

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Efficient Numerical Methods for Gas Network Modeling and Simulation Yue Qiu, Sara Grundel, Martin Stoll, and Peter Benner

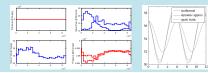
rence on Computational Science and Engineering (CSE19) Spokane, WA, February 25 – March 1, 2019

16: Mathematical Methods for Control and Optimization of Large-scale Energy Networks - Part II of II

Simulation of coupled German energy transportation networks

- **Funding:** 6 million EUR for 2017–2021.
- Goals:
 - hierarchical modeling of transport and distribution networks
 - fast simulation on all levels
 - real-time scenario analysis for network operators
 - coupling of power and gas network
- Results: New discretization and model order reduction methods for
 - isothermal Euler equations on network graph
 - with nonsmooth nonlinearity
 - leading to coupled system of differential-algebraic equations (DAEs)
 - with uncertain parameters

Implemented in morgen — Model Order Reduction of Gas and Energy Networks.



The German natural gas transportation network

Partners:

Fraunhofer SCAI Fraunhofer ITWM TU Berlin HU Berlin TU Dortmund U Trier PSI AG *associated:* Venios GmbH OGE

Funded by:

Federal Ministry for Economic Affairs and Energy

- Change of load or operation condition in the gas network will lead to transient dynamics.
- Fast simulation of this transient process is necessary.
- Increasing need for accurate network dynamics requires finer discretization of the network.
- Resulting network model is represented by a system of nonlinear differential-algebraic equation (DAE).
- Network simulation needs computationally expensive solution of this large-scale nonlinear DAE system.

\rightsquigarrow Efficient numerical algorithms to model and simulate network are necessary.

- 1. Pipeline Dynamics
- 2. Network Dynamics
- 3. Numerical Algorithms for Network Simulation
- 4. Numerical Experiments
- 5. Conclusions
- 6. Bibliography

1. Pipeline Dynamics

- 2. Network Dynamics
- 3. Numerical Algorithms for Network Simulation
- 4. Numerical Experiments
- 5. Conclusions
- 6. Bibliography

Consider the 1D isothermal Euler equation in the spatial domain [0, L]

$$\begin{aligned} \frac{\partial}{\partial t}\rho &= -\frac{\partial}{\partial x}\varphi,\\ \frac{\partial}{\partial t}\varphi &= -\frac{\partial}{\partial x}p - \frac{\partial}{\partial x}(\rho v^2) - \rho g \frac{\partial}{\partial x}h - \frac{\tilde{\lambda}(\varphi)}{2d}\rho v|v|,\\ p &= \gamma(T_0)z(\rho, T_0)\rho. \end{aligned}$$

Here, ρ is the density (kg/m^3) , φ is the flow rate (m^3/s) , p represents the pressure (N/m^2) .

Introducing the mass flow $q = \rho S v$, where S is the cross-section area, we get

Continuity
$$\begin{cases} \frac{\partial}{\partial t}p = -\frac{\gamma_0}{S}\frac{\partial}{\partial x}q,\\ \text{Momentum} \end{cases}$$
$$\begin{cases} \frac{\partial}{\partial t}q = -S\frac{\partial}{\partial x}p\underbrace{-\frac{\gamma_0}{S}\frac{\partial}{\partial x}\frac{q^2}{p}}_{\text{Kinematic Term}} \underbrace{-S\frac{g}{\gamma_0}p\frac{\partial}{\partial x}h}_{\text{Gravity Term}} \underbrace{-\frac{\lambda(q)\gamma_0}{2dS}\frac{q|q|}{p}}_{\text{Friction Term}} \end{cases}$$

Ignore the kinematic term as

$$\frac{\gamma_0}{S^2}\frac{q^2}{p}\Big|=\Big|p\frac{v^2}{\gamma_0}\Big|\ll |p|.$$

Furthermore, we assume that the pipe is at equal height ("equi-height" assumption). Therefore, we get

$$\frac{\partial}{\partial t}p = -\frac{\gamma_0}{S}\frac{\partial}{\partial x}q,
\frac{\partial}{\partial t}q = -S\frac{\partial}{\partial x}p - \frac{\lambda(q)\gamma_0}{2dS}\frac{q|q|}{p},$$
(1)

with boundary conditions (BCs): $p(0, *) = p_s$ and $q(L, *) = q_d$.

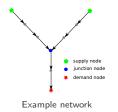
Discretizing (1) using the finite volume method (FVM), we obtain the following system of nonlinear ODEs:

$$\begin{bmatrix} M_{p} \\ M_{q} \end{bmatrix} \begin{bmatrix} \partial_{t} p \\ \partial_{t} q \end{bmatrix} = \begin{bmatrix} 0 & K_{pq} \\ K_{qp} & 0 \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} + \underbrace{\begin{bmatrix} B_{q} \\ 0 \end{bmatrix} q_{d}}_{right BCs} + \underbrace{\begin{bmatrix} 0 \\ B_{p} \end{bmatrix} p_{s}}_{left BCs} + \underbrace{\begin{bmatrix} 0 \\ g(p,q) \end{bmatrix}}_{nonlinear}.$$

Non-constant height is not a problem, model structure stays the same, only K_{qp} changes.

- 1. Pipeline Dynamics
- 2. Network Dynamics
- 3. Numerical Algorithms for Network Simulation
- 4. Numerical Experiments
- 5. Conclusions
- 6. Bibliography

Network Structure



Passive network: network without active elements such as compressors, valves, etc. It is described by a directed graph

$$\mathcal{G} = (\mathcal{E}, \mathcal{N}),$$

 \mathcal{E} : the set of edges, i.e., the pipes in the gas network. \mathcal{N} : the set of nodes, the union of supply nodes \mathcal{N}_s , demand nodes \mathcal{N}_d , and interior nodes \mathcal{N}_0 .

Assembly of the pipeline model for each $e_i \in \mathcal{E} \rightsquigarrow$ global network model. Insufficient boundary conditions (2 needed for each $e_i \in \mathcal{E}$) asks for algebraic constraints: coupling conditions for interior nodes

 $q_{\rm in} = q_{\rm out},$ mass conservation,

 $p_{out}^r = p_{in}^l$, pressure at end of outflow pipe = pressure at connected inflow pipe, need to be satisfied.

#algebraic constraints = $2\#\mathcal{E} - \#\mathcal{N}_s - \#\mathcal{N}_d$

Smoothing some interior nodes \rightsquigarrow reducing number of algebraic constraints.

Topology-based Network Assembly

Smoothing node w

Smoothed network

Let the junction nodes \mathcal{N}_j be nodes that connect at least three edges, and smooth the nodes $\mathcal{N}_o \setminus \mathcal{N}_j$, we obtain $\tilde{\mathcal{G}} = (\tilde{\mathcal{E}}, \tilde{\mathcal{N}})$ that has the same network topology.

Constraints reduction

After smoothing the interior nodes $\mathcal{N}_o \setminus \mathcal{N}_j$,

#algebraic constraints = $\# \tilde{\mathcal{E}} - \# \mathcal{N}_d$.

For the example network:

- 2 constraints after reduction.
- 13 without reduction.

After network assembly, we get the following nonlinear DAE system:

$$\begin{bmatrix} \mathcal{M}_1 & & & & \\ & \mathcal{M}_2 & & \\ & & \mathcal{M}_3 & & \\ & & & & & 0 \end{bmatrix} \underbrace{\frac{\partial}{\partial t} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ q^2 \end{bmatrix}}_{q^2} = \begin{bmatrix} \mathcal{K}_1 & & & \mathcal{B}_q^1 \\ & \mathcal{K}_2 & & & \mathcal{B}_q^2 \\ & & \mathcal{K}_3 & & & \\ & & & & & & e_3 & 1 & 1 \\ e_1 & e_2 & e_3 & 1 & 1 \\ e_1 & e_2 & e_3 & 1 & 1 \end{bmatrix}} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_1 \\ u_1 \\ u_2 \\ u_3 \\ u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} \mathcal{B}_p^1 \\ & & \mathcal{B}_p^2 \\ & & & & \mathcal{B}_p^2 \\ & & & & & \mathcal{B}_q^2 \end{bmatrix} q_q^3 + \mathcal{G}(*).$$

- 1. Pipeline Dynamics
- 2. Network Dynamics
- 3. Numerical Algorithms for Network Simulation
- 4. Numerical Experiments
- 5. Conclusions
- 6. Bibliography

General network model has the following from,

$$\underbrace{\begin{bmatrix} \mathcal{M} \\ 0 \end{bmatrix}}_{\mathsf{M}} \underbrace{\frac{\partial}{\partial t}}_{\mathsf{y}} \underbrace{\begin{bmatrix} u \\ q \end{bmatrix}}_{\mathsf{y}} = \underbrace{\begin{bmatrix} \mathcal{K} & B_q \\ E & F \end{bmatrix}}_{\mathsf{K}} \begin{bmatrix} u \\ q \end{bmatrix} + \underbrace{\mathcal{B}_1 p_s + \mathcal{B}_2 q_d}_{d} + \mathcal{G}(u, q).$$

Applying implicit Euler method for temporal discretization, we have

$$\mathbf{F}(y^{t}) := (\mathbf{M} - \Delta t \mathbf{K}) \mathbf{y}^{t} - \Delta t \mathcal{G}(\mathbf{y}^{t}) - \mathbf{M} \mathbf{y}^{t-1} - \Delta t \mathbf{d}^{t} = 0,$$
(2)

at time step t. Here, Δt is the time step size.

Algorithm 1 Newton's method

procedure NL_DAE(Δt , N_t , ε , max_it, y^0) 1: ▷ Solving (2) to simulate gas network 2: 3: for t = 1 : N_t do ▷ Outer iteration k - 14. while $\|\mathbf{F}(\mathbf{y}_{k}^{t})\| > \varepsilon \&\& k < \max_{i} t$ do ▷ Inner iteration $\mathbf{y}_{k+1}^{t} = \mathbf{y}_{k}^{t} - \left(\frac{\partial \mathbf{F}}{\partial \mathbf{y}}\big|_{\mathbf{y}=\mathbf{y}_{k}^{t}}\right)^{-1} \mathbf{F}(\mathbf{y}_{k}^{t}), \qquad k \leftarrow k+1$ 5 6: end while 7: $\mathbf{y}^t = \mathbf{y}_k^t$ 8. end for 9: end procedure

At each Newton (inner) iteration, need to solve linear system

$$\mathbf{F}(\mathbf{y}_k^t) + \partial_{\mathbf{y}} \mathbf{F}|_{\mathbf{y}=\mathbf{y}_k^t} (\mathbf{y} - \mathbf{y}_k^t) = 0, \tag{3}$$

Consider iterative solvers for (3), here, preconditioned Krylov methods.

The Jacobian can be partitioned according to the DAE *(generalized saddle-point)* structure:

$$\partial_{\mathbf{y}}\mathbf{F} = \begin{bmatrix} D_{F_{11}} & D_{F_{12}} \\ D_{F_{21}} & D_{F_{22}} \end{bmatrix}.$$

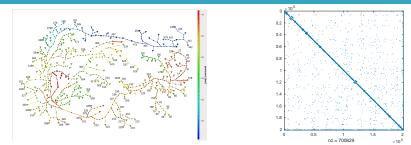
Typical preconditioners are

$$\mathcal{P}_1 = \begin{bmatrix} D_{F_{11}} & \\ & S \end{bmatrix}, \qquad \mathcal{P}_2 = \begin{bmatrix} D_{F_{11}} & \\ D_{F_{21}} & S \end{bmatrix},$$

where $S = D_{F_{22}} - D_{F_{21}} D_{F_{11}}^{-1} D_{F_{12}}$.

GMRES converges in 3 iterations with \mathcal{P}_1 and 2 iterations using \mathcal{P}_2 .

Requirement: $D_{F_{11}}$ and S should be easy to approximate.



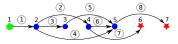
A large network example

- The sparsity pattern of $\partial_y \mathbf{F}$ is difficult to exploit for fast matrix computations.
- Keeping in mind that $\partial_y F$ originates from the network assembly, \rightsquigarrow topology based reordering for fast computations.

DF ordering [QIU/GRUNDEL/STOLL/B. 18]

The gas network is a directed acyclic graph (DAG), directions are away from supply nodes and towards demand nodes. We can order the edges in such a way that at every node all incoming edges have a lower order than all the outgoing edges, or it has no incoming edge. We call this a direction following (DF) ordering.

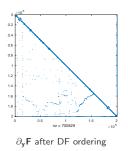
A network example



DF ordering of edges

Corollary [QIU/GRUNDEL/STOLL/B. 18]

After applying the DF ordering to the gas network, the (1, 1) block of the Jacobian matrix $\partial_{\gamma} F$ has block lower-triangular structure.



Properties of block lower-triangular preconditioner

$$\mathcal{P}_2 = \begin{bmatrix} D_{F_{11}} & \ D_{F_{21}} & S \end{bmatrix}.$$

- D_{F11} is block lower-triangular, D⁻¹_{F11} easy to compute.
- size of $S \ll$ size of $D_{F_{11}}$, therefore $S = D_{F_{22}} - D_{F_{21}}D_{F_{11}}^{-1}D_{F_{12}}$ can be computed directly.
- For the example, $D_{F_{11}}$ is 200, 348 \times 200, 348, *S* is a 417 \times 417 matrix.

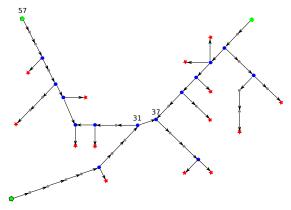
- Smoothed nodes are part of the virtual points used for network discretization.
- The direction of edges in the DAG is only used for the DF ordering. Real gas flow direction can be different, cf. numerical experiments.
- The DF ordering is not unique, we only need one.
- The size of the Schur complement is independent of the mesh size and only depends on the network structure.

Note that the Jacobian matrix $\partial_y \mathbf{F}$ has two levels of indices: t for time and k for "Newton step", for each t and k computing a preconditioner \mathcal{P}_2 is still computational intensive.

 \rightsquigarrow compute only 1 \mathcal{P}_2 and apply it for all *t* and *k*.

- 1. Pipeline Dynamics
- 2. Network Dynamics
- 3. Numerical Algorithms for Network Simulation
- 4. Numerical Experiments
- 5. Conclusions
- 6. Bibliography

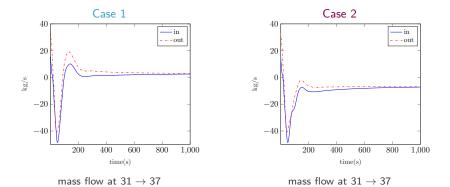
Real flow direction may differ from the DAG direction.



Network with 3 supply nodes, 14 demand nodes.

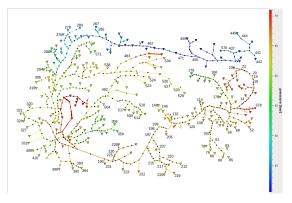
Numerical Experiments Change of flow direction

Case 1: $p_s^{55} = 50.5$ bar, $p_s^{56} = 50.5$ bar, $p_s^{57} = 50.8$ bar. Case 2: $p_s^{55} = 50.5$ bar, $p_s^{56} = 50.5$ bar, $p_s^{57} = 50.0$ bar.



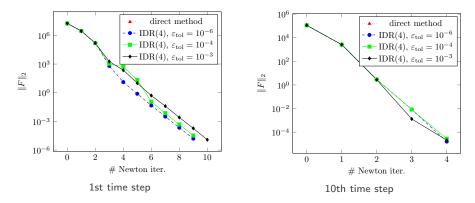
~ Mass flow imbalance induces pressure profile.

Large-scale network example.



Network with 5 supply nodes, 278 demand nodes.

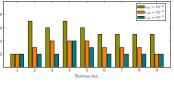
FVM discretization with mesh size h = 40, $\Delta t = 1$. backslash in MATLAB as "direct method".



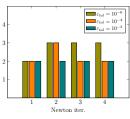
Inexactness can further reduce the computational cost.

Sc Preconditioner Performance

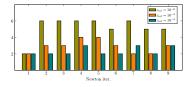
 Δt = 1, Induced Dimension Reduction (IDR(s)) solver with different residual tolerance $\varepsilon_{tol}.$



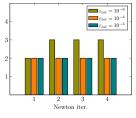
1st time step, h = 40



10th time step, h = 40



1st time step, h = 50



10th time step, h = 50

 $\Delta t = 1$, MATLAB implementation on a desktop with Intel(R) Core(TM)2 Quad CPU Q8400 at 2.66GHz, 8 GB memory and Linux 4.9.0-6-amd64 kernel.

h	$\#\partial_{y}F$	S	IDR(4)	backslash
40	1.03e+05	3.85	0.25	0.13
20	2.01e+05	8.12	0.52	0.36
10	3.97e+05	17.84	1.06	1.18
5	7.91e+05	38.44	2.13	1054.62
2.5	1.58e+06	81.42	4.34	-

Table: Computational time for the 1st Newton iteration, 1st time step

- *S* only needs to be computed once.
- Direct solver is called in each Newton iteration, and at each time step.

- 1. Pipeline Dynamics
- 2. Network Dynamics
- 3. Numerical Algorithms for Network Simulation
- 4. Numerical Experiments
- 5. Conclusions
- 6. Bibliography

- The concept of "smoothed network" reduces the number of algebraic constraints.
- For large-scale network simulation, direct solvers are not possible, while iterative solvers are needed.
- Network topology based preconditioning shows advantage over direct solvers.
- Numerical experiments show the efficiency of our method.
- Fast network simulation is also one of the building blocks of the network uncertainty quantification (UQ) problem.

Acknowledgment: Supported by the the EU-program ERDF (European Regional Development Fund) of German Federal State Saxony-Anhalt within the Research Center of Dynamic Systems (CDS).

- Y. Qiu, S. Grundel, M. Stoll, and P. Benner. Efficient Numerical Methods for Gas Network Modeling and Simulation, 2018. arXiv:1807.07142.

P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, and C. Tischendorf. Gas Network Benchmark Models, In: Differential-Algebraic Equations Forum, Springer International Publishing, 2018. doi:10.1007/11221_2018_5

P. Benner, M. Braukmüller, and S. Grundel. A Direct Index 1 DAE Model of Gas Networks. In: W. Keiper, A. Milde, S. Volkwein (eds.), Reduced-Order Modeling (ROM) for Simulation and Optimization, Springer International Publishing, 2018.

SFB Transregio 154: Mathematical Modeling, Simulation and Optimization using the Example of Gas Networks. https://trr154.fau.de/index.php/en/

4th Workshop on Model Reduction of Complex Dynamical Systems - MODRED 2019 -

August 28th to 30th, 2019 in Graz

Overview	The conference starts Wednesday morning and ends on Friday. There will be plenary talks by a	
News	number of invited speakers. Moreover, there will be several contributed talks (20 minutes plu: minutes for questions and discussion).	
Photos		
Scientific Program	Plenary Speakers	
Participants	 Serkan Gugercin Bernard Haasdonk Dirk Hartmann (Siemens) Laura lapichino 	
Proceedings		
Location		
Social Activities	J. Nathan Kutz	
Deadlines	Contributed Talks	
Abstracts	t.b.a.	
Registration		
Accommodation		
Travel		
Useful links		
Contact		

Contact: modred2019@uni-graz.at

Last changed: 2018-06-19