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1. Introduction

Application Areas
Motivation

Model Reduction for Dynamical Systems
Basics of Systems and Control Theory
Realization Theory for Linear Systems

Qualitative and Quantitative Study of the Approximation Error
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= Introduction
Model Reduction — Abstract Definition

Given a physical problem with dynamics described by the states x € R",
where n is the dimension of the state space.
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Introduction
Model Reduction — Abstract Definition

Given a physical problem with dynamics described by the states x € R",
where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.
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Introduction
Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states x € R",
where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order
reduction).

(© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

= Application Areas
Y :
m (Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

@ input = output of plant,
@ output = input of plant.

v =Ev+ Fy
Modern (LQG-/H2-/Hoo-) control w=Hv+t Ky
design: N > n.
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= Application Areas
Y :
m (Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

@ input = output of plant,
@ output = input of plant.

v =Ev+ Fy
Modern (LQG-/H2-/Hoo-) control w=Hv+t Ky
design: N > n.

Practical controllers require small N (N ~ 10, say) due to
— real-time constraints,
— increasing fragility for larger N.
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= Application Areas
Y :
m (Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

@ input = output of plant,
@ output = input of plant.

v =Ev+ Fy
Modern (LQG-/H2-/Hoo-) control w=Hv+t Ky
design: N > n.

Practical controllers require small N (N ~ 10, say) due to
— real-time constraints,
— increasing fragility for larger N.

= reduce order of plant (n) and/or controller (N).
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= Application Areas
< H
m@ (Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

@ input = output of plant,
@ output = input of plant.

v =Ev+ Fy
Modern (LQG-/H2-/Hoo-) control w=Hv+t Ky
design: N > n.

Practical controllers require small N (N ~ 10, say) due to
— real-time constraints,
— increasing fragility for larger N.

= reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation
and related methods.
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Application Areas

Micro Electronics/Circuit Simulation

@ Progressive miniaturization: Moore’s Law states that the number of on-chip
transistors doubles each 12 (now: 18) months.
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Application Areas

Micro Electronics/Circuit Simulation

@ Progressive miniaturization: Moore’s Law states that the number of on-chip
transistors doubles each 12 (now: 18) months.

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Balancing-based Methods
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Application Areas

Micro Electronics/Circuit Simulation

@ Progressive miniaturization: Moore’s Law states that the number of on-chip
transistors doubles each 12 (now: 18) months.

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Increase in packing density requires modeling of interconncet to ensure that
thermic/electro-magnetic effects do not disturb signal transmission.
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Application Areas

Micro Electronics/Circuit Simulation

@ Progressive miniaturization: Moore’s Law states that the number of on-chip
transistors doubles each 12 (now: 18) months.

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Increase in packing density requires modeling of interconncet to ensure that
thermic/electro-magnetic effects do not disturb signal transmission.

@ Linear systems in micro electronics occur through modified nodal analysis
(MNA) for RLC networks, e.g., when

decoupling large linear subcircuits,

modeling transmission lines (interconnect, powergrid), parasitic effects,
modeling pin packages in VLSI chips,

modeling circuit elements described by Maxwell's equation using partial
element equivalent circuits (PEEC).
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Application Areas

Micro Electronics/Circuit Simulation

@ Progressive miniaturization: Moore’s Law states that the number of on-chip
transistors doubles each 12 (now: 18) months.

@ Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

@ Increase in packing density requires modeling of interconncet to ensure that
thermic/electro-magnetic effects do not disturb signal transmission.

@ Linear systems in micro electronics occur through modified nodal analysis
(MNA) for RLC networks, e.g., when

decoupling large linear subcircuits,

modeling transmission lines (interconnect, powergrid), parasitic effects,
modeling pin packages in VLSI chips,

modeling circuit elements described by Maxwell's equation using partial
element equivalent circuits (PEEC).

Standard MOR techniques in circuit simulation: Krylov subspace / Padé
approximation / rational interpolation methods.
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Application Areas
Structural Mechanics / Finite Element Modeling

@ Resolving complex 3D geometries = millions of degrees of freedom.

@ Analysis of elastic deformations requires many simulation runs for
varying external forces.
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Application Areas

Structural Mechanics / Finite Element Modeling

@NSYS
smsearierded ns aly

@ Resolving complex 3D geometries = millions of degrees of freedom.

@ Analysis of elastic deformations requires many simulation runs for
varying external forces.

Standard MOR techniques in structural mechanics: modal truncation,
combined with Guyan reduction (static condensation) ~» Craig-Bampton
method — not discussed in this tutoriall
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@ An Inspiration: Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (/).
e Memory: 4 n, - n, bytes.
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@ An Inspiration: Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (/).
e Memory: 4 n, - n, bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™* w.r.t. spectral norm:

X=Y" s’
_ijlajuj-vj,

where X = UX VT is the singular value decomposition (SVD) of X.
The approximation error is HX — )/(\H2 = @yl

(© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

@ An Inspiration: Image Compression by Truncated SVD

o A digital image with n, x n, pixels can be represented as matrix
X € R™*" where x; contains color information of pixel (/).
e Memory: 4 n, - n, bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X € R™* w.r.t. spectral norm:

X=Y" s’
_ijlajuj-vj,

where X = UX VT is the singular value decomposition (SVD) of X.
The approximation error is HX — )/(\H2 = @yl

Idea for dimension reduction

Instead of X save uy,...,uy, O1V1,...,0.V,.
~» memory = 4r x (ny + n,) bytes.
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Example: Clown

Original image

320 x 200 pixel
~ ~ 256 kb
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Example: Clown @ rank r =50, ~ 104 kb

Original image

320 x 200 pixel
~ ~ 256 kb
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”@ Example: Image Compression by Truncated SVD

Rank-50 appraxination

Original image

@ rank r = 20, ~ 42 kb

Rank-20 approximation

320 x 200 pixel
~ ~ 256 kb
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%ﬁ@ Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,
George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

Original inage

640 x 480 pixel, ~ 1229 kb
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@1@ Dimension Reduction via SVD

Example: Gatlinburg @ rank r = 100, ~ 448 kb

Organizing committee
Gatlinburg/Householder Meeting 1964:

James H. Wilkinson, Wallace Givens,
George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

Original inage

@ rank r = 50, =~ 224 kb

Rank-50 appresimation

640 x 480 pixel, ~ 1229 kb
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‘\4}!@ Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay

(exponentially).

Singular Values of the Image Data Matrices
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@sﬂ Model Reduction for Dynamical Systems
2

Dynamical Systems

[ x(t) = f(t,x(t),u(t)), x(to)=xo,
= { g(t.x(t), u(2)

y(t)
with
o states x(t) € R”,
@ inputs u(t) € R™,
@ outputs y(t) € RP.

U

(© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

@ Model Reduction for Dynamical Systems

Original System

fX(t) = £(t,x(t), u(t)),
s {y(t) = g(t, x(¢), u(t)).

@ states x(t) € R”,
@ inputs u(t) € R™,
@ outputs y(t) € RP.

—
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A@ Model Reduction for Dynamical Systems

[ x(t) = £t x(t), u(t)), X(t) = F(t,%(¢), u(t)),
> {y(t) = g(t, x(t), u(t)). > { y(t) = B(t, %(¢), u(t)).
@ states X(t) e R", r< n
@ inputs u(t) € R™,
@ outputs y(t) € RP.

@ states x(t) € R”,
@ inputs u(t) € R™,
@ outputs y(t) € RP.

- -

Balancing-based Methods
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@s‘@ Model Reduction for Dynamical Systems

N
Original System Reduced-Order System

J x(t) = f(t,x(t), u(t)), S )’\((t) = '?(tﬁ?(t)?u(t))v
= {y(t) = g(t,x(t), u(1)). a {?(t) 8(t, %(t), u(t)).
@ states X(t) e R", r< n
@ inputs u(t) € R™,

@ outputs y(t) € RP.

@ states x(t) € R”,
@ inputs u(t) € R™,
@ outputs y(t) € RP.

lly — 9|l < tolerance - ||u|| for all admissible input signals.

Balancing-based Methods
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”@ Model Reduction for Dynamical Systems

Original System Reduced-Order System

f x(t) = f(t,x(t), u(t)), o [ X(t) = F(t, %(t), u(t)),
Z' {y(t) = g(t, x(t), u(t)). = {Y(t) = g(t, %(t), u(t))

o states x(t) € R”, o states X(t) e R", r< n

@ inputs u(t) € R™, @ inputs u(t) € R™,

@ outputs y(t) € RP. @ outputs y(t) € RP.

lly — 7|l < tolerance - ||ul| for all admissible input signals.
Secondary goal: reconstruct approximation of x from X.
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@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+ Bu, AeR™"  Be RM™™M
y = g(t,x,u) = Cx+ Du, C e RP*" D e RP*™M,
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@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+ Bu, AeR™"  Be RM™™M
y = g(t,x,u) = Cx+ Du, C e RP*" D e RPX™M,
Assumptions (for now): tg =0, xp = x(0) =0, D = 0.
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A@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+ Bu, AeR™"  Be RM™™M
y = g(t,x,u) = Cx+ Du, C e RP*" D e RPX™M,

State-Space Description for 1/0-Relation

Variation-of-constants =—

t
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.
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”@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+ Bu, AeR™"  Be RM™™M
y = g(t,x,u) = Cx+ Du, C e RP*" D e RPX™M,

State-Space Description for 1/0-Relation

Variation-of-constants =—

t
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.

@ §:U — Y is a linear operator between (function) spaces.
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”@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+ Bu, AeR™"  Be RM™™M
y = g(t,x,u) = Cx+ Du, C e RP*" D e RPX™M,

State-Space Description for 1/0-Relation

Variation-of-constants =—

t
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.

@ §:U — Y is a linear operator between (function) spaces.
@ Recall: matrix in R"*™ is a linear operator, mapping R — R"!
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QA&@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+ Bu, AeR™"  Be RM™™M
y = g(t,x,u) = Cx+ Du, C e RP*" D e RPX™M,

State-Space Description for 1/0-Relation

Variation-of-constants =—

t
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.

@ §:U — Y is a linear operator between (function) spaces.
@ Recall: matrix in R"*™ is a linear operator, mapping R — R"!
@ Basic Idea: use SVD approximation as for matrix Al
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QA&@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = f(t,x,u) = Ax+ Bu, AeR™"  Be RM™™M
y = g(t,x,u) = Cx+ Du, C e RP*" D e RPX™M,

State-Space Description for 1/0-Relation

Variation-of-constants =—

t
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.

@ §:U — Y is a linear operator between (function) spaces.

@ Recall: matrix in R"*™ is a linear operator, mapping R — R"!

@ Basic Idea: use SVD approximation as for matrix Al

o Problem: in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!
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@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = Ax+ Bu, AeR™" B e R™M
y = Cx, C € RPXM,

Alternative to State-Space Operator: Hankel operator
Instead of .
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.
—00
use Hankel operator

0
Hiu_ =y, yi(t)= / Ce”t=T)Bu(r) dr for all t > 0.
—00
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@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = Ax+ Bu, AeR™" B e R™M
y = Cx, C € RPXM,

Alternative to State-Space Operator: Hankel operator

Instead of .
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.

use Hankel operator
0
Hiu_ =y, yi(t)= / Ce”t=T)Bu(r) dr for all t > 0.
—o0

H compact, finite-dimensional = # has discrete SVD
~~ Hankel singular values {0;}°;: 01> ...>0p>0p1=0=...=0.
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@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = Ax+ Bu, AeR™" B e R™M
y = Cx, C € RPx™,

Alternative to State-Space Operator: Hankel operator

Instead of .
S:u—y, y(t) :/ CeAtTBu(r) dr  for all t € R.

use Hankel operator
0
Hiu_ =y, yi(t)= / Ce”t=T)Bu(r) dr for all t > 0.
—0oQ0
H compact, finite-dimensional = # has discrete SVD

~» Hankel singular values {Uj}f'il co01>...>20p>20p41=0=...=0.
— SVD-type approximation of # possible!
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Linear, Time-Invariant (LTI) Systems

x = Ax+ Bu, AeR™" B e R™M
y = Cx, C € RPXM,

Alternative to State-Space Operator: Hankel operator

Hankel Singular Values for Atmospheric Storm Model
; —e—HSVs
: — machine precision
lJ/ ")n\_
H has discrete SVD
b

4

Hankel singular values

‘H compact

0 100 200 300 400 500 600
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QA&@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = Ax+ Bu, AeR™" B e R™M
y = Cx, C € RPXM,

Alternative to State-Space Operator: Hankel operator

0
Hiu_ =y, yi(t)= / Ce”At=T)Bu(r)dr for all t > 0.

‘H compact = H has discrete SVD

= Best approximation problem w.r.t. 2-induced operator norm well-posed
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@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = Ax+ Bu, AeR™" B e R™M
y = Cx, C € RPXM,

Alternative to State-Space Operator: Hankel operator

0
Hiu_ =y, yi(t)= / Ce”At=T)Bu(r)dr for all t > 0.

‘H compact = H has discrete SVD

= Best approximation problem w.r.t. 2-induced operator norm well-posed
= solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).
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@ Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

x = Ax+ Bu, AeR™" B e R™M
y = Cx, C € RPXM,

Alternative to State-Space Operator: Hankel operator

0
Hiu_ =y, yi(t)= / Ce”At=T)Bu(r)dr for all t > 0.

‘H compact = H has discrete SVD

= Best approximation problem w.r.t. 2-induced operator norm well-posed
= solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally challenging for large-scale systems.

Recent progress in [B./WERNER 2020].
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@ Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

5. x = Ax+ Bu, AeR™"  BeR™mM
"l v = Cx+ Du, C e RPX" D e RP*™,

Assumptions: tp =0, xg = x(0) = 0.

Laplace Transform / Frequency Domain

Application of Laplace transform
o
L:x(t) — x(s) = / e *'x(t)dt (= x(t)+ sx(s))
0

with s € C leads to linear system of equations:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s).
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A@ Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

s. [ % = Ax+Bu,  AeR™" BeR™™
‘\'y = Cx+Du, CERPX" DgcRP*M

Assumptions: tp =0, xg = x(0) = 0.

Laplace Transform / Frequency Domain

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s)
yields 1/O-relation in frequency domain:
y(s) = ( C(sly— A)*B+ D ) u(s) = G(s)u(s).
=:G(s)
G is the transfer function of X, G : L' — L5 (L2 := L(L2(—00,0))).
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QA&@ Model Reduction as Approximation Problem

Approximation Problem

Approximate the dynamical system

x = Ax+ Bu, AeR™"  BeRM™M
y = Cx+ Du, C e RPX" D e RP*™,

by reduced-order system

% = A%+Bu, AeR™r, BeR™m
g = C&+Du,  CeRPXr, DecRPm

of order r < n, such that

ly =yl = ch . GUH < HG - GH lul| < tolerance - [[u .
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QA&@ Model Reduction as Approximation Problem

Approximation Problem

Approximate the dynamical system

x = Ax+ Bu, AeR™"  BeRM™M
y = Cx+ Du, C e RPX" D e RP*™,

by reduced-order system

% = A%+Bu, AeR™r, BeR™m
g = C&+Du,  CeRPXr, DecRPm

of order r < n, such that

ly =yl = ch . GUH < HG - GH lul| < tolerance - [[u .

G — G|

= Approximation problem: minorder(é)gr
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Basics of Systems and Control Theory
Properties of linear systems

A linear system

x(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C~ := {z € C|R(z) < 0}.
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Basics of Systems and Control Theory
Properties of linear systems

Definition

A linear system
x(t) = Ax(t) + Bu(t), y(t) = Cx(t)+ Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C~ := {z € C|R(z) < 0}.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the spectrum of A, denoted by A (A), satisfies A(A) C C~.

Note that by abuse of notation, often stable system is used for asymptotically
stable systems.
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Basics of Systems and Control Theory

X
N : . .
W Properties of linear systems

Questions:
@ For fixed xp € R” and some x! € R”, is there a feasible control function
U € Usg (e.g., Usg € {CH[0, T], L2(0, T), PC[O, T]}, possibly with constraints
u(t) < u(t) <T(t)) and time t; > to = 0 such that x(t;; u) = x'?
What is the set of targets x! reachable from x°?
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Basics of Systems and Control Theory

X
N : . .
W Properties of linear systems

Questions:

@ For fixed xp € R” and some x! € R”, is there a feasible control function
U € Usg (e.g., Usg € {CH[0, T], L2(0, T), PC[O, T]}, possibly with constraints
u(t) < u(t) <T(t)) and time t; > to = 0 such that x(t;; u) = x'?
What is the set of targets x! reachable from x°?

o For fixed x; € R" and some x° € R”, is there a feasible control function
U € Usg and time t; > ty = 0 such that x(t3; u) = x'?
What is the set of initial conditions x° controllable to x1?

Balancing-based Methods
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Basics of Systems and Control Theory

B . .
W Properties of linear systems

Questions:

@ For fixed xp € R” and some x! € R”, is there a feasible control function
U € Usg (e.g., Usg € {CH[0, T], L2(0, T), PC[O, T]}, possibly with constraints
u(t) < u(t) <T(t)) and time t; > to = 0 such that x(t;; u) = x'?
What is the set of targets x! reachable from x°?

o For fixed x; € R" and some x° € R”, is there a feasible control function
U € Usg and time t; > ty = 0 such that x(t3; u) = x'?
What is the set of initial conditions x° controllable to x1?

Note: for LTI systems x = Ax + Bu, both concepts are equivalent!

Balancing-based Methods

(© Peter Benner, benner@mpi-magdeburg.mpg.de


mailto:benner@mpi-magdeburg.mpg.de

Basics of Systems and Control Theory
Properties of linear systems

Definition (Controllability)

Consider the target (the state to be reached) x! € R".

a) An LTI system with initial value x(0) = x° is controllable to x* in time t; > 0

if there exists u € U,y such that x(t;; u) = x*.

(Equivalently, (t1,x!) is reachable from (0, x°).)
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Basics of Systems and Control Theory
Properties of linear systems

Definition (Controllability)

Consider the target (the state to be reached) x! € R".

a) An LTI system with initial value x(0) = x° is controllable to x* in time t; > 0

if there exists u € U,y such that x(t;; u) = x*.

(Equivalently, (t1,x!) is reachable from (0, x°).)

b) x° is controllable to x! if there exists a t; > 0 such that (t;, x!) can be
reached from (0, x%).
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Basics of Systems and Control Theory
Properties of linear systems

Definition (Controllability)

Consider the target (the state to be reached) x! € R".

a) An LTI system with initial value x(0) = x° is controllable to x* in time t; > 0
if there exists u € U,y such that x(t;; u) = x*.

(Equivalently, (t1,x!) is reachable from (0, x°).)

b) x° is controllable to x! if there exists a t; > 0 such that (t;, x!) can be
reached from (0, x%).

c) If the system is controllable to x! for all x° € R”, it is (completely)
controllable.
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Basics of Systems and Control Theory
Properties of linear systems

Definition (Controllability)

Consider the target (the state to be reached) x! € R".

a) An LTI system with initial value x(0) = x° is controllable to x* in time t; > 0
if there exists u € U,y such that x(t;; u) = x*.

(Equivalently, (t1,x!) is reachable from (0, x°).)

b) x° is controllable to x! if there exists a t; > 0 such that (t;, x!) can be
reached from (0, x%).

c) If the system is controllable to x! for all x° € R”, it is (completely)
controllable.

The controllability set w.r.t. x! is defined as C := |J C(t1) where
t1 >0

C(t1) = {x° € R" | Bu € Uy : x(t1; u) = x*}.
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Basics of Systems and Control Theory
Properties of linear systems

Definition (Controllability)

Consider the target (the state to be reached) x! € R".

a) An LTI system with initial value x(0) = x° is controllable to x* in time t; > 0
if there exists u € U,y such that x(t;; u) = x*.

(Equivalently, (t1,x!) is reachable from (0, x°).)

b) x° is controllable to x! if there exists a t; > 0 such that (t;, x!) can be
reached from (0, x%).

c) If the system is controllable to x! for all x° € R”, it is (completely)
controllable.

The controllability set w.r.t. x! is defined as C := |J C(t1) where
t1 >0

C(t1) = {x° € R" | Bu € Uy : x(t1; u) = x*}.

In short: an LTI system is controllable «— C =R".
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Basics of Systems and Control Theory

Properties of linear systems

Now: characterize controllability.
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Basics of Systems and Control Theory

Properties of linear systems

Now: characterize controllability.
Variation of constants —-

t t
X(t) = 0t [ AIBu(e)ds = 0+ [ e N Bu(s)ds)
0 0
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Basics of Systems and Control Theory

Properties of linear systems

Now: characterize controllability.
Variation of constants —-

t t
X(t) = 0t [ AIBu(e)ds = 0+ [ e N Bu(s)ds)
0 0

Hence, if x0 is controllable to x!:
ty
x! = x(t) = e*1x° +/ A= By(t)dt
0

This is equivalent to

t1
e Ayl — x0 = / e At Bu(t)dt.
0
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Basics of Systems and Control Theory

Properties of linear systems

Now: characterize controllability.
Variation of constants —-

t t
x(t) = e*'x? —l—/ (=) Bu(s)ds = e*(x° +/ e "*Bu(s)ds).
0 0
Hence, if x0 is controllable to x!:

xt = x(t) = X + /tl A= By(t)dt
This is equivalent to ’
e Ayl — x0 = /tl e At Bu(t)dt.
0
Ansatz: u(t) = BTe A'tc =

t1
.
e Atixl — x0 = / e BB e " tdtc =: P(0,t;)c.
0
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Basics of Systems and Control Theory

Properties of linear systems

Now: characterize controllability.
Variation of constants —-

x(t) = X% + /t et~ By(s)ds = e™(x° + /t e "*Bu(s)ds).
Hence, if x° is controllablz to x1: ’
xt = x(t) = X + /tl A= By(t)dt
This is equivalent to ’
e Ayl — x0 = /Ot1 e At Bu(t)dt.
Ansatz: u(t) = BTe A'tc =
e Atixl — x0 = /0t1 e BB e A tdtc = P(0,t1)c.

Hence, an LTI system is controllable iff this linear system is solvable for ¢ € R”,
i.e., iff P(0,t1) is invertible. (Note: P(0,t;) = P(0, tl)T > 0 by definition!)
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Basics of Systems and Control Theory

Properties of linear systems

Now: characterize controllability.

Theorem
For an LTI system defined by (A, B) € R"™" x R"™*™ T F.A.E.:

a) The LTI system x = Ax + Bu is controllable.

b) The finite time Gramian P(0, t;) is spd ¥ t; > 0.
c) The controllability matrix
K(A,B) := [B,AB,A%B,...,A""1B] ¢ R™"M
has full rank n. (Note: range(K(A, B)) = C(t1) ¥V t; > 0/)
d) If z is a left eigenvector of A, then z*B # 0.
e) (Hautus test) rank([A\/ — A,B]) =n ¥\ € C.
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Basics of Systems and Control Theory

Properties of linear systems

The Gramian characterization of controllability for stable systems can be based on
positive definiteness of the (infinite) controllability Gramian

P .= / A BBT A s ds,
0

t
using congruence of P(0, 1) to [ e*BBTe” *ds and taking the limit & — oo.
0

enner@mpi-magdeburg.mpg.de Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

Basics of Systems and Control Theory

Properties of linear systems

The Gramian characterization of controllability for stable systems can be based on
positive definiteness of the (infinite) controllability Gramian

P .= / A BBT A s ds,
0

t
using congruence of P(0, 1) to [ e*BBTe” *ds and taking the limit & — oo.
0

For a stable LTI system defined by (A, B) € R"™*" x R"™™ T F.AE.:
a) The LTI system x = Ax + Bu is controllable.

b) The controllability Gramian P is positive definite.
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Basics of Systems and Control Theory

Properties of linear systems

New question: suppose we have

y(t) =y(t)
corresponding to two trajectories x, X obtained by the same input function u(t).
Can we conclude that x(0) = X(0), or even stronger, that x(t) = X(t) for
t <0,t > 0 (past/future)?
(Note that x(ty) = X(to) is sufficient as trajectory uniquely determined. In other
words, is the mapping x° — y(t) injective?)
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Basics of Systems and Control Theory

<3 S
w Properties of linear systems

New question: suppose we have

y(t) = y(t)
corresponding to two trajectories x, X obtained by the same input function u(t).

Can we conclude that x(0) = X(0), or even stronger, that x(t) = X(t) for
t <0,t > 0 (past/future)?

(Note that x(ty) = X(to) is sufficient as trajectory uniquely determined. In other
words, is the mapping x° — y(t) injective?)

Definition (Observability)

An LTI system is reconstructable (observable) if for solution trajectories x(t), X(t)
obtained with the same input function u, we have

y(t)= y(t) Vt<0 (Vt=>0)
= x(t)= X(t) vt<0 (Vt>D0).
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Basics of Systems and Control Theory

Properties of linear systems

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
x(t) = —ATx(t) — CTu(t) is controllable.

Balancing-based Methods
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Basics of Systems and Control Theory

<3 S
W Properties of linear systems

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
x(t) = —ATx(t) — CTu(t) is controllable.

Theorem
For an LTI system defined by (A, C) € R"™*" x RP*", T.F.A.E.:

a) The LTI system is reconstructable.
b) The LTI system is observable.
c) The observability matrix
O(A,C) = [CT,ATCT,(A)TC,...,(A"1)TCT]" € R"™*" has rank n.
d) If Ax = Ax, then CTx # 0.

e) (Hautus test) rank [ /\IE A ] =n.
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Basics of Systems and Control Theory

<3 S
w Properties of linear systems

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
x(t) = —ATx(t) — CTu(t) is controllable.

A stable LTI system is observable if and only if the observability Gramian

)
Q= /eATtCTCeAtdt
0
is symmetric positive definite.
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Basics of Systems and Control Theory

Properties of linear systems

@ Controllability/observability are sometimes too strong.
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Basics of Systems and Control Theory

Properties of linear systems

@ Controllability/observability are sometimes too strong.
o Weaker requirement: is there u € U,q to steer xp to vicinity of x1?
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Basics of Systems and Control Theory

Properties of linear systems

@ Controllability/observability are sometimes too strong.
o Weaker requirement: is there u € U,q to steer xp to vicinity of x1?
o For LTI systems, it suffices to consider x! = 0!
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Basics of Systems and Control Theory

Properties of linear systems

@ Controllability/observability are sometimes too strong.

o Weaker requirement: is there u € U,q to steer xp to vicinity of x1?
o For LTI systems, it suffices to consider x! = 0!

@ Hence, is there u € Uaq so that lim; o x(t;u) =0 (V x° € R")?
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Basics of Systems and Control Theory

Properties of linear systems

@ Controllability/observability are sometimes too strong.

o Weaker requirement: is there u € U,q to steer xp to vicinity of x1?
o For LTI systems, it suffices to consider x! = 0!

@ Hence, is there u € Uaq so that lim; o x(t;u) =0 (V x° € R")?
@ If the answer is yes, then the LTI system is called stabilizable
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Basics of Systems and Control Theory

Properties of linear systems

@ Controllability /observability are sometimes too strong.

o Weaker requirement: is there u € U,q to steer xp to vicinity of x1?
o For LTI systems, it suffices to consider x! = 0!

@ Hence, is there u € Uaq so that lim; o x(t;u) =0 (V x° € R")?
@ If the answer is yes, then the LTI system is called stabilizable

Theorem
For an LTI system defined by (A, B) € R"™*" x R"™*™ T.F.A.E.:

a) The LTI system is stabilizable.

b) 3 feedback operator/matrix F € R™*" with N\(A+ BF) Cc C~.

) If p*A = \p* and Re(\) > 0, then p*B # 0.

d) rank([A— M, B]) =n VX e C with Re()\) > 0.

e) A(A3) € C~ in the (controllability) Kalman decomposition of (A, B),

Ta, | Al A Tn_ | B1
VAV—[O As ,V'B= N
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Basics of Systems and Control Theory

Properties of linear systems

3 dual concept of stabilizability, analogous to duality of controllability and
observability.

Definition (Detectability)

An LTI system is detectable if for any solution x(t) of x = Ax with Cx(t) =0 we
have tim x(t) = 0.
o0

(We can not observe all of x, but the unobservable part is stable.)
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Basics of Systems and Control Theory

Properties of linear systems

3 dual concept of stabilizability, analogous to duality of controllability and
observability.

For an LTI system defined by (A, C) € R"™*" x RP*" T.F.A.E.:
a) The LTI system is detectable.

b) (AT, CT) is stabilizable.

c) Ax = Ax,Re(\) > 0= C'x #0.

o) s { MoA } — n for all \,Re(\) > 0.
e) In the observability Kalman decomposition of (AT, CT),
Al 0
Taw— | A1 _
WTAW = [ e ] ,CW =[G, 0],

we have A (A3) C C~.
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Basic principles

For a linear (time-invariant) system
x(t)

>
{ y(t)

the quadruple (A, B, C, D) € R"*" x R x RPX" x RP*™M is called a realization
of X.

@ Realization Theory for Linear Systems

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s)= C(sl —A)~'B+ D,
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Basic principles

@ Realization Theory for Linear Systems

For a linear (time-invariant) system

5. x(t) = Ax(t)+ Bu(t), with transfer function
: { y(t) = Cx(t)+ Du(t), G(s)= C(sl —A)~'B+D,

the quadruple (A, B, C, D) € R"*" x R x RPX" x RP*™M is called a realization
of X.

Realizations are not unique!

Transfer function is invariant under state-space transformations,

T - X — Tx,
"\ (A,B,C,D) — (TAT},TB,CT1, D),
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Realization Theory for Linear Systems

Basic principles

| Definition

For a linear (time-invariant) system
x(t)

>
{yU)

the quadruple (A, B, C, D) € R"™ " x R"*™ x RP*" x RP*™M is called a realization
of 2.

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s)= C(sl — A)"'B+ D,

Realizations are not unique!
Transfer function is invariant under addition of uncontrollable/unobservable states:

%[XXI] = [/: :J[;]ﬂg}u(t), wey=[ c o][;]wu(t),

%[)):2} [A o“x]Jr[g]u(t), y(t)=1[C C2]|:;:}+Du(t),

0 A X0 2
for arbitrary A; € R%*%, j=1,2, B; € R"*™ G, € R9*™ and any ny, m, € N.
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Realization Theory for Linear Systems
Basic principles

For a linear (time-invariant) system

Ax(t) + Bu(t), with transfer function

x(t
= { & Cx(t) + Du(t), G(s)=C(sl —A)"'B+D,

y(t)

the quadruple (A, B, C, D) € R"*" x R x RPX" x RP*™M is called a realization
of 2.

Realizations are not unique!

Hence,

(A, B,C,D), (l;\ :\)1],[ Bl],[c 0],D>,

A 0
(TAT 1, TB,CT1, D), (l 1 : {

are all realizations of X!
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@ Realization Theory for Linear Systems

Basic principles

For a linear (time-invariant) system

5 x(t) = Ax(t)+ Bu(t), with transfer function
: { y(t) = Cx(t)+ Du(t), G(s)= C(sl —A)~'B+D,

the quadruple (A, B, C, D) € R"*" x R x RPX" x RP*™M is called a realization
of X.

Definition

The McMillan degree of ¥ is the unique minimal number /i > 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (A, B, C, D) of ¥ with order A.
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Realization Theory for Linear Systems
Basic principles

For a linear (time-invariant) system

Ax(t) + Bu(t), with transfer function
Cx(t) + Du(t), G(s)= C(sl — A)~"*B+ D,

= {0

the quadruple (A, B, C, D) € R"*" x R x RPX" x RP*™M is called a realization
of 2.

Definition

The McMillan degree of ¥ is the unique minimal number A > 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (A, B, C, D) of ¥ with order 7.

A realization (A, B, C, D) of a linear system is minimal <=
(A, B) is controllable and (A, C) is observable.
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A, Realization Theory for Linear Systems

Balanced Realizations

\I,

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).
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A, Realization Theory for Linear Systems

Balanced Realizations

\I,

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).

When does a balanced realization exist?
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Realization Theory for Linear Systems
Balanced Realizations

A realization (A, B, C, D) of a linear system X is balanced if its infinite
controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. A(A) C C~. Then:

Theorem

Given a stable minimal linear system X : (A, B, C, D), a balanced
realization is obtained by the state-space transformation with

T, =X :VTR,

where P = STS, @ = RTR (e.g., Cholesky decompositions) and
SRT = UL VT is the SVD of SRT.
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Realization Theory for Linear Systems
Balanced Realizations

S
A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).
01,...,0, are the Hankel singular values of ¥.

Note: 01,...,0, > 0 as P, @ > 0 by definition, and o1,...,0, > 0 in case of
minimality!
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Realization Theory for Linear Systems
B
m Balanced Realizations

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).

01,...,0, are the Hankel singular values of ¥.
Note: 01,...,0, > 0 as P, @ > 0 by definition, and o1,...,0, > 0 in case of
minimality!

Theorem

The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations
AP+ PAT +BBT =0, ATQ+QA+CTC=0.
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Realization Theory for Linear Systems
B
m Balanced Realizations

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).

01,...,0, are the Hankel singular values of ¥.
Note: 01,...,0, > 0 as P, @ > 0 by definition, and o1,...,0, > 0 in case of
minimality!

Theorem

The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations
AP+ PAT +BBT =0, ATQ+QA+CTC=0.

Proof. Exercise!
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Realization Theory for Linear Systems
Balanced Realizations

A realization (A, B, C, D) of a stable linear system X is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).

01,...,0, are the Hankel singular values of ¥.
Note: 01,...,0, > 0 as P, @ > 0 by definition, and o1,...,0, > 0 in case of
minimality!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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A, Realization Theory for Linear Systems

Balanced Realizations

\I,

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are /\(PQ)%. Now let
(A,B,C,D) = (TAT ', TB,CT ', D)
be any transformed realization with associated controllability Lyapunov equation
0=AP+PAT + BBT = TAT 'P+PT TATTT + TBB'T'.
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= Realization Theory for Linear Systems

<3 o
v Balanced Realizations

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are /\(PQ)%. Now let
(A, B,C,D) = (TAT ', TB,CT ', D)
be any transformed realization with associated controllability Lyapunov equation
0=AP+PAT + BBT = TAT 'P+PT TATTT + TBB'T'.
This is equivalent to
0=AT 'PT ")+ (T'PT A" + BB".
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A, Realization Theory for Linear Systems

Balanced Realizations

\I,

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are /\(PQ)%. Now let
(A, B,C,D) = (TAT ', TB,CT ', D)
be any transformed realization with associated controllability Lyapunov equation
0=AP+PAT + BBT = TAT 'P+PT TATTT + TBB'T'.
This is equivalent to
0=AT 'PT ")+ (T'PT A" + BB".
The uniqueness of the solution of the Lyapunov equation implies that P=TPTT and,
analogously, @ = T~ TQT™!. Therefore,
PQ=TPQT,
showing that A (PQ) = A(PQ) = {0%,...,02}.
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Realization Theory for Linear Systems
<J
m Balanced Realizations

A realization (A, B, C, D) of a stable linear system ¥ is balanced if its
infinite controllability /observability Gramians P/Q satisfy

P =Q =diag{o1,...,0n} (w.lo.g. oj>0j41,j=1,...,n—1).

01,...,0, are the Hankel singular values of ¥.
Note: 01,...,0, > 0 as P, @ > 0 by definition, and o1,...,0, > 0 in case of
minimality!

For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading /i x A submatrices equal to diag(oy,...,04), and

PQ = diag(c2,...,02,0,...,0).

see [LAUB/HEATH/PAIGE/WARD 1987, TOMBS/POSTLETHWAITE 1987].
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@ Qualitative and Quantitative Study of the Approximation Error

; System Norms
Consider the transfer function
G(s)=C(sl—A'B+D

and input functions u € L5 2 LJ(—00, c0), with the 2-norm
1 />,
ol = 5 [ u)u(e) o
—o0

s

Assume A is (asympotically) stable: A(A) C C~ :={ze C : rez < 0}.
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@ Qualitative and Quantitative Study of the Approximation Error

; System Norms
Consider the transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 2 LJ(—00, c0), with the 2-norm
lolfi= 5 [ u(radute) e
Assume A is (asympotically) stable: A(A) C C~ :={ze C : rez < 0}.
Then for all s € CT U R, ||G(s)|]| < M < o0 =

/ T )y () dw / T (w) 6" (1) 6 (w)u(jw) duw
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@ Qualitative and Quantitative Study of the Approximation Error

; System Norms
Consider the transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 2 LJ(—00, c0), with the 2-norm
lolfi= 5 [ u(radute) e
Assume A is (asympotically) stable: A(A) C C~ :={ze C : rez < 0}.
Then for all s € CT U R, ||G(s)|]| < M < o0 =

/_ T ey w) de = / T (0) 6 (1) 6 () () dow

[ 6 () u()|P dw < / T MR u(w) P dw

(Here:, || .|| denotes the Euclidian vector or spectral matrix norm.)
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@ Qualitative and Quantitative Study of the Approximation Error

; System Norms
Consider the transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 2 LJ(—00, c0), with the 2-norm
lolfi= 5 [ u(radute) e
Assume A is (asympotically) stable: A(A) C C~ :={ze C : rez < 0}.
Then for all s € CT U R, ||G(s)|]| < M < o0 =

/_ T ey w) de = / T (0) 6 (1) 6 () () dow

[ 16 (w)u(w)|? dw < / T MR [u(w) P dw

M2/ u(gw) u(jw) dw < oo.

(Here:, || . || denotes the Euclidian vector or spectral matrix norm.)
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@ Qualitative and Quantitative Study of the Approximation Error

; System Norms
Consider the transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 2 LJ(—00, c0), with the 2-norm
lolfi= 5 [ u(radute) e
Assume A is (asympotically) stable: A(A) C C~ :={ze C : rez < 0}.
Then for all s € CT U R, ||G(s)|]| < M < o0 =

/_ T ey w) de = / T (0) 6 (1) 6 () () dow

[ 16 (w)u(w)|? dw < / T MR [u(w) P dw

M2/ u(gw) u(jw) dw < oo.

= y € L5(—o00,00) = L5.
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Qualitative and Quantitative Study of the Approximation Error
: System Norms

Consider the transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 2 LJ(—00, c0), with the 2-norm
1 />,
ol = 5 [ u)u(e) o
— 00

s

Assume A is (asympotically) stable: A(A) C C~ :={ze C : rez < 0}.
Consequently, the 2-induced operator norm
[1Gull,

Jull,20 [lull

1G]l :=

is well defined. It can be shown that

[Gllo := sup [|G(yw)]l = sup omax (G(w)) -
weR weR
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Q“, Qualitative and Quantitative Study of the Approximation Error
: System Norms

Consider the transfer function
G(s)=C(sl—A'B+D
and input functions u € L5 2 LJ(—00, c0), with the 2-norm

1 [~
ol = 5 [ u)u(e) o

v
Assume A is (asympotically) stable: A(A) C C~ :={ze C : rez < 0}.

Hardy space H

Function space of analytic and bounded (in C*) matrix-/scalar-valued functions.
The Hoo-norm is

[Flloo := SUP Tmax (F(S)) = sup omax (F(w)) -
res>0 weR

Stable transfer functions are in the Hardy spaces

@ Ho in the SISO case (single-input, single-output, m = p = 1);
@ HEX™ in the MIMO case (multi-input, multi-output, m > 1, p > 1).
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Qualitative and Quantitative Study of the Approximation Error
: System Norms

Consider the transfer function
G(s)= C(sl —A)'B+D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

LQ(—OO, OO) = £2, L2(0, OO) = Hz

Consequently, 2-norms in time and frequency domains coincide!
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4

,@ Qualitative and Quantitative Study of the Approximation Error

System Norms

Consider the transfer function
G(s)=C(sl —A) 'B+D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

LQ(—OO, OO) = £2, L2(0, OO) = Hz

Consequently, 2-norms in time and frequency domains coincide!
H.o approximation error

Reduced-order model = transfer function G(s) = C(sl, — A)~'B + D.
Iy =91, = ||6u— 64, < |6 - 6

l[ull, -
o0

— compute reduced-order model such that ||G — G < tol!
oo
Note: error bound holds in time- and frequency domain due to Paley-Wiener!
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Qualitative and Quantitative Study of the Approximation Error
g

System Norms

Consider transfer function  G(s) = C(s/ —A)"'B, ie D=0.

Hardy space #>»

Function space of matrix-/scalar-valued functions that are analytic in C* and
bounded w.r.t. the Hs-norm

1
oo 3
17, = (s, [ IF(@+ 2} ao)

~ (/rrwa dw)%-

Stable transfer functions are in the Hardy spaces

@ 75 in the SISO case (single-input, single-output, m = p = 1);
@ H5*™ in the MIMO case (multi-input, multi-output, m > 1, p > 1).
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“,@ Qualitative and Quantitative Study of the Approximation Error

System Norms

Consider transfer function  G(s) = C(s/ —A)"'B, ie D=0.

Hardy space #>»

Function space of matrix-/scalar-valued functions that are analytic in C* and
bounded w.r.t. the Hs-norm

el = ([ IFGaie dw)%

> approximation error for impulse response (u(t) = ugd(t))

Reduced-order model = transfer function G(s) = C(sl, — A)~1B.

Iy =9, = || Guod = Guod, < |6 = & luoll-

— compute reduced-order model such that HG - @H < tol!
2
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@ Qualitative and Quantitative Study of the Approximation Error

Approximation Problems

Hoo-norm best approximation problem for given reduced order r
in general open; balanced truncation yields suboptimal
solution with computable H,.,-norm bound.

Hankel-norm optimal Hankel norm approximation (AAK theory)
Gl := omax
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Qualitative and Quantitative Study of the Approximation Error

Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

@ absolute errors HG(]wj) - @(jwj)Hz, HG(]wj) - @(jwj)Hoo UG=1,.... )

. |6 Gw)=6Gwnll, ||6Gw)=6Gw]| .
® relative errors T oG,

@ "eyeball norm”, i.e. look at frequency response/Bode (magnitude) plot:

o for SISO system, log-log plot frequency vs. |G(yw)| (or |G(yw) — G(yw)]|) in

decibels, 1 dB ~ 20 log;,(value);
o for MIMO systems, p x m array of of plots Gj.

Bode Diagram Bode Diagram

Magnitude (dB)
Magnitude (dB)

0t
Frequency (radsec)
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2. Model Reduction by Projection
Projection Basics
Extensions
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Model Reduction by Projection

Goals

@ Automatic generation of compact models.
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A, Model Reduction by Projection

Goals

%

@ Automatic generation of compact models.

@ Satisfy desired error tolerance for all admissible input signals, i.e., want
lly — ¥ < tolerance - ||ul| Vu € L(R,R™).

= Need computable error bound/estimate!
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A, Model Reduction by Projection

Goals

%

@ Automatic generation of compact models.

o Satisfy desired error tolerance for all admissible input signals, i.e., want
lly — ¥ < tolerance - ||ul| Vu € L(R,R™).

= Need computable error bound/estimate!

@ Preserve physical properties:
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@ Automatic generation of compact models.

Model Reduction by Projection

Goals

o Satisfy desired error tolerance for all admissible input signals, i.e., want
lly — ¥ < tolerance - ||ul| Vu € L(R,R™).

= Need computable error bound/estimate!
@ Preserve physical properties:
— stability (poles of G in C7),

(© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

@ Automatic generation of compact models.

Model Reduction by Projection

Goals

o Satisfy desired error tolerance for all admissible input signals, i.e., want
lly — ¥ < tolerance - ||ul| Vu € L(R,R™).

= Need computable error bound/estimate!
@ Preserve physical properties:

— stability (poles of G in C7),
— minimum phase (zeroes of G in C7),
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@ Automatic generation of compact models.

Model Reduction by Projection

Goals

o Satisfy desired error tolerance for all admissible input signals, i.e., want
lly — ¥ < tolerance - ||ul| Vu € L(R,R™).

= Need computable error bound/estimate!
@ Preserve physical properties:

— stability (poles of G in C7),
— minimum phase (zeroes of G in C7),
— passivity

t
/ u(t)Ty(r)dTr >0 VteR, Yue L(R,R™).

( “system does not generate energy”).
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¥ Model Reduction by Projection
<B
R Linear Algebra Basics

A projector is a matrix P € R™*" with P2 = P. Let V = range(P), then P is
projector onto V. On the other hand, if {v4,...,v,} is a basis of V and
V=[wv,...,v,], then P=V(VTV)"tVT is a projector onto V.
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¥ Model Reduction by Projection
<B
R Linear Algebra Basics

A projector is a matrix P € R™*" with P2 = P. Let V = range(P), then P is
projector onto V. On the other hand, if {v4,...,v,} is a basis of V and
V=[wv,...,v,], then P=V(VTV)"tVT is a projector onto V.

Properties:

@ If P=PT then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector. (aka: Petrov-Galerkin projection.)
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Model Reduction by Projection

Linear Algebra Basics

A projector is a matrix P € R™*" with P2 = P. Let V = range(P), then P is
projector onto V. On the other hand, if {v4,...,v,} is a basis of V and
V=[wv,...,v,], then P=V(VTV)"tVT is a projector onto V.

Properties:

@ If P=PT, then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector. (aka: Petrov-Galerkin projection.)

@ P is the identity operator on V, i.e., Pv = v Vv € V.
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¥ Model Reduction by Projection
<B
R Linear Algebra Basics

A projector is a matrix P € R™*" with P2 = P. Let V = range(P), then P is
projector onto V. On the other hand, if {v4,...,v,} is a basis of V and
V=[wv,...,v,], then P=V(VTV)"tVT is a projector onto V.

Properties:

@ If P=PT, then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector. (aka: Petrov-Galerkin projection.)

@ P is the identity operator on V, i.e., Pv =v Vv € V.

@ | — P is the complementary projector onto ker P.
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Model Reduction by Projection
Linear Algebra Basics

Projector
A projector is a matrix P € R™*" with P2 = P. Let V = range(P), then P is
projector onto V. On the other hand, if {v4,...,v,} is a basis of V and

V=[wv,...,v,], then P=V(VTV)"tVT is a projector onto V.
Properties:

@ If P=PT, then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector. (aka: Petrov-Galerkin projection.)

@ P is the identity operator on V, i.e., Pv = v Vv € V.
@ | — P is the complementary projector onto ker P.

@ If V is an A-invariant subspace corresponding to a subset of A's spectrum,
then we call P a spectral projector.
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Model Reduction by Projection

Linear Algebra Basics

Projector

A projector is a matrix P € R™*" with P2 = P. Let V = range(P), then P is
projector onto V. On the other hand, if {v4,...,v,} is a basis of V and
V=[wv,...,v,], then P=V(VTV)"tVT is a projector onto V.

Properties:

@ If P=PT, then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector. (aka: Petrov-Galerkin projection.)

@ P is the identity operator on V, i.e., Pv = v Vv € V.
@ | — P is the complementary projector onto ker P.

@ If V is an A-invariant subspace corresponding to a subset of A's spectrum,
then we call P a spectral projector.

@ Let W C R” be another r-dimensional subspace and W = [wy, ..., w, | be a
basis matrix for W, then P = V(WTV)=*WT is an oblique projector onto
V along W.
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’\4}!@ Model Reduction by Projection

Methods:
1. Modal Truncation
2. Rational Interpolation (Padé-Approximation and (rational) Krylov
Subspace Methods) ~~ Part Il of tutorial, by Serkan Gugercin!
3. Balanced Truncation
4. many more. . .

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
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@ Model Reduction by Projection

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ~ VW x =: %, where

range(V) =V, range(W)=W, W'V =1,
Then, with £ = W7 x, we obtain x &~ V& so that
[x = %I =[x = V&I,
and the reduced-order model is

A=wTAv, B=w'B, (C:=cv, (D:=D).
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@ Model Reduction by Projection

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ~ VWTx =: %, and the reduced-order model is
£=WTx

A=wTav, B.=w'B, C:=cv, (D:=D).
Important observation:

@ The state equation residual satisfies X — AX — Bu L W, since

W' (x— A% —Bu) = WT (VWTx—AVWTx — Bu)
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@ Model Reduction by Projection

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ~ VWTx =: %, and the reduced-order model is
£=WTx

A=wTav, B.=w'B, C:=cv, (D:=D).
Important observation:
@ The state equation residual satisfies X — AX — Bu L W, since

W' (x— A% —Bu) = WT (VWTx—AVWTx — Bu)
= Wix—-WTAYWTx—WTBu
R v U S

% =A =X =B
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@ Model Reduction by Projection

Joint feature of these methods:

computation of reduced-order model (ROM) by projection!

Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ~ VWTx =: %, and the reduced-order model is
£=WTx

A=wTav, B.=w'B, C:=cv, (D:=D).
Important observation:

@ The state equation residual satisfies X — AX — Bu L W, since

WT (% — A% — Bu)

W’ (VW' — AvWTx — Bu)
= Wix—WTAVWTx-WTBu
R v U S

% =A =X =B
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A@ Model Reduction by Projection

Projection ~~ Rational Interpolation

Given the ROM
A=wTav, B=w'B, C=cv, (D=D),
the error transfer function can be written as

G(s)—G(s) = (C(slh—A)'B+D)— (é(s/n ~ A B+ 5)
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Projection ~~ Rational Interpolation

Given the ROM

A=wTav, B=wW'B, C=cv, (D
the error transfer function can be written as
G(s)—G(s) = (C(slh—A)'B+D)— (é(s/,, ~AB+ D)

= C((sh=A) = V(s A) W) B

(© Peter Benner, benner@mpi-magdeburg.mpg.de

Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

Projection ~~ Rational Interpolation
Given the ROM

A=wTav, B=w'B, C=cv, (D=D),
the error transfer function can be written as

G(s)—G(s) = (C(slh—A)'B+D)— (6(51,, ~A B+ b)
= C((sh=A) = V(s A)WT) B

= C(ly— V(sl — AW (sl, — A) ) (sl, — A)*B.

=:P(s)
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Projection ~~ Rational Interpolation

Given the ROM

A=wTav, B=w'B, C=cv, (D=D),

the error transfer function can be written as

G(s)—G(s) = (C(slh—A)'B+D)— (é(s/n ~A B+ b)
= C(ly— V(sl, — A7 W (sl, — A))(sl, — A)'B.
=P(s)

P(s) is a projector onto V:
range(P(s)) C range(V), all matrices have full rank = "=", and
P(s)? = V(sl, —A)*WT(sl, — A)V(sl, — AW (sl, — A)
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Projection ~~ Rational Interpolation
Given the ROM

A=wTav, B=w'B, C=cv, (D=D),
the error transfer function can be written as

G(s)—G(s) = (C(slh—A)'B+D)— (é(s/n ~A B+ b)
= C(ly— V(sl, — A7 W (sl, — A))(sl, — A)'B.
=P(s)

P(s) is a projector onto V:
range(P(s)) C range(V), all matrices have full rank = "=", and
P(s)? = V(sl,—A)*WT(sl,— A\V(sl, — AW (sl, — A)
= V(sl,— A (sl, — A)(sl, — A)"* W (sl, — A) = P(s).

=l
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Projection ~~ Rational Interpolation
Given the ROM

A=wTav, B=w'B, C=cv, (D
the error transfer function can be written as
G(s) — G(s)

(C(shy — A)™'B + D) — (é(s/n ~A B+ b)
C(ly — V(sl, — AW (sl, — A) ) (sl, — A)~*B.

=:P(s)

P(s) is a projector onto V —>
Given s, € C \ (/\ (A)U /\(Z\)),
if (sely — A)"1B €V, then (I, — P(s))(scln — A)"1B =0,

hence G(s.) — G(s.) =0 = G(s.) = G(s,), i.e., G interpolates G in s,!
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@ Model Reduction by Projection

Projection ~~ Rational Interpolation

Given the ROM

A=wTav, B=w'B, C=cv, (bD=D),
the error transfer function can be written as

G(s)—G(s) = (C(slh—A)'B+D)— (é(s/n ~AB+ D)
= C(ly— V(sl, — A7 W (sl, — A))(sl, — A)'B.
=:P(s)
Analogously, = C(sl, — A)~ (I, — (sl, — A)V(sl, — A)~*WT)B.

—Q(s)
Q(s)* is a projector onto W —> Given s, € C\ (/\ (A)U /\(A)),

if (sl —A)~TCT €W, then C(sl, — A)1(I, — Q(s.)) =0,

hence G(s.) — G(s.) =0 = G(s.) = G(s.), i.e., G interpolates G in s,!
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@ Model Reduction by Projection

Theorem [GRIMME 1997, VILLEMAGNE/SKELTON 1987]

Given the ROM
A=wTAv, B=w'B, C=cv, (D=D),

and s, € C\ (A(A) UA(A)), if either
o (sulp — A)~1B € range(V), or
o (suln —A)"TCT € range(W),

then at s = s,, we obtain the (rational) interpolation condition

G(s:) = G(s4).

Note: extension to Hermite interpolation ~~ Part II!
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Model Reduction by Projection

Extensions

Base enrichment

Static modes are defined by setting x = 0 and assuming unit loads, i.e.,
u(t)y=e¢;, j=1,...,m:

0=Ax(t)+Be = x(t)=-A"b;.

Projection subspace V is then augmented by A~1[by,...,bn] = A~1B.
Interpolation-projection framework = G(0) = G(0)!

If two-sided projection is used, complimentary subspace can be augmented
by A-TCT = G'(0) = G'(0)!

Note: if m # g, add random vectors or delete some of the columns in A7 CT.
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. % Model Reduction by Projection
w Extensions

Guyan reduction (static condensation)

Partition states in masters x; € R” and slaves x, € R"~" (FEM terminology)
Assume stationarity, i.e., x = 0 and solve for x; in

A A
0 _ 1 A [xl]_i_[Bl}u
Ay Ax > B,

=i =i
= X2 = —A22 Axixy — A22 Bou.

Inserting this into the first part of the dynamic system
x1 = Auxi + Axe + By, y = Gxi + Gx
then yields the reduced-order model

x1 = (A — ApAy An)xi + (Br — ApAy By)u
y = (C]_ — C2A2_21A21)X1 — C2A2_2182u.
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3. Balanced Truncation
The basic method
ADI Methods for Lyapunov Equations
Balancing-Related Model Reduction
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Basic principle:

@ Recall: an LTI system X, realized by (A, B, C, D), is called balanced,
if the Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = 0, ATQ+QA+C'C = 0,

satisfy: P = Q = diag(o1,...,0n) with o1 > 02> ... >0, > 0.
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Basic principle:

@ Recall: an LTI system X, realized by (A, B, C, D), is called balanced,
if the Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+PAT +BBT =0, ATQ+QA+C’C =0,
satisfy: P = Q = diag(o1,...,0n) with o1 > 02> ... >0, > 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

y(t) = Hu(t) = /_ ’ ce" = Bu(r) dr
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

0 0
y(t) = Hu(t) = / Ce"* =" Bu(r) dr =: CeAt/ e ""Bu(r) dr

— o0

=z
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

0 0
y(t) = Hu(t) = / ce** "I Bu(r) dr =: CeAt/ e " Bu(r)dr = Ce™z.

oo

=z
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof:  Recall Hankel operator

0
y(£) = Hu(t) = / Ce**=DBu(r) dr = Ce™z.

Hankel singular values = square roots of eigenvalues of H*#H,
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce”“" ") Bu(r) dr = Ce*z.
Hankel singular values = square roots of eigenvalues of H*#H,

Hy(t) = / BTN C-9CTy(r) dr
0
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof:  Recall Hankel operator

0
y(t) = Hu(t) = / Ce”“" ") Bu(r) dr = Ce*z.
Hankel singular values = square roots of eigenvalues of H*#H,

Hoy(t) = / BTN 0T y(r)dr = BTe At / AT CTy(r) dr.
0 0
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*= Bu(r) dr = Ce™z.
Hankel singular values = square roots of eigenvalues of H*#H,
Hy(t) = = BTe_ATt/ eATTCTy(T) dr.
0
Hence,

H Hu(t) = BTe_ATt/ A TCTCeM zdr
0

(© Peter Benner, benner@mpi-magdeburg.mpg.de i ased Methods


mailto:benner@mpi-magdeburg.mpg.de

Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*= Bu(r) dr = Ce™z.
Hankel singular values = square roots of eigenvalues of H*#H,
Hy(t) = = BTe_ATt/ eATTCTy(T) dr.
0
Hence,

H Hu(t) = BTe_ATt/ ' TCTCeM zdr
0

T —AT ® ATr T A

—A't

= B'e / " TC'Ce™dT z
0

=Q

(© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof:  Recall Hankel operator
0
y(t) = Hu(t) = / Ce*= Bu(r) dr = Ce™z.
Hankel singular values = square roots of eigenvalues of H*#H,
Hy(t) = = BTe_ATt/ eATTCTy(T) dr.
0
Hence,

H*Hu(t)

T _—AT & ATr T A

= t

B'e /eTCCeTsz
0

.
= BTe? Q2
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof:  Recall Hankel operator

0
y(t) = Hu(t) = / Ce”“" ") Bu(r) dr = Ce*z.
Hankel singular values = square roots of eigenvalues of H*#H,
Hy(t) = = BTe_ATt/ eATTCTy(T) dr.
0
Hence,

H Hu(t) = BTetQz
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof:  Recall Hankel operator

0
y(t) = Hu(t) = / Ce”“" ") Bu(r) dr = Ce*z.
Hankel singular values = square roots of eigenvalues of H*#H,
Hy(t) = = BTe_ATt/ eATTCTy(T) dr.
0
Hence,

H Hu(t) = B e tQz = o’ u(t).
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {o1,...,0,} are the Hankel singular values (HSVs) of ¥.

Proof: Hankel singular values = square roots of eigenvalues of H*H,
HHu(t) = BTe ™ 'Qz = ou(t).

— u(t) = 5BTe Q2
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof: Hankel singular values = square roots of eigenvalues of H*H,
H Hu(t) = B e *tQz = o’u(t).

= u(t) = ;IZBTe_ATth = (recalling z = [°__ e™*"Bu(r) dr)
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof: Hankel singular values = square roots of eigenvalues of H*H,
H Hu(t) = B e A tQz = o’u(t).
= u(t) = ;IZBTe_ATth = (recalling z = ffoo e *"Bu(r) d7)
0
z = / e_ATBizBTe_ATTQz dr
B o
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof: Hankel singular values = square roots of eigenvalues of H*#H,
H Hu(t) = B e " tQz = o’ u(t).
= u(t) = %BTe_ATth = (recalling z = ffoo e " Bu(t) dr)
0
z = / efATBizBTe_ATTQz dr
o o
1 0 —Ar T —AT+
= = e ""BB e dt Qz
g — 00
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof: Hankel singular values = square roots of eigenvalues of H*#H,
H Hu(t) = B e " tQz = o’ u(t).
= u(t) = %BTe_ATth = (recalling z = ffoo e " Bu(t) dr)
0
z = / efATBizBTe_ATTQz dr
o o
1 /[°

—A T —AT
= = e ""BB'e " Tdr Qz
o
— 00

— %/ " BBT At dt Qz
o Jo

P
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof: Hankel singular values = square roots of eigenvalues of H*#H,
H Hu(t) = B e " tQz = o’ u(t).
= u(t) = %BTe_ATth = (recalling z = ffoo e " Bu(t) dr)
0
z = / efATBizBTe_ATTQz dr
o o

1 oo
= —2/ " BBTeM t dt Qz
o Jo

P

= %PQZ
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Basic principle:

o Lyapunov eqns.: AP+ PAT + BBT =0, ATQ+QA+C'C = 0.
° /\(PQ)% = {01,...,04} are the Hankel singular values (HSVs) of X.

Proof: Hankel singular values = square roots of eigenvalues of H*#H,
H Hu(t) = B e " tQz = o’ u(t).
= u(t) = %BTe_ATth = (recalling z = ffoo e " Bu(t) dr)
0
z = / efATBizBTe_ATTQz dr
o o

1 oo
= —2/ " BBTeM t dt Qz
o Jo

P

= %PQZ

<— PQz = o°z. O

(© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

@ Recall: an LTI system X, realized by (A, B, C, D), is called balanced,
if the Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+ PAT +BBT =0, ATQ+QA+C'C = 0,
satisfy: P = Q = diag(o1,...,0n) with o1 > 02> ... >0, > 0.

° /\(PQ)% = {01,...,0,} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT }, TB,CT},D)

A11 A12 Bl
= G C D
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Basic principle:

@ Recall: an LTI system X, realized by (A, B, C, D), is called balanced,
if the Gramians, i.e., solutions P, @ of the Lyapunov equations
AP+ PAT + BBT = 0,

= ATQ+QA+C'C =0,
satisfy: P = Q = diag(o1,

...,0p) Withog > 00> ... >0, >0.

° /\(PQ)% = {01,...,0,} are the Hankel singular values (HSVs) of X.

o Compute balanced realization of the system via state-space
transformation

T:(AB,C,D) — (TAT }, TB,CT},D)
A A By

o Truncation ~~ (A, B, C, 5) = (A11,B1, G, D)
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HSVs are system invariants: they are preserved under
T:(A B,C,D)w— (TAT 1, TB,CT 1, D):

in transformed coordinates, the Gramians satisfy

(TAT"Y)Y(TPTT) + (TPTT)(TAT YT + (TB)(TB)"
(TAT H(TTQT Y + (T TRQT )TAT 1)+ (CTHT(CcT™)

= (TPTTY(T TQT 1) = TPQT 1,

hence A(PQ) = A((TPTT)(T-TQT™1)).
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HSVs are system invariants: they are preserved under
T:(A B,C,D)w— (TAT 1, TB,CT 1, D).
HSVs determine the energy transfer given by the Hankel map

H : Ly(—00,0) — Lr(0,00) : u_ > y.

In balanced coordinates . ..energy transfer from u_ to y,:

f y(t)Ty(t) dt Lo
E:= sup “ || ZUJ?X&j
HT [ u)Tutyde 0
—0o0
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Q&@ Balanced Truncation

HSVs are system invariants: they are preserved under
T:(A B,C,D)w— (TAT 1, TB,CT 1, D).
HSVs determine the energy transfer given by the Hankel map

H : Ly(—00,0) — Lr(0,00) : u_ > y.

In balanced coordinates . ..energy transfer from u_ to y,:

f y(t)"y(t) dt
E:= sup “ || ZO’ XO’J
T [ () Tu(e)de 2]
—00

= Truncate states corresponding to “small” HSVs
— complete analogy to best approximation via SVD!
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Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
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Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.

2

2. Compute SVD SRT = [U, Us] l .
2
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Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
v,
vl

W=RTVis;?, V=STuzx;

2

2. Compute SVD SRT = [U, Us] l .
2

3. ROM is (WTAV, WT B, CV, D), where
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Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
v,
vl

W=RTVis;?, V=STuzx;

2

2. Compute SVD SRT = [U, Us] l .
2

3. ROM is (WTAV, WTB, CV, D), where

Note:
VIW = (E03 07 S)(RTWE[Y)
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Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
v,
vl

W=RTVis;?, V=STuzx;

2

2. Compute SVD SRT = [U, Us] l .
2

3. ROM is (WTAV, WTB, CV, D), where

Note:
VIW = (572UTS)RTVED?) = 5 2ufusvT e
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Implementation: SR Method
1. Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.

V2T ’

W=RTWE}, v=sTus "

2

2. Compute SVD SRT = [U, Us] l .
2

3. ROM is (WTAV, WTB, CV, D), where

Note:

VIW = (572UTS)RTVED?) = 5 2ufusvT e

-1 = b o
T, ?[ 1, 0] . o | =
2
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Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, P = STS, Q = RTR.
v,
vl

W=RTWE}, v=sTus "

¥
2. Compute SVD SRT = [Us, Us] [ '

P2}
3. ROM is (WT AV, WTB, CV, D), where

Note:
VIW = (S2UTS)RTWEL?) = 5, U] UsVT vy

1 > I, 1 1 1
- le[I,,O] 5 [0}212221221212
2

— VW is an oblique projector, hence balanced truncation is a
Petrov-Galerkin projection method.
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@ Reduced-order model is stable with HSVs o1, ..., 0,.
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@ Reduced-order model is stable with HSVs o1, ..., 0,.

o Adaptive choice of r via computable error bound:

n
by =9ll2 < (23, o) lull-
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General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).
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Properties:

General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:
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Properties:

General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:

— Instead of Gramians P, @
compute S, R € R™k, k < n,
such that

Eigenvalues of Gramian in decreasing order

eps

P~ SST, Q~ RRT. e

— Compute S, R with
problem-specific Lyapunov
solvers of “low” complexity o a0 a0 o
directly.
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Q&@ Balanced Truncation

General misconception: complexity O(n®) — true for several
implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:

Sparse Balanced Truncation:
— Implementation using sparse Lyapunov solver
(— ADl+sparse LU).
— Complexity O(n(k? + r?)).
— Software:

+ MATLAB toolbox LyaPack (PENzL 1999),
+ Software library M.E.S.S.? in C/MATLAB [B./SAAK/KOHLER/UVM.],

+ pyMOR.

“Matrix Equation Sparse Solvers
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- ¥ ADI Methods for Lyapunov Equations
w: Background

Recall Peaceman-Rachford ADI:
Consider Au = s where A € R™" spd, s € R".
ADI iteration idea: decompose A= H + V with H, V € R"™" such that

(H+pl)yv=r
(V+phw=t

can be solved easily/efficiently.
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ADI Methods for Lyapunov Equations
Background

Recall Peaceman-Rachford ADI:
Consider Au = s where A € R™" spd, s € R".
ADI iteration idea: decompose A= H + V with H, V € R"™" such that
(H+pl)yv=r
(V+phw=t
can be solved easily/efficiently.

If H,V spd = dpx, k=1,2,..., such that

u = 0
(H aF pkl)uk_% = (pk/ = V)Uk_l +s
(V+plue = (pul = H)u_1 +s

converges to u € R” solving Au = s.
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@ ADI Methods for Lyapunov Equations

The Lyapunov operator
L: P — AX+XAT
can be decomposed into the linear operators
Ly X — AX, Ly:X— XAT.

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation [Wachspress 1988]
Xo = 0,
A+p)X, 1 = —W—Xe1(AT — pil),
(A—i—ka)Xk = —W—XkT_%(AT—ka).
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ADI Methods for Lyapunov Equations

Low-Rank ADI

Consider AX + XAT = —BBT for stable A, B € R™™ with m < n.

ADI iteration for the Lyapunov equation [Wachspress 1988]
For k =1,..., kmax
Xo = 0
(A—l—pkl)Xk_% = —BBT —Xk_l(AT—pk/)
(A—i—pk/)X,;r = —BBT—XkT_%(AT—ka)
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ADI Methods for Lyapunov Equations

Low-Rank ADI

Consider AX + XAT = —BBT for stable A, B € R™™ with m < n.

ADI iteration for the Lyapunov equation [Wachspress 1988]
For k =1,..., kmax
Xo = 0
(A a4 ka)Xk_% = —-BBT — Xk_l(AT = pk/)
(A—i—pk/)X,Z— = —BBT—XkT_l(AT—ka)
2
Rewrite as one step iteration and factorize X, = ZkaT, k=0,..., knax
ZZy = 0
2.Z] = “2p(A+pil) TBBT(A+pil)™T

+(A+pel) HA = pul)Zk 1 ZL (A=) T(A+pid)™ T
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ADI Methods for Lyapunov Equations

Low-Rank ADI

Consider AX + XAT = —BBT for stable A, B € R™™ with m < n.

ADI iteration for the Lyapunov equation [Wachspress 1988]
For k =1,..., kmax
Xo = 0
(A a4 ka)Xk_% = —-BBT — Xk_l(AT = pk/)
(A—i—pk/)XkT = —BBT—XkT_l(AT—ka)
2
Rewrite as one step iteration and factorize X, = ZkaT, k=0,..., knax
ZZy = 0
2.Z] = “2p(A+pil) TBBT(A+pil)™T

+(A+pel) HA = pul)Zk 1 ZL (A=) T(A+pid)™ T

...~ low-rank Cholesky factor ADI [PenzL 1997/2000, Li/WHITE 1999/2002,
B./L1/PENZL 1999/2008, GUGERCIN/SORENSEN/ANTOULAS 2003]
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ADI Methods for Lyapunov Equations

Low-rank ADI

Zi = [V=2p(A+ p!) B, (A+ pil)"H(A = pil) Zi-1] [PENZL "00]
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ADI Methods for Lyapunov Equations

Low-rank ADI

Zi = [V=2p(A+ p!) B, (A+ pil)"H(A = pil) Zi-1] [PENZL "00]

Observing that (A — p;l), (A+ pxl)~! commute, we rewrite Z__ as

max

ke = [Zhna> Phionse—1Zknnes Phinax—2 (Pl —1Zk )5 -+ 5 PL(P2+ - Py 121, )],
where

Zhpe = 2Pk (A + Pl /) 1B

vV —2p;
vV —2piy1

and
P = [ = (pi + pis1)(A+pil) Y] .

[L1/WHITE ’02]
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ADI Methods for Lyapunov Equations

Low-rank ADI

Zi = [V=2p(A+ p!) B, (A+ pil)"H(A = pil) Zi-1] [PENZL "00]

Observing that (A — p;l), (A+ pxl)~! commute, we rewrite Z__ as

max

ke = [Zhna> Phionse—1Zknnes Phinax—2 (Pl —1Zk )5 -+ 5 PL(P2+ - Py 121, )],
where

Zhpe = 2Pk (A + Pl /) 1B

vV —2p;
vV —2piy1

and
P = [ = (pi + pis1)(A+pil) Y] .

[L1/WHITE ’02]

~+ Need to solve only one (sparse) linear system with m right-hand
sides per iteration!
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@‘, ADI Methods for Lyapunov Equations
w Lyapunov equation 0 = AX + XAT + BBT.

Algorithm [Penzl 1997/2000, Li/White 1999/2002, B. 2004, B./Li/Penzl 1999/2008]

Vi + \/—2rep1(A+pll)_lB, Z1 +— Vi

FOR k = 2,3, ...
Vie =\ Jrests (Vier = (P + Pion)(A+ pud) ™ Vi)
Zoe[ Zier Vi ]
Zy < rrlq(Zk, 7) % column compression, optional
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ADI Methods for Lyapunov Equations
Lyapunov equation 0 = AX + XAT + BB”.

Algorithm [Penzl 1997/2000, Li/White 1999/2002, B. 2004, B./Li/Penzl 1999/2008]

Vi + \/—2rep1(A+pll)_lB, Z1 +— Vi

FOR k = 2,3, ...
Vie= /e (Vi1 — (P + Pr—0)(A+ ped ) Vi)
Zi+ | Zea Vi
Zy < rrlq(Zk, 7) % column compression, optional

At convergence, Z Zanax ~ X, where (without column compression)

max

Zon=[ Vi ... Vi ] vkzﬂecnxm.

max
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A@ ADI Methods for Lyapunov Equations

W Lyapunov equation 0 = AX + XAT + BB”.

Algorithm [Penzl 1997/2000, Li/White 1999/2002, B. 2004, B./Li/Penzl 1999/2008]

Vi + \/—2rep1(A+pll)_1B, Z1 +— V;

FOR k = 2,3, ...
Vie= /e (Vi1 — (P + Pr—0)(A+ ped ) Vi)
Zi+ | Zea Vi
Zy < rrlq(Zk, 7) % column compression, optional

At convergence, Zx Zkfm ~ X, where (without column compression)

max

L = [ Vioooo Vi ] NV :|:|€ crxm.

Note: Implementation in real arithmetic is possible: combine two steps
[B./Li/Penzl 1999/2008] or employ the relations of consecutive complex factors
[B./Kiirschner/Saak 2011].

Current implementations (pyMOR, M.E.S.S.) employ low-rank property of
residual, update residual in each step, and compute new shifts on the fly!
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Numerical Results for ADI

Optimal Cooling of Steel Profiles

@ Mathematical model: boundary control for
linearized 2D heat equation.

c- p%x = Mx, £eQ
0
/\%X = kluk—x), €€l 1<k<T,
0
%X = 0, 66 F7.

= m=7,p=06.

@ FEM Discretization, different models for
initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement =
n = 1357,5177,20209, 79841.

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: TrROLTZSCH/UNGER 1999/2001, PENZL 1999, SAAK 2003.
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Numerical Results for ADI

Optimal Cooling of Steel Profiles

@ Solve dual Lyapunov equations needed for balanced truncation, i.e.,
APMT + MPAT + BBT =0, ATQM+MTQA+C"C = 0,
for 79,841.
@ 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude, no column compression performed.

@ M.E.S.S. requires no factorization of mass matrix.

@ Computations done on Core2Duo at 2.8GHz with 3GB RAM and
32Bit-MATLAB.

AXMT + MXAT + BB =0

ATXM+MXA+CTC=0

normalized residual norm
3,

normalized residual norm

10 20 30 40 50 60 70 80 10 16 20 30 40 50 60 70 80
number of iterations number of iterations

ner@mpi-magdeburg.mpg.de Balancing-based Methods
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Other Projection-based Lyapunov Solvers

Lyapunov equation 0 = AX + XAT + BB”

Projection-based methods for Lyapunov equations with A+ AT < 0:
1. Compute orthonormal basis range(Z), Z € R"*", for subspace Z C R”,
dimZ =r.
2. Set A:=ZTAZ, B:=7"B.
3. Solve small-size Lyapunov equation AX + XAT + BBT =0.
4. Use X = ZXZT.

Examples:

@ Krylov subspace methods, i.e., for m=1:
Z =K(A,B,r) =span{B,AB,A’B,...,A"1B}

[SAAD 1990, JAIMOUKHA/KASENALLY 1994, JBILOU 2002-08].
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Other Projection-based Lyapunov Solvers

Lyapunov equation 0 = AX + XAT + BB”

Projection-based methods for Lyapunov equations with A+ AT < 0:
1. Compute orthonormal basis range(Z), Z € R"*", for subspace Z C R”,
dimZ =r.
2. Set A:=ZTAZ, B:=7"B.
3. Solve small-size Lyapunov equation AX + XAT + BBT =0.
4. Use X = ZXZT.

Examples:

@ Krylov subspace methods, i.e., for m=1:
Z =K(A,B,r) =span{B,AB,A’B,...,A"1B}

[SAAD 1990, JAIMOUKHA/KASENALLY 1994, JBILOU 2002-08].

o Extended (and rational) Krylov method (EKSM, RKSM) [SiMoONCINI 2007,
DRUSKIN/KNIZHNERMAN /SIMONCINI 2011],

Z=K(A B,r)UK(A™ Y, B,r).
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Other Projection-based Lyapunov Solvers

Lyapunov equation 0 = AX + XAT + BB”

Projection-based methods for Lyapunov equations with A+ AT < 0:
1. Compute orthonormal basis range(Z), Z € R"*", for subspace Z C R”,
dimZ =r.
2. Set A:=ZTAZ, B:=7"B.
3. Solve small-size Lyapunov equation AX + XAT + BBT =0.
4. Use X = ZXZT.

Examples:

@ ADI subspace [B./R.-C. Li/TRUHAR 2008]:
Z:colspan[ Vi, ..., V, ]

Note:
1. ADI subspace is rational Krylov subspace [J.-R. L1/WHITE 2002].
2. Similar approach: ADI-preconditioned global Arnoldi method
[JBILOU 2008].
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A Balanced Truncation

\I,

Numerical example for BT: Optimal Cooling of Steel Profiles

bsolute Error

G Absolute Error
10
BT error bound
107 fme oy —=——modal truncation o
e |~ =" palanced tnceion |
—_ ~
ol \‘\\
E3 s
ad & ™
A 10 =
. ~
B s ~ Sy
w100 ~a g
4] ~ Se Fa
§ 0 ~. i
£ 10 2 -
e} e
10 -
\'\
4
10 . . .
10° 10" 10° 10* 10°
Frequency()

— BT model computed with sign
function method,

— MT w/o static condensation,
same order as BT model.
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n = 1357, Absolute Error n = 79841, Absolute Error

Balanced Truncation

Numerical example for BT: Optimal Cooling of Steel Profiles

Absolute Error

10"

absolute model reduction error

[—FBTerorbound | e
102 o, ——-modaltruncation ] 10°
e ™ — = -balanced truncation
— . _ 10
4 -
F 10 ~. -
B S & 107
L > =
Q 10 =2 o
N . R e
2 10° N, S~ 3
g g o S0
& g e .,
& e 10
~—
10" e 10
\'\
e -
i ‘ . ‘ mm‘ 10° 10° 10° 10°
10° 10" 10° 10* 10° ®
Frequency()

— BT model computed using

— BT model computed with sign
M.E.S.S. in MATLAB,

function method,

— dualcore, computation time: <10
min.

— MT w/o static condensation,
same order as BT model.

eter Benner, ben

er@mpi-magdeburg.mpg.de
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Balanced Truncation

Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ Vibrating micro-mechanical
gyroscope for inertial navigation.

@ Rotational position sensor.

@ By applying AC voltage to ety
electrodes, wings are forced to
vibrate in anti-phase in wafer plane.
@ Coriolis forces induce motion of
wings out of wafer plane yielding N N
sensor data. v 7 v~—
Coridlis acc. Goriolis acc.

Source: http://modelreduction.org/index.php/Modified_Gyroscope

based Methods

Peter Benner, benner@mpi-magdebu
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A‘, Balanced Truncation

v Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic tetrahedral
elements (ANSYS-SOLID187)
~»n=234,722, m=1, p=12.

@ Reduced model computed using SPARED, r = 30.

Balancing-based Methods
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Balanced Truncation

Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic tetrahedral
elements (ANSYS-SOLID187)
~»n=234,722, m=1, p=12.

@ Reduced model computed using SPARED, r = 30.

Frequency Repsonse Analysis

Bode Diagran

-60

-80

-100

=120

-140

Wagritde (08}

-160

-180

10° 10° 10" 10 10

Frequency (rad/sec)

Balancing-based Methods


mailto:benner@mpi-magdeburg.mpg.de

<

‘, Balanced Truncation
v Numerical example for BT: Microgyroscope (Butterfly Gyro)

@ FEM discretization of structure dynamical model using quadratic tetrahedral
elements (ANSYS-SOLID187)
~»n=234,722, m=1, p=12.

@ Reduced model computed using SPARED, r = 30.

Frequency Repsonse Analysis Hankel Singular Values

Hankel singular values

Bode Diagran

Wagritde (08}

-200 ; - ! ‘ !
0 P 0 0 10° 0 10 20 30 40 50
Frequency (rad/sec) k
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‘\4}!@ Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q@ = RT R, compute
balancing state-space transformation so that

P = Q =diag(o1,...,0n) =%, o01>...20,>0,

and truncate corresponding realization at size r with o, > o,41.
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A@ Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q@ = RT R, compute
balancing state-space transformation so that

P = Q =diag(o1,...,0n) =%, o01>...20,>0,

and truncate corresponding realization at size r with o, > o,41.

Classical Balanced Truncation (BT) [MuLLis/RoBERTS 1976, MOORE 1981]

@ P = controllability Gramian of system given by (A, B, C, D).
@ Q = observability Gramian of system given by (A, B, C, D).
o P, @ solve dual Lyapunov equations
AP+ PAT +BBT =0, ATQ+QA+C'C =o0.
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”@ Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q@ = RT R, compute
balancing state-space transformation so that

P =Q =diag(o1,...,0n) =X, 01>...>20,>0,

and truncate corresponding realization at size r with o, > o,41.

LQG Balanced Truncation (LQGBT) [JONCKHEERE/SILVERMAN 1983]

@ P/Q = controllability /observability Gramian of closed-loop system
based on LQG compensator.

@ P, Q solve dual algebraic Riccati equations (AREs)
0 = AP+ PAT —PCTCP+ BB,
0 = ATQ+QA-@BBTQ+C'C.
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”@ Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q@ = RT R, compute
balancing state-space transformation so that

P =Q =diag(o1,...,0n) =X, 01>...>20,>0,

and truncate corresponding realization at size r with o, > o,41.

Balanced Stochastic Truncation (BST) [DEsar/PAL 1984, GREEN 1988]

@ P = controllability Gramian of system given by (A, B, C, D), i.e.,
solution of Lyapunov equation AP + PAT + BBT = 0.

o @ = observability Gramian of right spectral factor of power spectrum
of system given by (A, B, C, D), i.e., solution of ARE

ATQ+ QA+ QBw(DDT)'BL,Q+ CT(DDT)"'C =0,

where A:= A— By(DDT)"1C, By := BDT + PCT.
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A@ Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q@ = RT R, compute
balancing state-space transformation so that

P =Q =diag(o1,...,0n) =X, 01>...>20,>0,

and truncate corresponding realization at size r with o, > o,41.

Positive-Real Balanced Truncation (PRBT) [GREEN ’88]

o Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.
o P, Q solve dual AREs
0 = AP+ PAT + PCTR™'CcP+BR !B,
0 = ATQ+QA+QBRBTQ+ CTR1c,
where R=D+ D", A=A— BR™!C.
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”@ Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = S’S, Q@ = RT R, compute
balancing state-space transformation so that

P =Q =diag(o1,...,0n) =X, 01>...>20,>0,

and truncate corresponding realization at size r with o, > o,41.

Other Balancing-Based Methods

o Bounded-real balanced truncation (BRBT) — based on bounded real
lemma [OPDENACKER/JONCKHEERE '88];

@ Hy balanced truncation (HinfBT) — closed-loop balancing based on
H.o compensator [MusTAFA/GLOVER 91].
Both approaches require solution of dual AREs.

o Frequency-weighted versions of the above approaches.
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Balancing-Related Model Reduction

Properties

@ Guaranteed preservation of physical properties like

enner@mpi-magdeburg.mpg.de Balancing-based Methods


http://www.mpi-magdeburg.mpg.de/823508/software
mailto:benner@mpi-magdeburg.mpg.de

Balancing-Related Model Reduction

Properties

@ Guaranteed preservation of physical properties like
— stability (all),
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Balancing-Related Model Reduction

Properties

@ Guaranteed preservation of physical properties like
— stability (all),
— passivity (PRBT),
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Balancing-Related Model Reduction

Properties

@ Guaranteed preservation of physical properties like
— stability (all),
— passivity (PRBT),
— minimum phase (BST).
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Balancing-Related Model Reduction

Properties

@ Guaranteed preservation of physical properties like
— stability (all),
— passivity (PRBT),
— minimum phase (BST).

@ Computable error bounds, e.g.,

BT: [|G— G,

IN

n
2 : BT
2 aj

j—r+1
LQG
Z LQG
j=r+1'V 1+(G
S
O'
(11 % —1) 16l

Jj=r+1

LQGBT: ||G— G/,

IN

BST: ||G— G|

IA
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Balancing-Related Model Reduction

Properties

@ Guaranteed preservation of physical properties like
— stability (all),
— passivity (PRBT),
— minimum phase (BST).

@ Computable error bounds, e.g.,

BT: [|G— G,

IN

n
2 : BT
2 aj

j—r+1
LQG
Z LQG
j=r+1'V 1+(0
S
O'
(11 % —1) 16l

Jj=r+1

LQGBT: ||G— G/,

IN

BST: ||G— G|

IA

@ Can be combined with singular perturbation approximation ( = Guyan
reduction applied to balanced realization!) for improved steady-state
performance.
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Balancing-Related Model Reduction

Properties

@ Guaranteed preservation of physical properties like
— stability (all),
— passivity (PRBT),
— minimum phase (BST).

@ Computable error bounds, e.g.,

n
2 : BT
2 aj

BT: |6-G, <
j=r+1
LQG
LQGBT: [|G— G, <
Q I [ J;l T

IA

BST: 116~ Gl < ( I 2% ~1)lIGI..
j=r+1 J
@ Can be combined with singular perturbation approximation ( = Guyan
reduction applied to balanced realization!) for improved steady-state
performance.
@ Computations can be modularized ~~ software packages M-M.E.S.S.,

MORLAB, see http://www.mpi-magdeburg.mpg.de/823508/software.
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4. Final Remarks
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@ Current Research Topics

@ Special methods for second-order (mechanical) and delay systems.

o Extensions to bilinear, quadratic-bilinear, polynomial, and stochastic
systems.

o Empirical variants using snapshots ~~ ICERM semester visitor
Christian Himpe!

@ MOR methods for discrete-time systems.
@ Extensions to descriptor systems Ex = Ax + Bu, E singular.

@ Parametric model reduction:
x = A(p)x + B(p)u, y = C(p)x,

where p € R? is a free parameter vector; parameters should be
preserved in the reduced-order model.
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