)$ is the linear fractional transformation of G, K.

\mathcal{H}_{∞} -Suboptimal Control Problem:

For given constant $\gamma > 0$, find all internally stabilizing controllers satisfying

$$\left\|\mathcal{F}(G,K)\right\|_{\mathcal{H}_{\infty}} < \gamma.$$

P. Benner, benner@mpi-magdeburg.mpg.de

Simplifying Assumptions

- 1. $D_{11} = 0$
- **2**. $D_{22} = 0$
- 3. (A, B_1) stabilizable, (C_1, A) detectable
- 4. (A, B_2) stabilizable, (C_2, A) detectable ($\Longrightarrow \Sigma$ internally stabilizable)
- 5. $D_{12}^{T} [C_1 \ D_{12}] = [0 \ I]$
- $\mathbf{6.} \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix} D_{21}^{\mathsf{T}} = \begin{bmatrix} 0 \\ I \end{bmatrix}$

Remark. 1.,2.,5.,6. only for notational convenience, 3. can be relaxed, but derivations get even more complicated.

Theorem [Doyle/Glover/Khargonekar/Francis '89, Van Keulen '93]

Given the Assumptions 1.–6., there exists an admissible controller K(s) solving the \mathcal{H}_{∞} -suboptimal control problem \iff

(i) There exists a stabilizing solution $X_\infty = X_\infty^{\mathcal{T}} \geq 0$ to the Riccati equation

$$C_1^T C_1 + A^T X + XA + X(\gamma^{-2}B_1B_1^T - B_2B_2^T)X = 0.$$

(ii) There exists a stabilizing solution $\,Y_{\infty} = Y_{\infty}^* \geq 0$ to the Riccati equation

$$B_1 B_1^T + AY + Y A^T + Y (\gamma^{-2} C_1^T C_1 - C_2^T C_2) Y = 0.$$

(iii) $\gamma^2 > \rho(X_{\infty}Y_{\infty}).$

Theorem [Doyle/Glover/Khargonekar/Francis '89, Van Keulen '93]

Given the Assumptions 1.–6., there exists an admissible controller K(s) solving the \mathcal{H}_{∞} -suboptimal control problem \iff

(i) There exists a stabilizing solution $X_\infty = X_\infty^{\mathcal{T}} \geq 0$ to the Riccati equation

$$C_1^T C_1 + A^T X + XA + X(\gamma^{-2}B_1B_1^T - B_2B_2^T)X = 0.$$

(ii) There exists a stabilizing solution $\,Y_{\infty} = Y_{\infty}^* \geq 0$ to the Riccati equation

$$B_1 B_1^T + AY + Y A^T + Y (\gamma^{-2} C_1^T C_1 - C_2^T C_2) Y = 0.$$

(iii) $\gamma^2 > \rho(X_{\infty}Y_{\infty}).$

\mathcal{H}_{∞} -optimal Control

Find minimal γ for which (i)–(iii) are satisfied $\rightsquigarrow \gamma$ -iteration based on solving the Riccati equations above repeatedly for different γ .

\mathcal{H}_{∞} -(sub-)optimal Controller

If (i)-(iii) hold, a suboptimal controller is given by

$$\widehat{K}(s) = \left[\begin{array}{c|c} \widehat{A} & \widehat{B} \\ \hline \widehat{C} & 0 \end{array}
ight] = \widehat{C}(sI - \widehat{A})^{-1}\widehat{B},$$

where for

$$Z_{\infty} := (I - \gamma^{-2} Y_{\infty} X_{\infty})^{-1},$$

$$\begin{split} \widehat{A} &:= A + (\gamma^{-2}B_1B_1^T - B_2B_2^T)X_{\infty} - Z_{\infty}Y_{\infty}C_2^TC_2, \\ \widehat{B} &:= Z_{\infty}Y_{\infty}C_2^T, \\ \widehat{C} &:= -B_2^TX_{\infty}. \end{split}$$

 $\widehat{K}(s)$ is the central or minimum entropy controller.

Balancing Related Methods

- 1. Solve the primal and dual matrix equations defining the characteristic matrices *P* and *Q*.
- 2. Balance the system with respect to P and Q.
- 3. Truncate states corresponding to small characteristic values of PQ.

LQG:

$$A^{T} P_{LQG} + P_{LQG} A - P_{LQG} B_{2} B_{2}^{T} P_{LQG} + C_{1}^{T} C_{1} = 0,$$

$$A Q_{LQG} + Q_{LQG} A^{T} - Q_{LQG} C_{2}^{T} C_{2} Q_{LQG} + B_{1} B_{1}^{T} = 0$$

$$\mathcal{H}_{\infty}:$$

$$A^{T} P_{\mathcal{H}_{\infty}} + P_{\mathcal{H}_{\infty}} A + P_{\mathcal{H}_{\infty}} (\gamma^{-2} B_{1} B_{1}^{T} - B_{2} B_{2}^{T}) P_{\mathcal{H}_{\infty}} + C_{1}^{T} C_{1} = 0,$$

$$AQ_{\mathcal{H}_{\infty}} + Q_{\mathcal{H}_{\infty}}A^{T} + Q_{\mathcal{H}_{\infty}}(\gamma^{-2}C_{1}^{T}C_{1} - C_{2}^{T}C_{2})Q_{\mathcal{H}_{\infty}} + B_{1}B_{1}^{T} = 0$$

The \mathcal{H}_{∞} controller design for the stabilization of incompressible flows comes with two immediate numerical challenges:

- 1. High-dimensional model equations
 - direct approach not feasible because of memory constraints
 - → low-rank Riccati iteration
- 2. Differential-algebraic structure
 - due to the incompressibility constraint
 - → implicit realization of the discrete *Leray projector*

Numerical Realization

Low-Rank Riccati Iteration

[LANZON/FENG/ANDERSON '07, B. '08/'12]

1. Solve the ARE

$$C_1^T C_1 + A^T Z_0 + Z_0 A - Z_0 B_2 B_2^T Z_0 = 0$$

using Newton-ADI / RADI, yielding Y_0 with $Z_0 \approx Y_0 Y_0^T$.

- 2. Set $R_1 := Y_0$. {% $R_1 R_1^T \approx X_1$ }
- 3. FOR k = 1, 2, ...
 - (i) Set $A_k = A + U_k V_k^T := A + \gamma^{-2} B_1 (B_1^T R_k) R_k^T B_2 (B_2^T R_k) R_k^T$.
 - (ii) Solve the ARE

$$\gamma^{-2} Z_{k-1} B_1 B_1^T Z_{k-1} + A_k^T Z_k + Z_k A_k - Z_k B_2 B_2^T Z_k = 0$$

using Newton-ADI / RADI, yielding Y_k with $Z_k \approx Y_k Y_k^T$.

(iii) Set
$$R_{k+1} := \operatorname{rrqr} ([R_k, Y_k], \tau).$$
 {% $R_{k+1}R_{k+1}^T \approx X_{k+1}$ }
(iv) IF $||(B_1^T Y_k)Y_k^T||_2 < \operatorname{tol} THEN \operatorname{Stop}.$

Under standard assumptions, the semi-discrete incompressible (Navier-)Stokes equations can be realized as an ODE:

$$\dot{v} = Av + J^T p + Bu$$

 $0 = Jv$
with $\Pi := I - J^T (JJ^T)^{-1} J$.

In turn, the feedback defined via the $\Pi\text{-}based$ Riccati equations can be realized via constrained Riccati equations $[\mathrm{PH\&JH'17}]$:

 $A^{T}\Pi X + X\Pi A$ -X\Pi\BB^{T}\Pi\X = -C^{T}C $A^{T}X + XA - XBB^{T}X$ +J^{T}Y + Y^{T}J = -C^{T}C, JX = 0, XJ = 0,

avoiding Π altogether.

- 2D cylinder wake
- Navier-Stokes equations
- *Re* = 90
- Taylor-Hood finite elements
- 19500 velocity nodes

- Boundary control at 2 outlets at the cylinder periphery
- Distributed observation:
 - 3 *sensors* in the wake
 - measuring both v-components each
- \mathcal{H}_{∞} -BT reduced controller
- Target: stabilization of the steady-state solution

Numerical Realization Simulation Results

Controller of dimension 14 (left) and 8 (middle)

- Based on an inexact linearization
 - only 3 *Picard* iteration on the *Stokes* steady-state
 - relative difference to the exact linearization point: 8%
- Random perturbation of the initial value to trigger instabilities

Summary

- \mathcal{H}_{∞} -BT reduced controllers are
 - output based and of low dimensions,
 - robust against system uncertainties as opposed to LQG.
- The application to flow stabilization becomes feasible with
 - Iow-rank Riccati iterations,
 - implicit realization of the incompressibility constraint.

Code Availability:

 The Riccati iteration will be available in the M-M.E.S.S. library version 2.0.

Bibliographies I

P. Benner and J. Heiland.

LQG-balanced truncation low-order controller for stabilization of laminar flows.

In R. King, editor, *Active Flow and Combustion Control 2014*, volume 127 of *Notes on Numerical Fluid Mechanics and Multidisciplinary Design*, pages 365–379. Springer International Publishing, 2015.

P. Benner and J. Heiland.

Nonlinear feedback stabilization of incompressible flows via updated Riccati-based gains. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 1163–1168, Dec. 2017.

P. Benner, M. Köhler, and J. Saak.

 $\mathsf{M}.\mathsf{E}.\mathsf{S}.\mathsf{S}. \ - \ \mathsf{the} \ \mathsf{matrix} \ \mathsf{equations} \ \mathsf{sparse} \ \mathsf{solvers} \ \mathsf{library}.$

https://www.mpi-magdeburg.mpg.de/projects/mess.

P. Benner and S. W. R. Werner.

MORLAB-3.0 - model order reduction laboratory, 2017. see also: http://www.mpi-magdeburg.mpg.de/projects/morlab.

T. Breiten and K. Kunisch.

Riccati-based feedback control of the monodomain equations with the Fitzhugh–Nagumo model.

SIAM J. Control Optim., 52(6):4057-4081, 2014.

A. Lanzon, Y. Feng, and B. D. O. Anderson.

An iterative algorithm to solve algebraic Riccati equations with an indefinite quadratic term.

In 2007 European Control Conference (ECC), pages 3033–3039, July 2007.

D. Mustafa and K. Glover.

Controller design by \mathcal{H}_{∞} -balanced truncation. *IEEE Trans. Autom. Control*, 36(6):668–682, 1991.

J.-P. Raymond.

Local boundary feedback stabilization of the Navier-Stokes equations. In *Control Systems: Theory, Numerics and Applications, Rome, 30 March – 1 April 2005,* Proceedings of Science. SISSA, 2005. Available from http://pos.sissa.it.

J.-P. Raymond.

Feedback boundary stabilization of the two-dimensional Navier-Stokes equations. *SIAM J. Control Optim.*, 45(3):790–828, 2006.