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 stabilization and feedback control of multi-field flow problems!
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Our joint proposal for SPP1253
. . . Chemnitz, October 12, 2005 (a few days before the deadline)
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Our joint proposal for SPP1253
. . . hard at work
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Motivation
Transport Problems as Dynamical Systems

Physical transport is one of the most fundamental dynamical
processes in nature.

Prediction and manipulation of transport processes are important
research topics, e.g., to

avoid stall — for stable and safe flight;
save energy (or increase attainable speed) by minimizing drag coefficient;
use fluid flow for optimal transport (e.g., in blood veins).

Open-loop controllers are widely used in various engineering fields.
→ Not robust regarding perturbation

Dynamical systems are often influenced via so called distributed
control.
→ Unfeasible in many real-world areas

⇒ Boundary feedback stabilization (closed-loop)
can be used to increase robustness and feasibility.
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Motivation
Feedback Control

Let (x∗, u∗) solve minu∈Uad
J(x, u) s.t. ẋ(t) = f(x(t), u(t)).
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J(x, u) s.t. ẋ(t) = f(x(t), u(t)).

Fundamental observation

Optimized trajectory x∗(t;u∗) and precomputed optimal control u∗(t) will not be
attainable in practice due to

modeling errors and/or unmodeled dynamics,

model uncertainties,

external perturbations,

measurement errors.

Consequence: for compensation of errors and correction of deviation from desired
path, need feedback control

u(t) = u∗(t) + U(t, x(t)− x∗(t)).
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Goal of our SPP1253 Proposal
Multi-Field Flow Stabilization by Riccati Feedback

Consider 2D flow problems described by incompressible
Navier–Stokes equations.

Riccati feedback approach requires the solution of an algebraic
Riccati equation.

Conservation of mass introduces a divergence-freeness condition  
problems with mathematical basis of control design schemes.

Kármán vortex street
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Consider 2D flow problems described by incompressible
Navier–Stokes equations.

Riccati feedback approach requires the solution of an algebraic
Riccati equation.

Conservation of mass introduces a divergence-freeness condition  
problems with mathematical basis of control design schemes.

Coupling flow problems with a scalar reaction-advection-diffusion
equation.

simplified reactor model
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Goal of our SPP1253 Proposal
Available Tools and Necessary Tasks at Project Start

1. Functional analytic control approach by Raymond ( [Raymond ’05–’07])
works in subspace of divergence-free functions.
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works in subspace of divergence-free functions.
Establish a numerical realization for Leray projection.

2. NAVIER: FE package using P2-P1 Taylor–Hood elements.
Incorporate unsteady boundary conditions and boundary control
operator.

3. LQR theory for generalized state-space systems.
Incorporate a DAE structure without using expensive DAE
methods.

4. Kleinman–Newton-ADI framework for solving generalized algebraic
Riccati equations.
Incorporate the divergence-free condition without explicit
projection.

5. Preconditioned iterative methods to solve stationary Navier–Stokes
systems.
Develop techniques to deal with complex-shifted multi-field flow
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Goal of our SPP1253 Proposal
Equations of Multi-Field Flow
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Feedback Stabilization for Projected Systems
After Leray-projecting the system equations. . . (and three years later)

Minimize

J (y,u) =
1

2

∫
∞

0

λ2||y||2 + ||u||2 dt

subject to

Θ̂T

r
MΘ̂r

d

dt
x̃(t) = Θ̂T

r
AΘ̂rx̃(t) + Θ̂T

r
Bu(t)

y(t) = CΘ̂rx̃(t)

with Π̂ = Θ̂lΘ̂
T
r
such that Θ̂T

r
Θ̂l = I ∈ R

(n−np)×(n−np) and x̃ = Θ̂T

l
x.
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Minimize

J (y,u) =
1

2

∫
∞

0

λ2||y||2 + ||u||2 dt

subject to

M d

dt
x̃(t) = Ax̃(t) + Bu(t)

y(t) = Cx̃(t)
with M = MT ≻ 0.
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Feedback Stabilization for Projected Systems
After Leray-projecting the system equations. . . (and three years later)

Minimize

J (y,u) =
1

2

∫
∞

0

λ2||y||2 + ||u||2 dt

subject to

M d

dt
x̃(t) = Ax̃(t) + Bu(t)

y(t) = Cx̃(t)
with M = MT ≻ 0.

Riccati Based Feedback Approach

Optimal control: u(t) = −Kx̃(t), with feedback: K = BTXM,

where X is the solution of the generalized continuous-time algebraic Riccati
equation (GCARE)

R(X ) = λ2CT C +ATXM+MXA−MXBBTXM = 0.
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Main Contributions of our SPP1253 Project

Analyzed Riccati-based feedback for scalar and vector-valued transport
problems.

Wide-spread usability tailored for standard inf-sup stable finite element
discretizations.

Established specially tailored Kleinman–Newton-ADI that avoids
explicit projections.

Suitable preconditioners for multi-field flow problems have been developed.

Major run time improvements due to combination of inexact Newton and
line search.

Established new convergence proofs that were verified by extensive
numerical tests.

⇒ Showed usability of new approach by a closed-loop forward simulation.
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Project Output so far. . .

E. Bänsch and P. Benner, Stabilization of incompressible flow problems by

Riccati-based feedback, in Constrained Optimization and Optimal Control for Partial
Differential Equations, vol. 160 of International Series of Numerical Mathematics,
Birkhäuser, 2012, pp. 5–20.

P. Benner, J. Saak, M. Stoll, and H. K. Weichelt, Efficient solution of large-scale

saddle point systems arising in Riccati-based boundary feedback stabilization of

incompressible Stokes flow, SIAM J. Sci. Comput., 35 (2013), pp. S150–S170.

E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, Optimal control-based feedback

stabilization of multi-field flow problems, in Trends in PDE Constrained Optimization,
vol. 165 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 2014, pp. 173–188.

E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, Riccati-based boundary

feedback stabilization of incompressible Navier-Stokes flows, SIAM J. Sci. Comput., 37
(2015), pp. A832–A858.

P. Benner, M. Heinkenschloss, J. Saak, and H. K. Weichelt, Efficient solution of

large-scale algebraic Riccati equations associated with index-2 DAEs via the inexact

low-rank Newton-ADI method, Appl. Numer. Math., accepted 2019-11-21 (2019).
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What we did not achieve. . .

We never started working on Scenario 3 in the SPP1253 proposal . . .
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What we did not achieve. . .

We never started working on Scenario 3 in the SPP1253 proposal . . .

I.e., we promised to stabilize the interface at solid/liquid phase
transitions with convection . . .

The first birthday present: It’s (partially) done!

Rest of the talk: feedback control of the Stefan problem.
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Linear Quadratic Regulator

Stefan Problem

Structural Properties

Numerical Examples
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Motivation
Feedback Stabilization of the Heat Equation with Riccati-feedback

Ω

Minimize
1

2

∫ tf

0
λ ‖θ − θd‖2 + ‖u‖2 dt

subject to

d

dt
θ − k∆θ = 0, Ω

g(θ) = u, ∂Ω
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Motivation
Feedback Stabilization of the Heat Equation with Riccati-feedback

Ω

Minimize
1

2

∫ tf

0
λ ‖y − yd‖2 + ‖u‖2 dt

subject to

d

dt
θ − k∆θ = 0, Ω

g(θ) = u, ∂Ω

Discretization:

A,M large sparse, B,C skinny
Mẋ = Ax+Bu

y = Cx
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Motivation
Linear Quadratic Regulator

Mẋ = Ax+Bu

y = Cx

Riccati-based Feedback Approach e.g.,[Sontag ’98]

Stabilizing feedback: K = BTXM
where X is the solution of the generalized differential Riccati equation
(DRE)

−MTẊM = CTC +ATXM+MTXA−MTXBBTXM

Optimal control: u = −Kx
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Motivation
Low-rank Solver for DREs: State of the Art

−MTẊM = CTC +ATXM+MTXA−MTXBBTXM
X ≈ ZZT or X ≈ LDLT

Backward Differentiation Formula (BDF)

Rosenbrock

Peer methods

Splitting schemes

Krylov subspace methods

. . .

[Behr/Benner/Heiland ’18, Kirsten/Simoncini ’19, Koskela/Mena ’18, Lang ’17, Mena ’07,
Ostermann/Piazzola/Walach ’18, Stillfjord ’15, Stillfjord ’18, . . . ]
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Motivation
Time-dependent Coefficients

Ω

Time dependent heat conductivity k(t)

d

dt
θ − k(t)∆θ = 0, Ω

g(θ) = u, ∂Ω

Discretization:

Mẋ = A(t)x+Bu

y = Cx

A(t) = k(t)A0 k : R → R
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Motivation
Solving Non-autonomous DREs: State of the Art

−MTẊM = CTC +A(t)TXM+MTXA(t)−MTXBBTXM
X ≈ LDLT

BDF

Rosenbrock

Peer methods

. . .

[Lang ’17, Mena ’07, . . . ]
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Linear Quadratic Regulator

Mẋ = Ax+Bu

y = Cx

Stefan Problem
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Non-autonomous Problem
Stefan Problem

Γcool

Γheat

Ωl

Ωs

Γint

d

dt
θ − α∆θ = 0, Ωl ∪ Ωs

[ks(∇θ)s − kl(∇θ)l] · nint = LVint, Γint

θ = θcool, Γcool

∂nθ = u, Γheat
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Non-autonomous Problem
Stefan Problem

Γcool

Γheat

Ωl

Ωs

Γint

d

dt
θ + v · ∇θ − α∆θ = 0, Ωl ∪ Ωs

[ks(∇θ)s − kl(∇θ)l] · nint = LVint, Γint

θ = θcool, Γcool

∂nθ = u, Γheat

d

dt
v − η∆v +∇p = 0, Ωl

∇ · v = 0, Ωl
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Challenges

Nonlinear Problem  Linearization

Use open-loop control to compute a reference trajectory.

Linearize around the reference trajectory.
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Changing Domain  Moving Mesh / Remeshing

Non-autonomous system:
M(t)ẋ = A(t)x+B(t)u

y = C(t)x
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Challenges

Nonlinear Problem  Linearization

Use open-loop control to compute a reference trajectory.

Linearize around the reference trajectory.

Changing Domain  Moving Mesh / Remeshing

Non-autonomous system:
M(t)ẋ = A(t)x+B(t)u

y = C(t)x

Memory Requirements

Precompute matrices for every required time step.

Avoid extra time steps in DRE solvers.
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Challenges
Time Discretizations

Open-loop control simulation:

0 tf

DRE solver:

Feedback control simulation:
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Challenges

Autonomous DRE

−MTẊM = CTC +ATXM+MTXA−MTXBBTXM

Non-autonomous DRE

M = M(t),A = A(t),B = B(t), C = C(t)

−MTẊM =CTC + (Ṁ+A)TXM+MTX(Ṁ+A)

−MTXBBTXM
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Challenges

BDF Method

low-rank multi-step algorithm to solve DREs

algebraic Riccati equation in each time step

main work: solution of shifted systems (A+ pM)V = W
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Challenges

BDF Method

low-rank multi-step algorithm to solve DREs

algebraic Riccati equation in each time step

main work: solution of shifted systems (A+ pM)V = W

Non-autonomous DRE  Non-autonomous BDF Method

start-up with fixed number of very small extra time steps

cannot reuse data from previous time step

extra matrix-matrix multiplications in each time step

CT
k =

[√
λC(tk)T,M(tk)

TLk−1, . . . ,M(tk)
TLk−℘

]

℘ : order of the BDF method
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Linear Quadratic Regulator

Stefan Problem

Mẋ = Ax+Bu

y = Cx

Structural Properties
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Structural Properties
Differential Algebraic Equations

x← θ, v Γ← Vint Φ← p















M















d

dt















x















=















A





























x















+ Bu

y =

[

C

]













x
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Structural Properties
Differential Algebraic Equations

x← θ, v Γ← Vint Φ← p















Mx 0 0

0 0 0

0 0 0















d

dt















x

Γ

Φ















=















A J1 J2

G1 S J3

G2 G3 0





























x

Γ

Φ















+ Bu

y =

[

Cx 0 0

]
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Structural Properties
Index-1
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e.g., [Gugercin, Stykel, Wyatt ’13]
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Structural Properties
Index-1







Mx 0

0 0







d

dt
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Γ






+ Bu

S regular : Γ = −S−1
Gx

e.g., [Gugercin, Stykel, Wyatt ’13]
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Structural Properties
Index-1







Mx 0

0 0







d

dt







x

Γ






=







A J

G S













x

Γ






+ Bu

S regular : Γ = −S−1
Gx

Mx

d

dt
x = Ã x + Bu

Ã = A− JS
−1

G

e.g., [Gugercin, Stykel, Wyatt ’13]
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Structural Properties
Index-2
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e.g., [Gugercin, Stykel, Wyatt ’13]
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Structural Properties
Index-2
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J,G full rank : Πl = I − J(GM
−1
x J)−1
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−1
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−1
x J)−1

G

e.g., [Gugercin, Stykel, Wyatt ’13]
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Structural Properties
Index-2
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d

dt
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A J

G 0













x
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+ Bu

J,G full rank : Πl = I − J(GM
−1
x J)−1
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−1
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Πr = I −M
−1
x J(GM

−1
x J)−1

G

M̂x

d

dt
x = Â x + B̂u

Â = ΠlAΠr M̂x = ΠlMxΠr B̂ = ΠlB

e.g., [Gugercin, Stykel, Wyatt ’13]
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Structural Properties
Differential Algebraic Equations
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Structural Properties
Differential Algebraic Equations
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Γ = −S−1(G1x+ J3Φ), Ã = A− J1S
−1

G1, . . .
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Structural Properties
Differential Algebraic Equations
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Structural Properties
Differential Algebraic Equations
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G̃ 0













x

Φ






+ Bu

M̂
d

dt
x = Â x + B̂u

Â = ΠlÃΠr M̂ = ΠlMxΠr B̂ = ΠlB
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Implicit Schur Complement and Projection

Explicit dense: O(n2) memory

Ã = A− J1S
−1G1

Â = ΠlÃΠr M̂ = ΠlMxΠr

(Â+ pM̂)V = W and ΠrV = V
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Implicit Schur Complement and Projection

Explicit dense: O(n2) memory

Ã = A− J1S
−1G1

Â = ΠlÃΠr M̂ = ΠlMxΠr

(Â+ pM̂)V = W and ΠrV = V

⇐⇒

Implicit low-rank sparse: O(n) memory

A+ pMx J1 J2

G1 S J3

G2 G3 0







V

Γ

Φ





 =

W

0

0







➞Peter Benner, benner@mpi-magdeburg.mpg.de Computational Methods for Feedback Control of Flow Problems 31/42



Linear Quadratic Regulator

Stefan Problem

Structural Properties

Mẋ = Ax+Bu

y = Cx





















d

dt
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+ Bu

Numerical Examples
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Numerical Examples
Stefan Problem without Flow

θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs

bla

Reference: Use trajectory and control u0

from open-loop control.

Aim: Stabilize the interface position
Γint with uf = −Kx.

Perturbation: Add ϕ(t) at the cooling
boundary.

Software: FEniCS, M-M.E.S.S.
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Numerical Examples
Stefan Problem without Flow

θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs

1

2

∫ tf

0
λ ‖y − yd‖2 + ‖u‖2 dt

λ = 104
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Numerical Examples
Input and Output

θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs

input

outputs:
temperature
measurments

perturbation
θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs
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Numerical Examples
Test: Cost Functional Weights

50%

0%

-50%

t

ϕ
(t
)

·10−3

t

Γ
in
t(
t)

perturbation

desired
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Numerical Examples
Test: Cost Functional Weights
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Numerical Examples
Test: Cost Functional Weights

50%

0%

-50%

t

ϕ
(t
),
u
f
(t
)

·10−3

t

Γ
in
t(
t)

perturbation feedback λ feedback λ × 10

desired feedback λ × 100
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Numerical Examples
2 vs 7 Outputs

θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs

input

outputs:
temperature
measurments

+
interface
velocity

perturbation
θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs
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Numerical Examples
Test: Output

50%
0%

-50%

t

ϕ
(t
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u
f
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·10−3

t

Γ
in
t(
t)

perturbation feedback 2 outputs

desired feedback 7 outputs
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Numerical Examples
Test: Curvature
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Numerical Examples
Test: Curvature
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Numerical Examples
Coupled with Stokes Equations

θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs

input

outputs:
temperature
measurments

perturbation
θ = θcool + ϕ(t)

∂nθ = u0 + uf

Γint

Ωl

Ωs
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Numerical Examples
Coupled with Stokes Equations
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Numerical Examples
Coupled with Stokes Equations
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Conclusions

Presented

Riccati-feedback stabilization of the Stefan problem comes with
challenges:

• Non-linear problem,
• Time-dependent matrices,
• Non-autonomous DRE,
• Differential algebraic structure.

The quality of the feedback depends on the discretization and cost
functional.
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Conclusions

Presented

Riccati-feedback stabilization of the Stefan problem comes with
challenges:

• Non-linear problem,
• Time-dependent matrices,
• Non-autonomous DRE,
• Differential algebraic structure.

The quality of the feedback depends on the discretization and cost
functional.

Outlook

Further test feedback performance.

Implement more sophisticated time integrator.

Couple with Navier-Stokes equations in the liquid phase.
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Le fin. . .

Happy
Birthday!
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Le fin. . .

Happy
Birthday!

. . . et Santé !
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Stefan Blocks
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Stefan Blocks
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