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Parametric Dynamical Systems

o): { EH(ER) = fextephuldhol ()= (o)

y(t:p) g(t,x(t; p), u(t), p) (b)
with
o (generalized) states x(t; p) € R” (E € R"*"),
o inputs (controls) u(t) € R™,
@ outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,

e pc QcCRYisa parameter vector, Q is bounded.
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Parametric Dynamical Systems

o): { EH(ER) = fextephuldhol ()= (o)

}/(t;p) g(t,X(t;p),U(t),p) (b)
with
o (generalized) states x(t; p) € R” (E € R"*"),
o inputs (controls) u(t) € R™,
@ outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,
e pc QcCRYisa parameter vector, Q is bounded.

E(p) singular = (a) is system of differential-algebraic equations ~~ descriptor system,
otherwise = (a) is system of ordinary differential equations.
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Parametric Dynamical Systems

[ Ex(tp) = flexEe)ut)p), xw)=x (@)
Z(”)'{ W) — deAr oo ()

with
o (generalized) states x(t; p) € R" (E € R"™*"),
o inputs (controls) u(t) € R,
@ outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,
o pe QcCRYis a parameter vector, Q is bounded.

Applications:
@ Repeated simulation for varying material or geometry parameters, boundary
conditions,
@ control, optimization and design,
@ of models, often generated by FE software (e.g., ANSYS, NASTRAN,...) or
automatic tools (e.g., Modelica).
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Parametric Dynamical Systems

Z(P) : { E(p)X(t;p) = f(t,X(t; P), U(t),p), X(tO) = Xo, (a)
y(t:p) = g(t,x(t;p), u(t),p) (b)
with
o (generalized) states x(t; p) € R" (E € R"*"),
@ inputs (controls) u(t) € R",
o outputs (measurements, quantity of interest) y(t; p) € RY,
(b) is called output equation,
o peQcCRYis a parameter vector, Q is bounded.

Underlying PDE and boundary conditions often not accessible!

Parametric discretized model often not available,
but matrices for certain parameter values can be extracted
(or output data for given u and p can be generated!)
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@ Introduction

E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
y(t;p) C(p)x(t: p), B(p) € R™™, C(p) € RT*".

@© P. Benner Recent Advances in PMOR



E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation

<

—_

o

o

~
|

x(t;p) = x(s;p), x(t;p) = sx(s; p)
to linear system with x(0; p) = 0:
sE(p)x(s; p) = A(p)x(s: p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:
v(sip) = ( C(P)(SE(P) ~ Alp)) *BIp) ) u(s).
=:G(s,p)

G(s, p) is the parameter-dependent transfer function of ¥(p).
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E(p)x(t;p) = Alp)x(t;p) + B(p)u(t), Alp), E(p) € R™",
C(p)x(t: p), B(p) € R™™, C(p) € RT*".

Laplace Transformation / Frequency Domain

Application of Laplace transformation

<

—_

o

o

~
|

x(t; p) — x(s; p), x(t; p) — sx(s; p)
to linear system with x(0; p) = 0:
sE(p)x(s; p) = A(p)x(s: p) + B(p)u(s), y(sip) = C(p)x(s; p),
yields |/O-relation in frequency domain:
y(s:p) = ( Cp)(SE(p) — Alp)*B(p) ) u(s).
=:G(s,p)
G(s, p) is the parameter-dependent transfer function of ¥(p).
Goal: Fast evaluation of mapping (u, p) — y(s; p).
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w.s‘@ The PMOR Problem

The Parametric Model Order Reduction (PMOR) Problem

Approximate the dynamical system
E(p)x = A(p)x+B(p)u,  E(p), A(p) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system
E(p)x = A(p)x+B(p)u,  E(p), A(p) e R,
y = C(p)k, B(p) e R™*™, C(p) € RI*",
of order r < n, such that w.r.t. some appropriate multivariate function space

ly — 9|l = ch . éuH < HG . GH |lul| < tolerance - ||ul|
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w.s‘@ The PMOR Problem

The Parametric Model Order Reduction (PMOR) Problem

Approximate the dynamical system
E(p)x A(p)x + B(p)u,  E(p), Alp) € R™",
y = C(p)x, B(p) € R™™, C(p) € RI*",

by reduced-order system
E(p)x = A(p)x+B(p)u,  E(p), A(p) e R,
y = C(p)&, B(p) € R™*™ C(p) € RI*",

of order r < n, such that w.r.t. some appropriate multivariate function space

ly — 9|l = ch . éuH < HG . GH |lul| < tolerance - ||ul|

G—éH.

= Approximation problem:  min
order (G)<r
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Generation of Reduced-Order Model

Parametric System

A(p)x(t: p) + B(p)u(t),
C(p)x(t; p)-

[ E(p)x(t:p)
=(p): { y(tip)

@© P. Benner Recent Advances in PMOR



Parametric System

(p) - { E(p)x(t;p) = A(p)x(t; p) + B(p)u(t),
' y(t; p) C(p)x(t; p).

Parametric model reduction goal:

preserve parameters as symbolic quantities in reduced-order model:

$(0): { E(px(tip) = A(p)R(t:p) + B(p)u()
' y(t; p) C(p)x(t; p)

with states X(t; p) € R and r < n.
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Parametric System

ﬂm:{E@me = A(p)x(t; p) + B(p)u(t),

y(t: p)

Assuming parameter-affine representation:

E(p) = E+ealp)E+...

A(p) = Ao + al(p)Al + ...

B(p) = Bo+bi(p)Bi+...
(p)

= C0+C1(p)C1+...

C(p)x(t; p)-

+ eQE(p)EQE7
+ aQA(p)AQA7
+ bas (P)Bas
+ Cqc (P)ch,

allows easy parameter preservation for projection based model reduction.

@© P. Benner

Recent Advances in PMOR



Petrov-Galerkin-type projection
For given projection matrices V, W € R™" with WTV = I,
(~ (VWWT)2 = VWT is projector), compute

E(p) = WTEV +ea(WTEV+..
Alp) = WTAV +a(p)WTAV + ..
B(p) = W'By +bi(p)WT'B +..
Clp) = GV+  a)aV+...

@© P. Benner

-+ qu(P)WTEqE 4
-+ an(p)WTAqAV

-+ bgs(p) WTBqB

t PGV
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%w @ PMOR Techniques

Petrov-Galerkin-type projection

For given projection matrices V, W € R™" with WTV = I,
(~ (VWT)2 = VWT is projector), compute

E(p) = WTEV+ea(@WTEV+... +e(p)WTE,V
= E+ea(pEi+... +e.(p)Es

Alp) = WTAV +ai(p)WTALV + ... 4 ag,(p)WT A,V
= Ao+ ai(p)Ar + ... + ag(p)Aq,

B(p) = WTBy +bi(p)WTB1 ...+ bg(p)WT By,
= By+ bi(p)Bi+ ...+ by (p)Bys

Clp) = GV + alp)GV+...+ Cqe(p)Cqc V

A

= G+al)C+...+ce(p)Cy

But: affine parametrization not always given, in particular in model-free,
data-driven context!

@© P. Benner Recent Advances in PMOR



Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models (p¥)), k = 1,...,£. Then compute reduced-order model by
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Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models ):(p(k)), k=1,...,£. Then compute reduced-order model by
1. manifold interpolation [AMSALLAM/FARHAT 2008, BRUNSCH 2017]
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Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
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2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./BAUR 2008/09]
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Local Bases

Obtain Vi, Wi € R""* using any non-parametric linear MOR method for a number of
full-order models (p¥)), k = 1,...,£. Then compute reduced-order model by
1. manifold interpolation [AmsaLLAM/FARHAT 2008, BRUNSCH 2017]

2. transfer function interpolation (= interpolate y(s,.) in frequency domain)
[B./Baur 2008/09]
3. matrix interpolation [PANZER/MOHRING /EID/LOHMANN 2010, AMSALLAM/FARHAT 2011]

Advantage:
no need for affine parametrization, requires only system matrices A(p¥)), B(p™), .. ..

Disadvantages:

1. manifold interpolation: originally, requires O(nr) operations in "online” phase.
[BRUNSCH 2017] overcomes this problem, but only for negative definite matrix pencils
(AP), E(p)).

2. transfer function interpolation: spurious poles of the parametric transfer function.

3. matrix interpolation: different models obtained in different coordinate systems ~~
Procrustes problem ~~ potential loss of accuracy; efficiency in "online” phase suffers from
evaluating the interpolation operator.
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Global Basis

Obtain V, W € R™" such that V' W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.
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Global Basis

Obtain V, W € R such that V"W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from
1. concatenation of local basis matrices:

Vi=[W,...,V], W= [Wh,...,W;]

and orthogonalization (truncation), using, e.g., SVD;
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Global Basis
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1. concatenation of local basis matrices:
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Global Basis

Obtain V, W € R such that V"W = I, and perform structure preserving (Petrov-)
Galerkin projection, exploiting affine parametrization of the linear parametric system.

Obtain global basis from
1. concatenation of local basis matrices:

Vi=[W,...,V], W= [Wh,...,W;]

and orthogonalization (truncation), using, e.g., SVD;
2. bilinearization and using bilinear MOR techniques;

3. parametric balanced truncation [SoN/STYKEL 2017].

Avoids most of the problems encountered with local bases, but requires parameter-affine
representation of system.

Here: no basis available, but only reduced-order models for different p-values!
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2. Interpolating Reduced Models obtained from Data
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@ Interpolating Reduced Models obtained from Data

The Non-Parametric Loewner Framework in a Nutshell

State-space system transfer function (TF)
(unknown) (only known as operator)
(s — A)x(s) = Bu(s),
X(s) = { y(s) = Cx(s). G(s) = C(sE — A)~!B.

Algorithm: identify reduced-order model (ROM) from data.

Step 1: Collect data: (V, W are composed of tangential directions!)
@ “Right Data”: (Aj, ri, w;) satisfying G(\i)ri = w;;
o ‘“Left Data": (uj, ¥, vj) satisfying £;G(pj) = vj.
Step 2: Compute the Loewner matrix L and the shifted Loewner matrix L.

Vit 7Z;W‘
(]L),‘j =2 (]La),'j =

pivirp — LiwjA;j
— ’ :

Bi — Aj
Step 3: Compute the reduced model:
@ If the matrix pencil (L, L) is regular, the reduced model is:
E=-L A=-L, B=V,C=wW
@ If the matrix pencil (L, L) is (numerically) singular:
1. Compute rank-revealing SVD:sL — L, = YIX" = YkaXk, (s e {xiyu{w})
2. Compute E = —Y{LXy, A= —Y;LoXs, B= YV, C = WX,.
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@ Interpolating Reduced Models obtained from Data

Generating a Parametric Model in the Loewner Framework

In summary, we have two potential representations:
@ The “original” representation:
[ E:—L,Z:—Lo, §: V, 6:W
o Very likely to yield numerically singular matrix pencil!
@ The “compressed” representation:
o E=—Y/LX, A= —Y;L,Xs, B=Y;V, C= WXk
o Yields regular matrix pencil.
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@ Interpolating Reduced Models obtained from Data

Generating a Parametric Model in the Loewner Framework

In summary, we have two potential representations:
@ The “original” representation:
e E=-1L,A=-L, B=V,C=W.
o Very likely to yield numerically singular matrix pencil!
@ The “compressed” representation:

o E=—Y/LX, A= —Y;L,Xs, B=Y;V, C= WXk
o Yields regular matrix pencil.

Question: How to interpolate the ROMs built by the Loewner Framework
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@ Interpolating Reduced Models obtained from Data

Generating a Parametric Model in the Loewner Framework

In summary, we have two potential representations:
@ The “original” representation:
e E=-1L,A=-L, B=V,C=W.
o Very likely to yield numerically singular matrix pencil!
@ The “compressed” representation:

o E=—Y/LX, A= —Y;L,Xs, B=Y;V, C= WXk
o Yields regular matrix pencil.

Question: How to interpolate the ROMs built by the Loewner Framework

@ There is no “FOM” in the Loewner Framework, and no local or global bases V' and
W like in projection-based methods.

@ The Loewner Framework has been extended to yield parametric models for one
design parameter.

@ Here: explore another possibility—interpolating nonparametric ROMs built under
the Loewner Framework.
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@ Interpolating Reduced Models obtained from Data

Interpolating the “Original” Representation

@ Assume that the system is parameterized with p.

@ Assume that we use the same frequencies and the same left/right input vectors V p.

@ In Gp(\j)ri = wi(p) and £;Gp(1j) = vj(p), Aj, itj and rj, £; are independent of p,
1<i<np.

@ Interpolating L(p) and L, (p) using interpolation operator g(p) = Zg"zl dq(p)g(pq)
is equivalent to
interpolating V(p) and W(p) and using the Loewner framework:

~ <& [ vilpa)r — Liw;(pg) _ vi(p)rj — Liw;(p)
(Ee),, = 3 (PR ) g ) = PP

np ~ ~
_ wivi(pg)ri — Liwi(pg)\; wivi(p)ri — i (p)X;
(La(p))..zz( T J)%(p): vilp)s = Liv(p)
i Hi = Aj Bi— A
@ In the “original representation”:
E(p) = -L(p), A(p) =—-Lo(p), B(p)=V(p). C(p)=W(p).
o They are all linear functions of V/(p) and W(p).
o Equivalent to interpolating the transfer functions.
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@ Interpolating Reduced Models obtained from Data

Interpolating the “Compressed” Representation

@ “Original” representations numerically problematic and storage-intensive.
@ The ultimate goal is to interpolate the “compressed” representation.

@ The bases used to compress the “original” representation vary with the parameter
(with additional freedom in s;):

sil(pi) — Lo (pi) = YiZiX" = YicZi kX%

@ ldea 1: To preserve the interpolation property of the original representation at
(=L(pi), —Ls(pi), V(pi), W(pi)), use common bases Y and X to reduce them.

@ ldea 2a: Y should contain the dominant components of all " generalized
observability” matrices Y;. So we compute Y by the SVD (with LL; = LL(p;) etc.):

[ silly — Loy

52L2_I[40'2’

an]an - H—do’np ] =YX, X: ~ YKZO,KX:,K'

@ ldea 2b: X should contain the dominant components of all " generalized
controllability” matrices X;. So we compute X by the SVD:
silli — Loy

sle=Lo2 | _y 5 xo » Ye ke kX

Sng ]an — L& np
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@ Interpolating Reduced Models obtained from Data

@ Obviously, colspan{Y,-} C coIspan{Yo}, rowspan{X,-} - rowspan{Xc}.
@ Therefore, Yk and Xk computed from truncated SVD include the dominant components
for all generalized observability and controllability matrices corresponding to the samples.

Algorithm 1 Interpolation of Loewner ROMs in the Compressed Representation
1: Build the common basis matrix Yx by computing the truncated SVD

[sllLl “ Loy | 9oL — Loy | ’ SngLing — Lo, ] = Yo Lo X, Y= Ye(1, 11 K).

2: Build the common basis matrix Xx by computing the truncated SVD

sili — Loy
sle —Loo S YEXD, X=X 10 K).
Sngling — Lo,y

3: Build the “compressed” representation using the common bases:
E = =YL Xk, A=—-YiLo Xk, Bi=YiVi, C=WXg, I=1,...,n,.
4: Given an interpolation operator, the interpolated ROM at p.. is given by

p
M(p) =>" Migi(p), M e {E,AB,C}
I=1
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@ Interpolating Reduced Models obtained from Data

Numerical Results 1: Microthruster Model

o MEMS device for jet propulsion.

@ Single input/single output (SISO)
configuration.

@ Assume that only input/output information
Si-substrate is available.

@ Parametrization by the film coefficient.

Source: MOR Wiki: http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Micropyros_Thruster
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http://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Micropyros_Thruster

Interpolating the “"Compressed” Representation using Algorithm 1:
@ p1,p2,..., P are uniformly distributed in the interval [10,7200].
@ ROMs of size 10 are built by the Loewner Framework at p1, ps, pis, p22, p2o.
@ The proposed method with cubic spline interpolation is used to get ROMs for the
other p values.

250

200
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100~

50 100 a000 2000 O

150 200 250 300 8000 6000
3 p

Figure: Response Surface and Absolute Error
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@ Interpolating Reduced Models obtained from Data

Numerical Results 2: The “FOM” Model

We use a parametric version of the SLICOT “FOM” model to generate TF
samples, which will be used by the Loewner Framework to build ROMs.

z(s;p)z{ (s/ = A(p)) x(s:p) = Bu(s),

y(sip) = (sip),
with
A(p) = diag(Al(p)7A27A3aA4)7
[ -1 p [ -1 200 [ -1 400
Aulp) = [—p —1] Az_[—zoo -1 } A3_[—400 -1 }
A, = —diag(1,2,...,1000),

and C = BT =[10,10,10,10,10,10,1,1,...,1].

Source: http://slicot.org/20-site/126-benchmark-examples-for-model-reduction
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@ Blue curves: TFs at p; and pp, where
we build ROMs by the Loewner
Framework.

@ Solid red curve: TF of the
3 interpolated ROM at p..

4 @ Dashed red curve: true TF at p..

@ These numerical results show the limitations of TF interpolation methods in general
(" ghost poles”):
@ For the region far from the moving pole, the interpolation result is accurate.
@ However, the movement of a pole is not captured: the movement of a pole is
“modeled” by waxing and waning of two poles.
o Note that the poles of the interpolated system
np
> w(p)C(pi)(sl — Api)) ' B(pi)
i=1
is the union of the poles of all the systems used for interpolation, all poles are fixed in
position!
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3. PMOR by Pole-Matching
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@ PMOR by Pole-Matching

Motivation

@ Capture the movements of poles by interpolating the poles explicitly.
@ Use a “canonical realization” that is suitable for interpolation.

@ Using the “canonical realization”, we should be able to interpolate ROMs built by different
MOR methods.
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@ PMOR by Pole-Matching

Motivation

@ Capture the movements of poles by interpolating the poles explicitly.
@ Use a “canonical realization” that is suitable for interpolation.
@ Using the “canonical realization”, we should be able to interpolate ROMs built by different
MOR methods.
(Modified/Real) Modal Representation.
Assume reduced-order model is in modal coordinates,
A1
~ A2
PrAP=A= ) . P=I[P, Py ..., Pa],
Am
where for a real eigenpair ()}, v;),
A= and o Pi=y],

while for a complex eigenpair (aj & bwj, r; £ ig;),

aj b
n=| % 2] e p=l al
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@ PMOR by Pole-Matching

Let
G(s)=C(sl —A)"'B=C(sl — PAP")"'B=CP(sl —A)"'P'B=:C'(S5I —A\)"'B',
and partition

c'=[q,a,...,Ch, B'=[B,B,...,B",

where the vectors C/ and B] are of size 1 (if the j-th eigenvalue is real) or 2 (if the j-th
eigenvalue is complex). Then

G(s) = i G(sl = N)'B;

j=1
For a real eigenpair (\j, v;), we define
¢'=C/B] and B!'=1
and derive

| 1pl ClBl I 1pll
G(sl =N) B = ﬁ =G (sl =N)" By,
J
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@ PMOR by Pole-Matching

For a complex eigenpair (a; = bw;, r; = iq;), we first define C} = [C/,, C,] and
B! =[Bj1,B;,]", and then derive
S — aj bj 1
_bj s —aj BJ
(s—2)?+ b

|
Ci(sl —N)7'Bj =

s—aj b; 1
(CaBla+ ClaBlar Cala - chla)| *27 7, ][ ¢ ]

(s—a)>+ b7
=G'(sl =) "B},
where we define C/' = (C/ 1B}, + C/,B/,, C/,B, — C/1B},) and B'=][1,0]".

Therefore,

m

y=>_Csl =N) B =>_G'(sl = N)'B' = C"(sl = \)'B",
j=1

Jj=1

where C" = [, C},...,Ch and B" = [B!"", BT, ..., BIT]".
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@ PMOR by Pole-Matching

The Modified Modal Representation — some remarks

@ In the modified modal representation, interpolation of ROMs can be done in two
steps:

1. Pole matching—in practice, this is achieved by just reordering the blocks in
C" A and B".

2. Interpolating the positions and amplitudes of the poles, equivalent to
interpolating A and C".

@ If for a system, the positions of poles change little when the parameter(s) change,
pole matching is easy.
~» Some effort in algorithmic eigenvalue continuation to match the right poles!

@ Semisimple eigenvalues can essentially be treated like simple eigenvalues.

@ Systems with defective eigenvalues do not have a modified modal realization.
In practice, we check the condition number of P and return a warning when it gets
too large.
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Numerical Results 1: the “FOM" Model

500/ S BT ROM at
o BT ROM at py °
© SSEST ROM at p,
© SSEST ROM at p
°
Im jlo e o ow .'
°
°
-500
-10° -10° -10' -10° 10"

Re

@ Two MOR methods are used: balanced truncation (BT) and a method based on
system identification (ssest in MATLAB).

@ All ROMs are of size 10.
@ It is clear how poles should be paired for ROMs built by the same method.
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@ PMOR by Pole-Matching

Numerical Results 2: the Microthruster Model

0
Im
-4000 1
ROM at D22
g ROM at D29 C
-8000° 1 > S " 5
10 10 10 10 10 10

Re

@ In this example, A is complex and none of the eigenvalues are paired.

@ Therefore, A is diagonal. The form of the modified model realization is the same as
the case when all eigenvalues are real.
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Numerical Results 2: the Microthruster Model
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The full model is a second-order system:

(%+mg+m+mmm—ﬁ%%=ﬁ
y =1{x,

The footbridge is located over the Dijle river in Mechelen (Belgium).
The size of the discretized system is 25,963.

The two parameters ki and c; represent the stiffness and the viscosity of a tuned
mass damper, respectively.

@ We use a Krylov method to reduce the equivalent first-order system.

The ROMs are of order 10.
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The ROMs Used for Interpolation The Interpolated ROM

30 30 T T T

FOM  FOM —< FOM
——ROM ——ROM ROM
> 15 =15
0 0
0 10 20 30 0 10 20 30
® ® _
(k,=10000, ¢, =20) (k,=20000, ¢ =20) =15 1
FOM
——ROM ——ROM
=15 if
00 10 20 30 00 10 20 30 0 y y
© © 0 5 10 15 20 25 30
_ _ _ _ ®
(k,=10000, ¢,=50) (k;=20000, ¢, =50) (c,-15000, ¢, 35
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4. Conclusions
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@ A ROM interpolation method for data-driven modeling (in particular the Loewner
Framework) is proposed. However, the ghost pole problem is present in the case of poles
moving with parameter variation.

@ A pole-matching method is proposed based on a modified modal representation
(pole-residue form).

It does not need explicit or even affine parameter dependence in the FOM.

It does not assume the existence of the FOM and works well also with data-driven
ROMs.

It can even interpolate ROMs resulting from different MOR methods.

It is relatively insensitive to the number of parameters and the complexity of (e.g.,
nonlinear and non-affine) parameter dependence.

If we only use linear interpolation, stability is preserved. In other case (easily detected
by checking the poles), we can return to linear interpolation when the interpolated
ROM is not stable.

The method proves to interpolate ROMs built by different methods: balanced
truncation, Krylov methods, the Loewner Framework, the ssest method.

@ Realization is important for ROM interpolation:

In Loewner representation, we interpolate the transfer function;
In the modified modal representation, we interpolate the positions and amplitudes of
the poles.

@© P. Benner
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