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1. Model Reduction for Control Systems
Localized Model Order Reduction
Balanced Truncation for LTI Systems
Relation of BT with the Kalman-Yakubovich-Popov Lemma
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A@ Model Reduction for Control Systems

Nonlinear Control Systems

5. { Ex(t) = f(t,x(t),u(t)), Ex(to)= Exo,
y(t) = &(t,x(t), u(t))
with
o (generalized) states x(t) € R”,
@ inputs u(t) € R™,
@ outputs y(t) € RP.

If E singular ~» descriptor system. Here, E = I, for simplicity.
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“, Model Reduction for Control Systems
w Linear Time-Invariant (LTI) Systems

Original System (E = /)

x(t) = Ax(t) + Bu(t),
Z: {ygtg = CxEt§ 4 Dugt;.
@ states x(t) € R”,
@ inputs u(t) € R™,
@ outputs y(t) € RP.
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Model Reduction for Control Systems

Linear Time-Invariant (LTI) Systems

Original System (E = /,) Reduced-Order Model (ROM)

- {x‘(t) = Ax(t) + Bu(t), s { A(t) = { (t) + Bu(t),
y(t) = Cx(t) + Du(t). () = CX(t) + Du(t).
@ states x(t) € R”, o states X(t) e R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RP. o outputs y(t) € RP.

N
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Model Reduction for Control Systems

Linear Time-Invariant (LTI) Systems

Original System (E = /,) Reduced-Order Model (ROM)

- {x‘(t) = Ax(t) + Bu(t), s { A(t) = { (t) + Bu(t),
y(t) = Cx(t) + Du(t). 9(t) = CX(t) + Du(t).
@ states x(t) € R”, o states X(t) e R", r < n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RP. o outputs y(t) € RP.

N

ly — ¥|| < tolerance - ||ul| for all admissible input signals.
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Model Reduction for Control Systems
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to LTI
system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)
with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),

Localized Balanced Truncation
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Model Reduction for Control Systems
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to LTI
system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)
with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
— |/O-relation in frequency domain:

y(s) = ( C(sl, — A)"'B+ D ) u(s).
—:G(s)

G(s) is the transfer function of ¥.

Localized Balanced Truncation
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Model Reduction for Control Systems
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform  (x(t) — x(s), x(t) — sx(s) — x(0)) to LTI
system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)
with x(0) = 0 yields:
sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s),
— |/O-relation in frequency domain:

y(s) = ( C(sl, — A)"'B+ D ) u(s).
—:G(s)

G(s) is the transfer function of ¥.

Model reduction in frequency domain: Fast evaluation of mapping u — y.

Localized Balanced Truncation
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Model Reduction for Control Systems
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the dynamical system
x = Ax+ Bu,
y = Cx+ Du,

by reduced-order system
X = A%+ Bu,

A S IR ) 2 R
C € RPX", D € RPX™,

A e R"™%7 B e Rrxm.
¢ e RP*", D € RPXM

g = Cx+ Du,
of order r < n, such that
ly =9l = HGu— CA;UH < ”G — CAJH - |Ju|| < tolerance - ||ul| .

o~

= Approximation problem:  min
order (G)<r

where, mostly, || || = |[. [l or [ | = [I- ll-

Localized Balanced Truncation
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”@ Localized Model Order Reduction

@ Often in engineering, only a certain frequency range, or an operating
frequency is of interest.

@ Local good approximation can be achieved by moment matching/rational
interpolation or frequency-limited /-weighted balanced truncation, but with
little theoretical support (stability preservation, error bound).

5 v » :

E: X

go // AV“‘
"

Frequency

Image by Steffen Werner, produced using MORLAB.

(© benner@mpi-magdeburg.mpg.de Localized Balanced Truncation


mailto:benner@mpi-magdeburg.mpg.de

@&t@ Balanced Truncation for LTI Systems

: X(t) = Ax(t) + Bu(t), wi stable, i.e -
P {y(t)—Cx(t), th A stable, i.e., A(A) C C—,

is balanced, if system Gramians, i.e., solutions P, @ of Lyapunov equations
AP+ PAT + BBT = 0, ATQ+ QA+ C'C = 0,

satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
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@&t@ Balanced Truncation for LTI Systems

: X(t) = Ax(t) + Bu(t), wi stable, i.e -
P {y(t)—Cx(t), th A stable, i.e., A(A) C C—,

is balanced, if system Gramians, i.e., solutions P, @ of Lyapunov equations
AP + PAT + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
@ {01,...,0n,} are the Hankel singular values (HSVs) of X.
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@&t@ Balanced Truncation for LTI Systems

: X(t) = Ax(t) + Bu(t), wi stable, i.e -
P {y(t)—Cx(t), th A stable, i.e., A(A) C C—,

is balanced, if system Gramians, i.e., solutions P, @ of Lyapunov equations
AP + PAT + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
® {01,...,0n} are the Hankel singular values (HSVs) of X.
@ Compute balanced realization of the system via state-space transformation

T:(AB,C) — (TAT 1, TB,CT 1)

- ([& ) [2])1e <)
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@&t@ Balanced Truncation for LTI Systems

: X(t) = Ax(t) + Bu(t), wi stable, i.e -
P {y(t)—Cx(t), th A stable, i.e., A(A) C C—,

is balanced, if system Gramians, i.e., solutions P, @ of Lyapunov equations
AP + PAT + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0,) with oy >0, > ... >0, > 0.
® {01,...,0n} are the Hankel singular values (HSVs) of X.
@ Compute balanced realization of the system via state-space transformation

T:(AB,C) — (TAT 1, TB,CT 1)
Al A B
f— C C .

@ Truncation ~~ (AA, é, é) = (All, B, Cl)
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A@ Balanced Truncation for LTI Systems

o Reduced-order model is stable with HSVs o1, ..., 0,.
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A@ Balanced Truncation for LTI Systems

o Reduced-order model is stable with HSVs o1, ..., 0,.

o Adaptive choice of r via computable error bound:

A n
|G —Glln., < 2Zk:r+1 ok =10

IN

= ly =7l S fully -
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@ Relation of BT with the Kalman-Yakubovich-Popov Lemma

Definition (Popov function)

Given a realization (A, B, C) of an LTI system, matrices Q = QT, R=RT and S
of appropriate size, the associated Popov function is

o(s) = [(sl,, _/,:‘)_IB]H [5QT ;] [(sl,, _I:\)—lB] ‘
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@ Relation of BT with the Kalman-Yakubovich-Popov Lemma

Definition (Popov function)

Given a realization (A, B, C) of an LTI system, matrices @ = Q7, R=R" and S
of appropriate size, the associated Popov function is

o(s) = [<s/n —I:rlB] ! { i ;] [(s/n —I:)—IB] |

Theorem (Kalman-Yakubovich-Popov (KYP) Lemma)

Let X be controllable (rank([A — Al,, B]) = n for all X € C). Then
d(iw) = 0 Viw € iR\A(A)
if and only if there exists X = XT such that the linear matrix inequality (LMI)
T — —
[A X+XA-Q XB S] <0

BTX-—ST —R
is fulfilled.

(© benner@mpi-magdeburg.mpg.de Localized Balanced Truncation


mailto:benner@mpi-magdeburg.mpg.de

Q‘ @ Relation of BT with the Kalman-Yakubovich-Popov Lemma

Theorem (Kalman-Yakubovich-Popov (KYP) Lemma)

Let X be controllable (rank([A — Al,, B]) = n for all A € C). Then
d(iw) = 0 Viw € iR\A(A)
if and only if there exists X = XT such that the linear matrix inequality (LMI)

ATX+XA—Q XB-—S
BTX — ST g | S0

is fulfilled.

@ 1961: Popov's criterion for stability of a feedback system with a memoryless
nonlinearity.

@ 1962/1963: Original version of the lemma by Kalman and Yakubovich.

@ until today: Many generalizations and extensions.
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@ Relation of BT with the Kalman-Yakubovich-Popov Lemma

Relation to Kalman-Yakubovich-Popov (KYP) lemma

@ Structural properties of reduced-order models can be proved using KYP.
@ Error bound can be proved using KYP as follows:

E(s)=[C €] <sl,,+,—[A AD_l [_Bé] = & (st —A) B

is a stable transfer function, i.e., E € H.,. Hence,
lEll3., <0 <= ®s(iw) =0 Vw

for Popov function

o[ [ GE g o8]
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@ Relation of BT with the Kalman-Yakubovich-Popov Lemma

Relation to Kalman-Yakubovich-Popov (KYP) lemma

@ Structural properties of reduced-order models can be proved using KYP.
@ Error bound can be proved using KYP as follows:

E(s) = [C q(%ﬂ_ﬁ 4>4L§]:é¢m¢ﬂ@*é

is a stable transfer function, i.e., E € H.,. Hence,
lEll3., <0 <= ®s(iw) =0 Vw
for Popov function

%@:F%w—ﬁdﬂ”r%% QJP%H—mAﬂ.

Im Im

Using KYP and properties of Gramians of reduced-order model, one can
prove existence of symmetric solution of corresponding LMI.
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2. Frequency-dependent KYP Lemma and Model Reduction
The Frequency-dependent KYP Lemma
Frequency-dependent Balanced Truncation
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Disadvantages of Balanced Truncation

Global error bound can be pessimistic in relevant frequency bands, e.g., in
mechanical systems, often only frequencies 0 < 27w < 1000 (in Hz) are relevant,
in VLSI design only an operating frequency, e.g., 2.6 GHz, may be of interest.

1. Frequency-weighted BT (FWBT): aim at minimizing || Go(G — G)Gjl|%...
where G;, G, are rational transfer functions, e.g., lowpass/highpass filters.
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Disadvantages of Balanced Truncation

Global error bound can be pessimistic in relevant frequency bands, e.g., in
mechanical systems, often only frequencies 0 < 27w < 1000 (in Hz) are relevant,
in VLSI design only an operating frequency, e.g., 2.6 GHz, may be of interest.

1. Frequency-weighted BT (FWBT): aim at minimizing || Go(G — G)Gjl|%...
where G;, G, are rational transfer functions, e.g., lowpass/highpass filters.

2. Use Frequency-limited Gramians: recall that the Gramians of stable systems
satisfy

AP+ PAT + BBT =0
ATQ+ QA+ CTC=0
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Disadvantages of Balanced Truncation

Global error bound can be pessimistic in relevant frequency bands, e.g., in
mechanical systems, often only frequencies 0 < 27w < 1000 (in Hz) are relevant,
in VLSI design only an operating frequency, e.g., 2.6 GHz, may be of interest.

1. Frequency-weighted BT (FWBT): aim at minimizing || Go(G — G)Gjl|%...
where G;, G, are rational transfer functions, e.g., lowpass/highpass filters.

2. Use Frequency-limited Gramians: recall that the Gramians of stable systems
satisfy

AP+ PAT + BBT =0 < P:/ AtBBT At gt
0

ATQ+QA+CTC=0 & P:/ ATt CT CePt dr
0
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Disadvantages of Balanced Truncation

Global error bound can be pessimistic in relevant frequency bands, e.g., in
mechanical systems, often only frequencies 0 < 27w < 1000 (in Hz) are relevant,
in VLSI design only an operating frequency, e.g., 2.6 GHz, may be of interest.

1. Frequency-weighted BT (FWBT): aim at minimizing || Go(G — G)Gjl|%...
where G;, G, are rational transfer functions, e.g., lowpass/highpass filters.

2. Use Frequency-limited Gramians: recall that the Gramians of stable systems
satisfy

AP+ PAT +BBT =0 & P= zi / (iwl — A)~'BBT (iwl — A)~Hdt
u —0o0

ATQ+QA+C'C=0 & Q:2i/ (iwl — A)~HCT C(iwl — A)Ldt
T J -
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Disadvantages of Balanced Truncation

Global error bound can be pessimistic in relevant frequency bands, e.g., in
mechanical systems, often only frequencies 0 < 27w < 1000 (in Hz) are relevant,
in VLSI design only an operating frequency, e.g., 2.6 GHz, may be of interest.

1. Frequency-weighted BT (FWBT): aim at minimizing || Go(G — G)Gjl|%...
where G;, G, are rational transfer functions, e.g., lowpass/highpass filters.

2. Use Frequency-limited Gramians:

P(w) = % /_w (iwl — A)~IBBT (iwl — A)~Hdt
Q(w) = % /w (iwl — A" CTC(iwl — A)~tdt

—w
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Disadvantages of Balanced Truncation

Global error bound can be pessimistic in relevant frequency bands, e.g., in
mechanical systems, often only frequencies 0 < 27w < 1000 (in Hz) are relevant,
in VLSI design only an operating frequency, e.g., 2.6 GHz, may be of interest.

1. Frequency-weighted BT (FWBT): aim at minimizing || Go(G — G)Gjl|%...
where G;, G, are rational transfer functions, e.g., lowpass/highpass filters.

2. Use Frequency-limited Gramians:

P(w) = %/ (iwl — A)~IBBT (iwl — A)~Hdt
w

Q(w) = %/ (iwl — A" CTC(iwl — A)~tdt

—w

Both approaches yield good local approximation properties, but error bounds are
still global and stability preservation often requires some modifications!
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A@ The Frequency-dependent KYP Lemma

Theorem [IwasAkI/HARA ’05]

Consider G(iw) = C(iwl — A)™'B + D, @ € R such that iw is not a pole of G,
and let M =NT € R"™". Then TFAE:

) { G(ilw) ]n[ G(ilw) } -0,

b) There exist symmetric matrices P and Q > 0 of appropriate dimensions,
satisfying

A Q@ P+iwQ AITBOI_IBOT<O
C 0 P—iw@Q —iw?Q c o| | D I D ||

Q 5].

Note: in standard KYP, we used 1 =
ST R

Localized Balanced Truncation
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Q&f@ The Frequency-dependent KYP Lemma

A family of frequency-dependent systems

Given ¢, w € R, we define

X(t) = wa(t)+Bwu(t)a
y(t) = Cox(t)+ Dzu(t),

= iwl — e((e + iw)l — A)"Hiwl — A),
= (e +iw)l — A)B,

= eC((e +im)l — A,

= D+ C((e+iwl)—A)'B.

>
&P

The associated transfer function is

Go(s) = Co(sl — An) 1By + Do
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Q‘g@ The Frequency-dependent KYP Lemma

Properties of the frequency-dependent systems

Theorem (A)

a) G stable = G is stable for all ¢ > 0.
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Properties of the frequency-dependent systems

Theorem (A)

a) G stable = G is stable for all ¢ > 0.
b) If G is unstable, then G is stable for 0 < € < é,, where

a : (@ = S(\))
€w = AueAng/IAr;ﬂ(Cj { RO + §R(>\u)} .

@@ The Frequency-dependent KYP Lemma

K
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@&,@ The Frequency-dependent KYP Lemma

Properties of the frequency-dependent systems

Theorem (A)

a) G stable = G is stable for all ¢ > 0.
b) If G is unstable, then G is stable for 0 < € < é,, where

a : (@ = S(\))
€w = AueAng/IAr;ﬂ(Cj { RO + §R(>\u)} .

c) (A, B) controllable = (A, Bw) controllable.
d) (A, C) observable =—> (A, C) observable.
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@&,@ The Frequency-dependent KYP Lemma

Properties of the frequency-dependent systems

Theorem (A)

a) G stable = G is stable for all ¢ > 0.
b) If G is unstable, then G is stable for 0 < € < é,, where

a : (@ = S(\))
€w = AueAng/IAr;ﬂ(Cj { RO + §R(>\u)} .

c) (A, B) controllable = (A, Bw) controllable.
d) (A, C) observable =—> (A, C) observable.

e) (A,B,C,D) is a minimal realization of G =
(Am, Bw, Cw, D) is a minimal realization of G,.
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@&,@ The Frequency-dependent KYP Lemma

Properties of the frequency-dependent systems

Theorem (A)

a) G stable = G is stable for all ¢ > 0.
b) If G is unstable, then G is stable for 0 < € < é,, where

. : (@ = S(W))?
En = /\ueArrgllqr;an {—%()\u) + §R()\u)} .

c) (A, B) controllable = (A, Bw) controllable.
d) (A, C) observable =—> (A, C) observable.

e) (A,B,C,D) is a minimal realization of G =
(Am, Bw, Cw, D) is a minimal realization of G,.

f) Gg(iw) = G(iw), i.e., Gy is a rational interpolant of G at iw!
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@&,@ The Frequency-dependent KYP Lemma

Properties of the frequency-dependent systems

Theorem (A)

a) G stable = G is stable for all ¢ > 0.
b) If G is unstable, then G is stable for 0 < € < é,, where

. : (@ = S(W))?
En = /\ueArrgllqr;an {—%()\u) + §R()\u)} .

c) (A, B) controllable = (A, Bw) controllable.
d) (A, C) observable =—> (A, C) observable.

e) (A,B,C,D) is a minimal realization of G =
(Am, Bw, Cw, D) is a minimal realization of G,.

f) Gg(iw) = G(iw), i.e., Gy is a rational interpolant of G at iw!
g) 1Glly,, <7 = lIGwllgy, <7-

(© benner@mpi-magdeburg.mpg.de Localized Balanced Truncation


mailto:benner@mpi-magdeburg.mpg.de

@&,@ The Frequency-dependent KYP Lemma

Properties of the frequency-dependent systems

Theorem (A)

a) G stable = G is stable for all ¢ > 0.
b) If G is unstable, then G is stable for 0 < € < é,, where

. : (@ = S(W))?
En = /\ueArrgllqr;an {—%()\u) + §R()\u)} .

c) (A, B) controllable = (A, Bw) controllable.
d) (A, C) observable =—> (A, C) observable.

e) (A,B,C,D) is a minimal realization of G =
(Am, Bw, Cw, D) is a minimal realization of G,.

f) Gg(iw) = G(iw), i.e., Gy is a rational interpolant of G at iw!
g) 1Glly,, <7 = lIGwllgy, <7-
h) 1G=lly,, < Ve = Tmax (G(i@)) < 7o
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The Frequency-dependent KYP Lemma

Properties of the frequency-dependent systems

Theorem (B)

Suppose the LTI system (A, B, C, D) is Hurwitz and minimal, and denote
its controllability, observability, and balanced Gramians as P, Q,%, then for
any w-dependent extended system (Aw, Bw, Cw, D) with Gramians

Pw7 Qw7 Zw -

b) limeso Po =0, lime0Qn =0, lime Xy =0.

c) limesyoo P =P, iMoo Q= Q,  limeyoo X =X,
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@ Frequency-dependent Balanced Truncation (FDBT)

Apply the generic balancing procedure to (A, Bw, Cw, D), i.e., solve
ApPo + PoAR +BBY =0, A7 Q. + QuAL + CHC, =0,
and compute the balancing transformation T, so that

H —H -1 . .
ToPoTl=T"QT, =X, =diag(0w1s---,0w.n), With 05k > 0m k1.
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@ Frequency-dependent Balanced Truncation (FDBT)

Apply the generic balancing procedure to (A, Bw, Cw, D), i.e., solve
AnPo+ PoA + BB =0, ALQu + QuAL + CHC, =0,
and compute the balancing transformation T, so that
ToPs Tg = T;HQW T;l =Y, =diag(0w1,---,0w.n), With o5k > 0w kt1.
Balance the system:

(ToAx TS TwBw, Co TS, Da)

Acin Az Boa
B ’ ’ ’ Cor Can]. D).
([ Ac21 Ax2 } ’ [ Bwo ] ’[ w,1 2 ] )
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@ Frequency-dependent Balanced Truncation (FDBT)

Balance the system:

(ToAs TS, ToBw, Co TS, Do)

Av11 Axi2 B. 1
— ’ ’ ’ Cw Cw , Dw .
([ Aw21 Aw22 } ’ [ B2 ] ) [ 1 2 ] >

Reduced-order model is then obtained by truncation and back transformation:
select r such that o, > 0% 41 and set

A = iwl —e(iwl — Aw11) (e — iw)l + Aw11) ",
B = %((e +iw)l, — A)Bw 1,

¢ = Caulletim)l - A)

D = D,-— eizcml((e +iw)l, — A)Bw 1.
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@ Frequency-dependent Balanced Truncation (FDBT)

Reduced-order model is then obtained by truncation and back transformation:
select r such that 0, > 0% 41 and set

A = iwl — e(iwl — As 1) ((e — @)l + Aw,u)*1 ,
B - %((e—I—iw)I, — A)Boa,
¢ = leoi((etim)l —A),
€
N 1 ) N
D = Dg— E—ZCw,l((e +iw)l, — A)Bx 1.

Theorem (Local Error Bound)

The reduced-order transfer function G(s) = C(sl, — A)~'B + D satisfies:

Tmax (G(iw) . é(iw)) <2 Z Tor k.

k=r+1

Proof: use proof for BT error bound based on FD-KYP instead of KYP.
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3. Numerical Examples
RLC ladder network
Butterworth filter

(© benner@mpi-magdeburg.mpg.de Localized Balanced Truncation


mailto:benner@mpi-magdeburg.mpg.de

Numerical Examples
RLC ladder network

Simple example of electronic circuit from [SORENSEN ’05]

@ input = voltage u, output = current y,

@ scaled inductances, capacities, and resistance:
Lj=1, G =1forall j; Ry =05, R, =0.2.

en=5 m=p=1.
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Numerical Examples
¥
NS RLC ladder network

Comparison of FDBT and BT (w =0, ¢ =1)

r FDBT BT
bound | true error | bound |true error
4/ 1.2201 x 10~ | 1.2201 x 10~ || 0.0006 | 0.0006
3|[8.7426 x 107° | 8.7182 x 107° || 0.1752 | 0.1740
2
1

5.5028 x 10~* | 3.7568 x 10~* | 0.3914 | 0.0421
0.0584 0.0582 0.6311| 0.1975
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Numerical Examples

RLC ladder network

Comparison of FDBT

r=1

0 100 200 300 400 0 100 200 300 400
€ €
=3 x107 r=4
0.2
—=
015t
1
:
0.1},
I
0.05!
i
]
0
0 100 200 300 400 0 100 200 300 400
€

zed Balanced Truncat
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Numerical Examples
Butterworth filter

Hankel singular values

G

£=1000) ||

[0 i(

0 20 40 60 80 100
i(order)
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Numerical Examples
Butterworth filter

butter (50, [90 11

Transfer functions

The sigma plot of the continuous-time bandstop filter and the reduced systems

25 T ; T
—— original MM
---8T ~ = = Multipoint MM (90,100,110)
-~ FDBT £=100 . == Multipoint MM (80,100,120)
oL | —— FDBT e=1000 : H i

1:
051
\l ;
- /
ok 4
. . . . . . .
60 70 80 % 100 110 120 130 140
o
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4. Conclusions and Future Work
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“ @ Conclusions and Future Work

Summary:

Relations of KYP lemma to balanced truncation.

Frequency-dependent KYP lemma suggests new frequency-dependent
balanced truncation (FDBT) method.

FDBT offers alternative to interpolation-based method if good local
approximation quality is desired.

Continuous- and discrete-time FDBT derived.

FDBT is stability preserving and has local error bound, which is often much
better than global BT bound.

Not shown: computational feasible method also for frequency bands.
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“ @ Conclusions and Future Work

Summary:

Relations of KYP lemma to balanced truncation.

Frequency-dependent KYP lemma suggests new frequency-dependent
balanced truncation (FDBT) method.

FDBT offers alternative to interpolation-based method if good local
approximation quality is desired.

Continuous- and discrete-time FDBT derived.

FDBT is stability preserving and has local error bound, which is often much
better than global BT bound.

Not shown: computational feasible method also for frequency bands.

Future work:

MORLAB implementation.

Details for non-minimal systems.
Large-scale implementation and testing.
Extension to descriptor systems.
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https://www.mpi-magdeburg.mpg.de/projects/morlab
DOI: 10.5281/zenodo.1574083

See MORLAB poster by Steffen Werner!
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