

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

DATA-ENHANCED REDUCED-ORDER MODELING OF DYNAMICAL SYSTEMS

Igor Pontes Duff

Peter Benner

Computational and Mathematical Methods in Data Science (COMinDS2019) Berlin, October 24–25, 2019

Pawan Goyal

Supported by:

D

DFG-Graduiertenkolleg MATHEMATISCHE KOMPLEXITÄTSREDUKTION

Goal: Use all acquired knowledge about the model during the CSE process chain in the design of the reduced-order model, including experimental data.

Goal: Use all acquired knowledge about the model during the CSE process chain in the design of the reduced-order model, including experimental data.

→ Data-enhanced model reduction methods.

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS
- 4. Numerical Results
- 5. Outlook and Conclusions

1. Introduction

Model Reduction of Linear Systems Data-driven/-enhanced Model Reduction Structured Linear Systems Projection-based Framework Existing Approaches

2. Minimal Realization

- 3. Reachability and Observability for SLS
- 4. Numerical Results
- 5. Outlook and Conclusions

Original System ($E = I_n$)

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Goals:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Linear Time-Invariant (LTI) Systems

Original System ($E = I_n$)

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{A}\widehat{x}(t) + \widehat{B}u(t), \\ \widehat{y}(t) = \widehat{C}\widehat{x}(t) + \widehat{D}u(t). \end{cases}$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goals:

 $||y - \hat{y}|| < \mathsf{tolerance} \cdot ||u||$ for all admissible input signals.

Original System ($E = I_n$)

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{A}\widehat{x}(t) + \widehat{B}u(t), \\ \widehat{y}(t) = \widehat{C}\widehat{x}(t) + \widehat{D}u(t). \end{cases}$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goals:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals.

Model Reduction of Linear Systems

near Time-Invariant (LTI) Systems

Original System ($E = I_n$)

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\hat{\mathbf{D}}: \begin{cases} \dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t), \\ \hat{y}(t) = \hat{C}\hat{x}(t) + \hat{D}u(t). \end{cases}$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goals:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals. Secondary goal: reconstruct approximation of x from \hat{x} .

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sX(s) - x(0))$ to LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

 $sX(s) = AX(s) + BU(s), \quad Y(s) = CX(s) + DU(s),$

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sX(s) - x(0))$ to LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sX(s) = AX(s) + BU(s), \quad Y(s) = CX(s) + DU(s),$$

 \implies I/O-relation in frequency domain:

$$Y(s) = \left(\underbrace{C(sI_n - A)^{-1}B + D}_{=:\mathbf{H}(s)}\right)U(s).$$

 $\mathbf{H}(s)$ is the transfer function of Σ .

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sX(s) - x(0))$ to LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sX(s) = AX(s) + BU(s), \quad Y(s) = CX(s) + DU(s),$$

 \implies I/O-relation in frequency domain:

$$Y(s) = \left(\underbrace{C(sI_n - A)^{-1}B + D}_{=:\mathbf{H}(s)}\right)U(s).$$

 $\mathbf{H}(s)$ is the transfer function of Σ .

Model reduction in frequency domain: Fast evaluation of mapping $U \rightarrow Y$.

Formulating model reduction in frequency domain

Approximate the dynamical system

$$\begin{split} \dot{x} &= Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ y &= Cx + Du, \qquad C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}, \end{split}$$

by reduced-order system

$$\begin{split} \dot{\hat{x}} &=& \hat{A}\hat{x} + \hat{B}u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \ \hat{B} \in \mathbb{R}^{r \times m}, \\ \hat{y} &=& \hat{C}\hat{x} + \hat{D}u, \quad \hat{C} \in \mathbb{R}^{p \times r}, \ \hat{D} \in \mathbb{R}^{p \times m} \end{split}$$

of order $r \ll n$, such that

$$\begin{split} ||y - \hat{y}|| \simeq \left| \left| Y - \hat{Y} \right| \right| &= \left| \left| \mathbf{H}U - \hat{\mathbf{H}}U \right| \right| \\ &\leq \left| \left| \mathbf{H} - \hat{\mathbf{H}} \right| \right| \cdot ||U|| \simeq \left| \left| \mathbf{H} - \hat{\mathbf{H}} \right| \right| \cdot ||u|| \\ &\leq \mathsf{tolerance} \cdot ||u|| \,. \end{split}$$

Black box Σ : the only information we can get is either

• time domain data / times series: $x_k pprox x(t_k)$ or $y_k pprox y(t_k)$, or

Black box Σ : the only information we can get is either

- time domain data / times series: $x_k pprox x(t_k)$ or $y_k pprox y(t_k)$, or
- frequency domain data / measurements: $X_k \approx X(j\omega_k)$ or $Y_k \approx Y(j\omega_k)$.

Black box Σ : the only information we can get is either

- time domain data / times series: $x_k pprox x(t_k)$ or $y_k pprox y(t_k)$, or
- frequency domain data / measurements: X_k ≈ X(jω_k) or Y_k ≈ Y(jω_k).

Some methods:

 Koopman/Dynamic Mode Decomposition (DMD): time domain [Mezič 2005; Schmid 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOÉ, SCHÜTTE, ...], for control systems [KAISER/KUTZ/BRUNTON 2017, B./HIMPE/MITCHELL 2018]

Black box Σ : the only information we can get is either

- time domain data / times series: $x_k pprox x(t_k)$ or $y_k pprox y(t_k)$, or
- frequency domain data / measurements: X_k ≈ X(jω_k) or Y_k ≈ Y(jω_k).

- Koopman/Dynamic Mode Decomposition (DMD): time domain [Mezič 2005; Schmid 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOÉ, SCHÜTTE, ...], for control systems [KAISER/KUTZ/BRUNTON 2017, B./HIMPE/MITCHELL 2018]
- Loewner interpolation: frequency and time domain [AntouLas/Anderson 1986; MAYO/AntouLas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, ...]

Black box Σ : the only information we can get is either

- time domain data / times series: $x_k pprox x(t_k)$ or $y_k pprox y(t_k)$, or
- frequency domain data / measurements: X_k ≈ X(jω_k) or Y_k ≈ Y(jω_k).

- Koopman/Dynamic Mode Decomposition (DMD): time domain [Mezič 2005; Schmid 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOÉ, SCHÜTTE, ...], for control systems [KAISER/KUTZ/BRUNTON 2017, B./HIMPE/MITCHELL 2018]
- Loewner interpolation: frequency and time domain [Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, ...]
- Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; ...]

Black box Σ : the only information we can get is either

- time domain data / times series: $x_k \approx x(t_k)$ or $y_k \approx y(t_k),$ or
- frequency domain data / measurements: X_k ≈ X(jω_k) or Y_k ≈ Y(jω_k).

- Koopman/Dynamic Mode Decomposition (DMD): time domain [Mezič 2005; Schmid 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOÉ, SCHÜTTE, ...], for control systems [KAISER/KUTZ/BRUNTON 2017, B./HIMPE/MITCHELL 2018]
- Loewner interpolation: frequency and time domain [Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, ...]
- Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; ...]
- Operator inference: time domain [Peherstorfer/Willcox 2016; KRAMER, QIAN, ...]

Black box Σ : the only information we can get is either

- time domain data / times series: $x_k \approx x(t_k)$ or $y_k \approx y(t_k)$, or
- frequency domain data / measurements: X_k ≈ X(jω_k) or Y_k ≈ Y(jω_k).

- Koopman/Dynamic Mode Decomposition (DMD): time domain [Mezič 2005; Schmid 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOÉ, SCHÜTTE, ...], for control systems [KAISER/KUTZ/BRUNTON 2017, B./HIMPE/MITCHELL 2018]
- Loewner interpolation: frequency and time domain [Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, ...]
- Neural networks: time domain [NARENDRA/PARTHASARATHY 1990; LEE/CARLBERG 2019; ...]
- Operator inference: time domain [PEHERSTORFER/WILLCOX 2016; KRAMER, QIAN, ...]
- System identification (incl. ERA, N4SID, MOESP): frequency and time domain [Ho/Kalmann 1966; LJUNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA, ...]

Black box Σ : the only information we can get is either

- time domain data / times series: $x_k \approx x(t_k)$ or $y_k \approx y(t_k)$, or
- frequency domain data / measurements: X_k ≈ X(jω_k) or Y_k ≈ Y(jω_k).

Grey box Σ : additionally, some structural assumptions on the full model are given. (Approach considered here, in frequency domain.)

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

$$\mathcal{C}(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s) \mathbf{B}_i,$$

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

where

$$\mathcal{C}(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s) \mathbf{B}_i,$$

• with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

$$\mathcal{C}(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s\mathbf{E} - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

$$\mathcal{C}(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s\mathbf{E} - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).
- We assume E to be invertible (no descriptor behavior).

$$\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s), \tag{1}$$

$$\mathcal{C}(s) = \sum_{i=1}^{\ell_{\gamma}} \gamma_i(s) \mathbf{C}_i, \quad \mathcal{K}(s) = s \mathbf{E} - \sum_{i=1}^{\ell_{\alpha}} \alpha_i(s) \mathbf{A}_i, \quad \mathcal{B}(s) = \sum_{i=1}^{\ell_{\beta}} \beta_i(s) \mathbf{B}_i,$$

- with $\mathbf{E}, \mathbf{A}_i \in \mathbb{R}^{n \times n}, \mathbf{B}_i \in \mathbb{R}^{n \times m}$, and $\mathbf{C}_i \in \mathbb{R}^{p \times n}$, and $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ are meromorphic functions.
- For simplicity, in this talk p = m = 1 (SISO case).
- We assume E to be invertible (no descriptor behavior).
- 1) First-order systems: C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = sE A$.
- 2) Second-order systems: $C(s) = C_p + sC_v$, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = s^2M + sL + K$.
- 3) Time-delay systems: C(s) = C, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = sE A_1 A_2e^{-s\tau}$.
- 4) EM w/ surface loss: C(s) = sB, $\mathcal{B}(s) = B$, and $\mathcal{K}(s) = s^2M + sL + K \frac{1}{\sqrt{s}}N$.
- 5) Integro-differential Volterra systems, input delays, fractional systems

Introduction Projection-based Framework

Given a large-scale $\ensuremath{\text{SLS}}$

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

Given a large-scale SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

find projection matrices

 $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}, \quad \mathbf{W}^T \mathbf{V} = \mathbf{I}_r,$

(with $r \ll n$), such that

 $\hat{\mathbf{H}}(s)=\hat{\mathcal{C}}(s)\hat{\mathcal{K}}(s)^{-1}\hat{\mathcal{B}}(s),$ where

Given a large-scale SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

find projection matrices

 $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}, \quad \mathbf{W}^T \mathbf{V} = \mathbf{I}_r,$

(with $r \ll n$), such that

 $\hat{\mathbf{H}}(s) = \hat{\mathcal{C}}(s)\hat{\mathcal{K}}(s)^{-1}\hat{\mathcal{B}}(s), \text{ where }$

$$\begin{split} \hat{\mathcal{K}}(s) &= \mathbf{W}^T \mathcal{K}(s) \mathbf{V}, \hat{\mathbf{B}}(s) = \mathbf{W}^T \mathbf{B}(s) \\ \text{and } \hat{\mathbf{C}}(s) &= \mathbf{C}(s) \mathbf{V} \end{split}$$

Given a large-scale SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s),$

find projection matrices

 $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}, \quad \mathbf{W}^T \mathbf{V} = \mathbf{I}_r,$

(with $r \ll n$), such that

 $\hat{\mathbf{H}}(s)=\hat{\mathcal{C}}(s)\hat{\mathcal{K}}(s)^{-1}\hat{\mathcal{B}}(s),$ where

$$\begin{split} \hat{\mathcal{K}}(s) &= \mathbf{W}^T \mathcal{K}(s) \mathbf{V}, \hat{\mathbf{B}}(s) = \mathbf{W}^T \mathbf{B}(s) \\ \text{and } \hat{\mathbf{C}}(s) &= \mathbf{C}(s) \mathbf{V} \end{split}$$

• Note $\hat{\mathbf{A}}_i = \mathbf{W}^T \mathbf{A}_i \mathbf{V}$, $\hat{\mathbf{E}} = \mathbf{W}^T \mathbf{E} \mathbf{V}$, $\hat{\mathbf{C}}_i = \mathbf{C}_i \mathbf{V}$ and $\hat{\mathbf{B}}_i = \mathbf{W}^T \mathbf{B}_i$.

• The ROM preserves the $\alpha_i(s), \beta_i(s)$ and $\gamma_i(s)$ functions.

Interpolation-based methods

 Interpolatory projection methods for structure-preserving model reduction. [BEATTIE/GUGERCIN '09]

Interpolation points
$$\sigma_k$$
, $\mu_j \Rightarrow \begin{pmatrix} \mathcal{K}^{-1}(\sigma_k)\mathcal{B}(\sigma_k) \in \operatorname{range}(\mathbf{V}) \text{ and} \\ \mathcal{K}^{-T}(\mu_k)\mathcal{C}^{T}(\mu_j) \in \operatorname{range}(\mathbf{W}). \end{pmatrix}$

Interpolation-based methods

• Interpolatory projection methods for structure-preserving model reduction.

[BEATTIE/GUGERCIN '09]

Balancing truncation methods

• Structure-preserving model reduction for integro-differential equations. [BREITEN '16]

$$\mathbf{P} = \frac{1}{2\pi} \int_{-i\infty}^{i\infty} \mathcal{K}_s(s)^{-1} \mathcal{B}(s) \mathcal{B}(s)^T \mathcal{K}(s)^{-T} ds,$$
$$\mathbf{Q} = \frac{1}{2\pi} \int_{-i\infty}^{i\infty} \mathcal{K}_s(s)^{-T} \mathcal{C}(s)^T \mathcal{C}(s) \mathcal{K}(s)^{-1} ds.$$
$$\Rightarrow \mathsf{Find} \ \mathbf{V}, \mathbf{W} \text{ from } T^{-1} P Q T = \Sigma.$$

Interpolation-based methods

• Interpolatory projection methods for structure-preserving model reduction.

[BEATTIE/GUGERCIN '09]

Balancing truncation methods

• Structure-preserving model reduction for integro-differential equations. [BREITEN '16]

Data-driven methods

• Data-driven structured realization.

[Schulze/Unger/Beattie/Gugercin '18]

1. Introduction

2. Minimal Realization

Motivation ... of Structured Linear Systems Some Results

- 3. Reachability and Observability for SLS
- 4. Numerical Results
- 5. Outlook and Conclusions

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

Note that
$$\mathbf{H}(s) = \frac{1}{s+2} = \hat{\mathbf{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}})^{-1}\hat{\mathbf{B}}$$
, with $\hat{\mathbf{A}} = -2, \hat{\mathbf{B}} = 1$ and $\hat{\mathbf{C}} = 1$.

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

Note that
$$\mathbf{H}(s) = \frac{1}{s+2} = \hat{\mathbf{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}})^{-1}\hat{\mathbf{B}}$$
, with $\hat{\mathbf{A}} = -2, \hat{\mathbf{B}} = 1$ and $\hat{\mathbf{C}} = 1$.

Minimal realization problem

Find order r and matrices ${\bf V}$ and ${\bf W}$ such that the reduced-order model obtained by projection satisfies

$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}, \text{ with } \mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 0 & -2 & -1\\ 0 & 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \text{ and } \mathbf{C}^T = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}.$$

Note that
$$\mathbf{H}(s) = \frac{1}{s+2} = \hat{\mathbf{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}})^{-1}\hat{\mathbf{B}}$$
, with $\hat{\mathbf{A}} = -2, \hat{\mathbf{B}} = 1$ and $\hat{\mathbf{C}} = 1$.

Minimal realization problem

Find order r and matrices ${\bf V}$ and ${\bf W}$ such that the reduced-order model obtained by projection satisfies

$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$$

Solutions:

- Kalman reachability/observability criteria,
- Hankel matrix (Silverman method),
- reachability and observability Gramians,
- Loewner matrix. [Mayo/Antoulas '07]

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

$$\begin{split} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } & \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{H}}(s) &= \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1} \hat{\mathbf{B}}, \text{ with } & \hat{\mathbf{A}}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{split}$$

-

-

-

-

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1}\mathbf{B}, \text{ with } \begin{array}{l} \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \mathbf{\hat{H}}(s) = \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1}\hat{\mathbf{B}}, \text{ with } \begin{array}{l} \hat{\mathbf{A}}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{array}$$

-

-

-

-

• $\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$

$$\begin{split} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } & \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{H}}(s) &= \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1} \hat{\mathbf{B}}, \text{ with } & \hat{\mathbf{A}}_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{split}$$

-

-

-

-

•
$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$$

 $\bullet~{\bf H}$ has order 3 and $\hat{{\bf H}}$ order 2.

$$\begin{split} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \begin{array}{l} \mathbf{A}_1 &= \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 &= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\ \mathbf{B}^T &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} &= \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{H}}(s) &= \hat{\mathbf{C}}(s\mathbf{I} - \hat{\mathbf{A}}_2 - \hat{\mathbf{A}}_2 e^{-s})^{-1} \hat{\mathbf{B}}, \text{ with } \begin{array}{l} \hat{\mathbf{A}}_1 &= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 &= \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} &= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \hat{\mathbf{A}}_2 &= \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \hat{\mathbf{B}} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \hat{\mathbf{C}}^T &= \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \end{split}$$

- $\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s.$
- H has order 3 and $\hat{\mathbf{H}}$ order 2.

Minimal realization problem Is there a way to find the order r and matrices $\mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times r}$ such that the system $\hat{\mathbf{H}}(s)$

obtained by projection is "minimal", i.e

$$\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s?$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

Reachability characterization	[Anderson/Antoulas '90]
If $(\mathbf{E},\mathbf{A},\mathbf{B})$ is \mathbb{R}^n -reachable, $t\geq n$, $\sigma_i eq\sigma_j$ for $i eq j$, and	
$\mathbf{R} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \end{bmatrix}$. Then in	$\operatorname{rank}\left(\mathbf{R}\right)=n.$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

Reachability characterization

[Anderson/Antoulas '90]

If $(\mathbf{E}, \mathbf{A}, \mathbf{B})$ is \mathbb{R}^n -reachable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

 $\mathbf{R} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \end{bmatrix}$. Then rank $(\mathbf{R}) = n$.

Observability characterization

Anderson/Antoulas '90]

If $(\mathbf{E}, \mathbf{A}, \mathbf{C})$ is \mathbb{R}^n -observable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

$$\mathbf{O} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T \end{bmatrix}$$
. Then rank $(\mathbf{O}) = n$.

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$
, with $\mathbf{E} \in \mathbb{R}^{n \times n}$ invertible.

Reachability characterization

[ANDERSON/ANTOULAS '90]

If $(\mathbf{E}, \mathbf{A}, \mathbf{B})$ is \mathbb{R}^n -reachable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

$$\mathbf{R} = [(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \dots (\sigma_t \mathbf{E} - \mathbf{A})^{-1} \mathbf{B}].$$
 Then rank $(\mathbf{R}) = n.$

Observability characterization

If $(\mathbf{E}, \mathbf{A}, \mathbf{C})$ is \mathbb{R}^n -observable, $t \ge n$, $\sigma_i \ne \sigma_j$ for $i \ne j$, and

$$\mathbf{O} = \begin{bmatrix} (\sigma_1 \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T & \dots & (\sigma_t \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T \end{bmatrix}$$
. Then rank $(\mathbf{O}) = n$

Rank encodes minimality

ANDERSON/ANTOULAS '90]

$$\operatorname{rank}\left(\mathbf{O}^{T}\mathbf{ER}\right) =$$
order of minimal realization = r.

© benner@mpi-magdeburg.mpg.de

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS An Illustrative Example The Algorithm
- 4. Numerical Results
- 5. Outlook and Conclusions

For **SLS**, we use the notion of \mathbb{R}^n -reachability and -observability. Let us consider the SLS

 $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \text{ of order n.}$

For **SLS**, we use the notion of \mathbb{R}^n -reachability and -observability. Let us consider the SLS $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \text{ of order n.}$

Reachability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -reachable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

 $\mathbf{R} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-1} \mathcal{B}(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{B}(\sigma_t) \end{bmatrix}, \text{ then } \operatorname{rank}(\mathbf{R}) = n.$

For **SLS**, we use the notion of \mathbb{R}^n -reachability and -observability. Let us consider the SLS $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \text{ of order n.}$

Reachability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -reachable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

 $\mathbf{R} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-1} \mathcal{B}(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{B}(\sigma_t) \end{bmatrix}, \text{ then } \operatorname{rank}(\mathbf{R}) = n.$

Observability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -observable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

$$\mathbf{O} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-T} \mathcal{C}^T(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-T} \mathcal{C}^T(\sigma_t) \end{bmatrix}, \text{ then } \operatorname{rank}(\mathbf{O}) = n.$$

For **SLS**, we use the notion of \mathbb{R}^n -reachability and -observability. Let us consider the SLS $\mathbf{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \text{ of order n.}$

Reachability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -reachable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

 $\mathbf{R} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-1} \mathcal{B}(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-1} \mathcal{B}(\sigma_t) \end{bmatrix}, \text{ then } \operatorname{rank}(\mathbf{R}) = n.$

Observability characterization

If $(\mathcal{K}(s), \mathcal{B}(s))$ is \mathbb{R}^n -observable, $\sigma_i \neq \sigma_j$ for $i \neq j$, $t \geq n$, and

$$\mathbf{O} = \begin{bmatrix} \mathcal{K}(\sigma_1)^{-T} \mathcal{C}^T(\sigma_1) & \dots & \mathcal{K}(\sigma_t)^{-T} \mathcal{C}^T(\sigma_t) \end{bmatrix}, \text{ then } \operatorname{rank}(\mathbf{O}) = n.$$

Rank encodes minimality

$$\operatorname{rank}\left(\mathbf{O}^{T}\mathbf{ER}\right) = \text{order of the SLS "minimal" realization} = r.$$

© benner@mpi-magdeburg.mpg.de

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for $\sigma_i = [1, 2, 3, 4, 5]$,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix}, \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}.$$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for $\sigma_i = [1, 2, 3, 4, 5]$,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix},\\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2.$$
 $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for $\sigma_i = [1, 2, 3, 4, 5]$,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix},\\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2$$
. $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

• $\mathrm{rank}\left(\mathbf{O}^T\mathbf{R}\right)=2.$ (minimal realization order)

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for
$$\sigma_i = [1, 2, 3, 4, 5]$$
,

Then,

$$[\mathbf{Y}, \boldsymbol{\Sigma}, \mathbf{X}] = \mathbf{svd}(\mathbf{O}^T \mathbf{R}).$$

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix},\\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2.$$
 $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

• $\mathrm{rank}\left(\mathbf{O}^T\mathbf{R}\right)=2.$ (minimal realization order)

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for
$$\sigma_i = [1, 2, 3, 4, 5]$$
,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1}\mathbf{B} & \dots & K(\sigma_5)^{-1}\mathbf{B} \end{bmatrix}, \\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T}\mathbf{C}^T & \dots & K(\sigma_5)^{-T}\mathbf{C}^T \end{bmatrix}.$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2.$$
 $\binom{\operatorname{nonreachable}}{\operatorname{nonobservable}}$

•
$$\mathrm{rank}\left(\mathbf{O}^T\mathbf{R}\right)=2.$$
 (minimal realization order)

Then, $[\mathbf{Y},\boldsymbol{\Sigma},\mathbf{X}] = \mathsf{svd}(\mathbf{O}^T\mathbf{R}).$

So, we get the projection matrices

 $\mathbf{V} = \mathbf{R}\mathbf{X}(:,1:2) \text{ and } \mathbf{W} = \mathbf{O}\mathbf{Y}(:,1:2).$

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - \mathbf{A}_2 e^{-s})^{-1} \mathbf{B}, \text{ with } \mathbf{A}_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{A}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{B}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Let us construct, for
$$\sigma_i = [1, 2, 3, 4, 5]$$
,

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1)^{-1} \mathbf{B} & \dots & K(\sigma_5)^{-1} \mathbf{B} \end{bmatrix}, \\ \mathbf{O} = \begin{bmatrix} K(\sigma_1)^{-T} \mathbf{C}^T & \dots & K(\sigma_5)^{-T} \mathbf{C}^T \end{bmatrix}.$$

Hence, we see that

•
$$\operatorname{rank}(\mathbf{R}) = \operatorname{rank}(\mathbf{O}) = 2$$
. (nonreachable nonobservable)

•
$$\mathrm{rank}\left(\mathbf{O}^{T}\mathbf{R}\right)=2.$$
 (minimal realization order)

Then, $[\mathbf{Y},\boldsymbol{\Sigma},\mathbf{X}] = \mathsf{svd}(\mathbf{O}^T\mathbf{R}).$

So, we get the projection matrices $\mathbf{V} = \mathbf{R}\mathbf{X}(:, 1:2)$ and $\mathbf{W} = \mathbf{O}\mathbf{Y}(:, 1:2)$. The $\hat{\mathbf{H}}$ obtained using \mathbf{V} and \mathbf{W} satisfies $\mathbf{H}(s) = \hat{\mathbf{H}}(s), \forall s$.

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

Input: SLS $\mathcal{K}(s),\,\mathcal{B}(s),\,\mathcal{C}(s)$ and reduced order r.

1: Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
- 2: Compute \mathbf{R} (and \mathbf{O}).

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
- 2: Compute \mathbf{R} (and \mathbf{O}).
- 3: Determine the SVD

 $[\mathbf{Y}, \boldsymbol{\Sigma}, \mathbf{X}] = \mathrm{svd}(\mathbf{O}^T \mathbf{E} \mathbf{R}).$

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
- 2: Compute \mathbf{R} (and \mathbf{O}).
- 3: Determine the SVD

$$[\mathbf{Y}, \boldsymbol{\Sigma}, \mathbf{X}] = \mathsf{svd}(\mathbf{O}^T \mathbf{E} \mathbf{R}).$$

4: Construct the projection matrices

 $\mathbf{V} = \mathbf{R}\mathbf{X}(:,1:r) \text{ and } \mathbf{W} = \mathbf{O}\mathbf{Y}(:,1:r).$

Input: SLS $\mathcal{K}(s)$, $\mathcal{B}(s)$, $\mathcal{C}(s)$ and reduced order r.

- 1: Choose interpolation points $(\sigma_1, \ldots, \sigma_t)$.
- 2: Compute \mathbf{R} (and \mathbf{O}).
- 3: Determine the SVD

$$[\mathbf{Y}, \boldsymbol{\Sigma}, \mathbf{X}] = \mathbf{svd}(\mathbf{O}^T \mathbf{E} \mathbf{R}).$$

4: Construct the projection matrices

$$V = RX(:, 1:r)$$
 and $W = OY(:, 1:r)$.

Output: Reduced-order model is given by

$$\hat{\mathcal{K}}(s) = \mathbf{W}^T \mathcal{K}(s) \mathbf{V}, \ \hat{\mathcal{B}}(s) = \mathbf{W}^T \mathcal{B}(s) \text{ and } \hat{\mathcal{C}}(s) = \mathcal{C}(s) \mathbf{V}.$$

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS
- 4. Numerical Results

Second-order System Parametric Systems Fitz-Hugh Nagumo Model

5. Outlook and Conclusions

Let us consider the second order system

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = Bu(t)$$
$$y(t) = Cx(t).$$

Damped vibrational system.

- Full order model with n = 301.
- ROM obtained used SPNMR method (500 log. dist. points in $[1e^{-3}, 1]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 50.

Let us consider the second order system

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = Bu(t)$$
$$y(t) = Cx(t).$$

Damped vibrational system.

- Full order model with n = 301.
- ROM obtained used SPNMR method (500 log. dist. points in $[1e^{-3}, 1]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 50.

Let us consider the second order system

$$\begin{aligned} M\ddot{x}(t) + D\dot{x}(t) + Kx(t) &= Bu(t) \\ y(t) &= Cx(t). \end{aligned}$$

• Damped vibrational system.

- Full order model with n = 301.
- ROM obtained used SPNMR method (500 log. dist. points in $[1e^{-3}, 1]i$) and Structured Balanced Truncation [BREITEN '16].
- Reduced order r = 50.

 $\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s, p) = \mathbf{C} \left(s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2 \right)^{-1} \mathbf{B}$, where

$$\mathbf{A}_1 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ and } \mathbf{C}^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s, p) = \mathbf{C} \left(s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2 \right)^{-1} \mathbf{B}$, where

$$\mathbf{A}_1 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_2 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ and } \mathbf{C}^T = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

• For t = 20 points (σ_i, \mathbf{p}_i) , let

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-1} \mathbf{B} & \dots & K(\sigma_t, \mathbf{p}_t)^{-1} \mathbf{B} \end{bmatrix}, \mathbf{O} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-T} \mathbf{C}^T & \dots & K(\sigma_t, \mathbf{p}_t)^{-T} \mathbf{C}^T \end{bmatrix}.$$

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s, p) = \mathbf{C} \left(s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2 \right)^{-1} \mathbf{B}$, where

$$\mathbf{A}_{1} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ and } \mathbf{C}^{T} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

- For t = 20 points (σ_i, \mathbf{p}_i) , let
 - $\mathbf{R} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-1} \mathbf{B} & \dots & K(\sigma_t, \mathbf{p}_t)^{-1} \mathbf{B} \end{bmatrix},$ $\mathbf{O} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-T} \mathbf{C}^T & \dots & K(\sigma_t, \mathbf{p}_t)^{-T} \mathbf{C}^T \end{bmatrix}.$
- Build $\mathbf{O}^T \mathbf{R}$ and check rank (=2).

$$\mathbf{H}(s,p) = \mathcal{C}(s,p)\mathcal{K}(s,p)^{-1}\mathcal{B}(s,p).$$

• Consider $\mathbf{H}(s, p) = \mathbf{C} (s\mathbf{I} - \mathbf{A}_1 - p\mathbf{A}_2)^{-1} \mathbf{B}$, where

$$\mathbf{A}_{1} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}, \ \mathbf{A}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \ \text{and} \ \mathbf{C}^{T} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

• For
$$t = 20$$
 points (σ_i, \mathbf{p}_i) , let

$$\mathbf{R} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-1} \mathbf{B} & \dots & K(\sigma_t, \mathbf{p}_t)^{-1} \mathbf{B} \end{bmatrix},$$

$$\mathbf{O} = \begin{bmatrix} K(\sigma_1, \mathbf{p}_1)^{-T} \mathbf{C}^T & \dots & K(\sigma_t, \mathbf{p}_t)^{-T} \mathbf{C}^T \end{bmatrix}.$$

$$10^{-10}$$

- Build $\mathbf{O}^{T}\mathbf{R}$ and check rank (=2).
- Compute projectors V and W and $\hat{\mathbf{H}}(s, p)$.
- Then, $\mathbf{H}(s, p) = \hat{\mathbf{H}}(s, p)$.

 10^{-25}

5

20

alues

10

15

• FOM example $[MORWIKI]^1$ of order 1006 and $p \in [10, 100]$ of the form

$$\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

• 1500 random points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

Singular values of the Loewner matrix

- FOM example [MORWIKI]¹ of order 1006 and $p \in [10, 100]$ of the form $\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{Bu}(t)$ $\mathbf{y}(t) = \mathbf{Cx}(t)$
- 1500 random points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

- FOM example [MORWIKI]¹ of order 1006 and $p \in [10, 100]$ of the form $\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$
- 1500 random points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

- FOM example [MORWIKI]¹ of order 1006 and $p \in [10, 100]$ of the form $\dot{\mathbf{x}}(t) = (\mathbf{A}_1 + p\mathbf{A}_2)\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$
- 1500 random points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

Singular values of the Loewner matrix

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + p \mathbf{A}_2 \mathbf{x}(t-\tau) + \mathbf{B} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

• 1500 randomly chosen points $(s, p) \in [1e0, 1e4]i \times [10, 100]$. Reduced order r = 15.

Fitz-Hugh Nagumo model: Governing coupled equation

$$\begin{aligned} \epsilon v_t &= \epsilon^2 v_{xx} + v(v-0.1)(1-v) - w + u, \\ w_t &= hv - \gamma w + u \end{aligned} \quad \text{on} \quad [0,T] \times [0,L] \end{aligned}$$

with initial and boundary conditions

 $v(x,0) = 0, \quad w(x,0) = 0, \quad x \in (0,L), \qquad v_x(0,t) = i_0(t), \quad v_x(L,t) = 0, \quad t \ge 0.$

• To employ the interpolation-based algorithm, we choose random 100 interpolation points in a logarithmic way between $[10^{-2}, 10^2]$ and set $\sigma_i = \mu_i$, $i \in \{1, ..., 100\}$.

Fitz-Hugh Nagumo model: Governing coupled equation

$$\begin{aligned} \epsilon v_t &= \epsilon^2 v_{xx} + v(v-0.1)(1-v) - w + u, \\ w_t &= hv - \gamma w + u \end{aligned} \quad \text{on} \quad [0,T] \times [0,L] \end{aligned}$$

Decay of singular values of Loewner pencil

Fitz-Hugh Nagumo model: Governing coupled equation

$$\begin{aligned} \epsilon v_t &= \epsilon^2 v_{xx} + v(v-0.1)(1-v) - w + u, \\ w_t &= hv - \gamma w + u \end{aligned} \qquad \text{on} \quad [0,T] \times [0,L] \end{aligned}$$

- 1. Introduction
- 2. Minimal Realization
- 3. Reachability and Observability for SLS
- 4. Numerical Results
- 5. Outlook and Conclusions

Contribution of this talk

- Minimal realization by projection of **SLS**.
- Model reduction technique inspired by numerical rank of matrix $\mathbf{O}^T \mathbf{E} \mathbf{R}$.
- Projector computation solving generalized Sylvester equation (low-rank methods).
- Performance illustrated by numerical examples for several system classes.
- Extended results to parametric SLS.

Contribution of this talk

- Minimal realization by projection of **SLS**.
- Model reduction technique inspired by numerical rank of matrix $\mathbf{O}^T \mathbf{E} \mathbf{R}$.
- Projector computation solving generalized Sylvester equation (low-rank methods).
- Performance illustrated by numerical examples for several system classes.
- Extended results to parametric SLS.

Open questions and future work

- Stability preservation and error bounds.
- Relation to pure Loewner-style approach [SCHULZE/UNGER/BEATTIE/GUGERCIN '18]?
- How to find an intermediate full-order model for projection?
- Extension to nonlinear systems, first results for polynomial systems in [BENNER/GOYAL '19, ARXIV:1904.11891].