
AN INTRODUCTION TO SYSTEM-THEORETIC
METHODS FOR MODEL REDUCTION
Part I: Balancing-based Methods

Peter Benner

January 30, 2020

Special Semester on
“Model and dimension reduction in
uncertain and dynamic systems”
ICERM at Brown University



Outline

1. Introduction

2. Model Reduction by Projection

3. Balanced Truncation

4. Final Remarks

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 2/52

mailto:benner@mpi-magdeburg.mpg.de


Outline

1. Introduction
Application Areas
Motivation
Model Reduction for Dynamical Systems
Basics of Systems and Control Theory
Realization Theory for Linear Systems
Qualitative and Quantitative Study of the Approximation Error

2. Model Reduction by Projection

3. Balanced Truncation

4. Final Remarks

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 3/52

mailto:benner@mpi-magdeburg.mpg.de


Introduction
Model Reduction — Abstract Definition

Problem

Given a physical problem with dynamics described by the states x ∈ Rn,
where n is the dimension of the state space.

Because of redundancies, complexity, etc., we want to describe the
dynamics of the system using a reduced number of states.

This is the task of model reduction (also: dimension reduction, order
reduction).
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Application Areas
(Optimal) Control

Feedback Controllers

A feedback controller (dynamic
compensator) is a linear system of
order N, where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control
design: N ≥ n.

Practical controllers require small N (N ∼ 10, say) due to

– real-time constraints,

– increasing fragility for larger N.

=⇒ reduce order of plant (n) and/or controller (N).

Standard MOR techniques in systems and control: balanced truncation
and related methods.
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Application Areas
Micro Electronics/Circuit Simulation

Progressive miniaturization: Moore’s Law states that the number of on-chip
transistors doubles each 12 (now: 18) months.

Verification of VLSI/ULSI chip design requires high number of simulations
for different input signals.

Increase in packing density requires modeling of interconncet to ensure that
thermic/electro-magnetic effects do not disturb signal transmission.

Linear systems in micro electronics occur through modified nodal analysis
(MNA) for RLC networks, e.g., when

– decoupling large linear subcircuits,
– modeling transmission lines (interconnect, powergrid), parasitic effects,
– modeling pin packages in VLSI chips,
– modeling circuit elements described by Maxwell’s equation using partial

element equivalent circuits (PEEC).

Standard MOR techniques in circuit simulation: Krylov subspace / Padé
approximation / rational interpolation methods.
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Application Areas
Structural Mechanics / Finite Element Modeling

 

Resolving complex 3D geometries ⇒ millions of degrees of freedom.

Analysis of elastic deformations requires many simulation runs for
varying external forces.

Standard MOR techniques in structural mechanics: modal truncation,
combined with Guyan reduction (static condensation)  Craig-Bampton
method — not discussed in this tutorial!
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An Inspiration: Image Compression by Truncated SVD

A digital image with nx × ny pixels can be represented as matrix
X ∈ Rnx×ny , where xij contains color information of pixel (i , j).
Memory: 4 · nx · ny bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to X ∈ Rnx×ny w.r.t. spectral norm:

X̂ =
∑r

j=1
σjujv

T
j ,

where X = UΣV T is the singular value decomposition (SVD) of X .

The approximation error is
∥∥∥X − X̂

∥∥∥
2

= σr+1.

Idea for dimension reduction

Instead of X save u1, . . . , ur , σ1v1, . . . , σrvr .
 memory = 4r × (nx + ny ) bytes.
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Example: Image Compression by Truncated SVD

Example: Clown

320× 200 pixel
 ≈ 256 kb

rank r = 50, ≈ 104 kb

rank r = 20, ≈ 42 kb
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Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:
James H. Wilkinson, Wallace Givens,
George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kb
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Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:
James H. Wilkinson, Wallace Givens,
George Forsythe, Alston Householder,

Peter Henrici, Fritz L. Bauer.

640× 480 pixel, ≈ 1229 kb

rank r = 100, ≈ 448 kb

rank r = 50, ≈ 224 kb
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Background: Singular Value Decay

Image data compression via SVD works, if the singular values decay
(exponentially).

Singular Values of the Image Data Matrices
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Model Reduction for Dynamical Systems

Dynamical Systems

Σ :

{
ẋ(t) = f (t, x(t), u(t)), x(t0) = x0,
y(t) = g(t, x(t), u(t))

with

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.
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Reduced-Order System

Σ̂ :

{
˙̂x(t) = f̂ (t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.
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Goal:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂ .
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

ẋ = f (t, x , u) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

ẋ = f (t, x , u) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

Assumptions (for now): t0 = 0, x0 = x(0) = 0, D = 0.
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

ẋ = f (t, x , u) = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = g(t, x , u) = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

State-Space Description for I/O-Relation

Variation-of-constants =⇒

S : u 7→ y , y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.
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∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.

S : U → Y is a linear operator between (function) spaces.

Recall: matrix in Rn×m is a linear operator, mapping Rm → Rn!

Basic Idea: use SVD approximation as for matrix A!

Problem: in general, S does not have a discrete SVD and can
therefore not be approximated as in the matrix case!
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Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx , C ∈ Rp×n.

Alternative to State-Space Operator: Hankel operator

Instead of

S : u 7→ y , y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ for all t ∈ R.

use Hankel operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.
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use Hankel operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact, finite-dimensional ⇒ H has discrete SVD

 Hankel singular values {σj}∞j=1 : σ1 ≥ . . . ≥ σn ≥ σn+1 = 0 = . . . = 0.
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CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact, finite-dimensional ⇒ H has discrete SVD

 Hankel singular values {σj}∞j=1 : σ1 ≥ . . . ≥ σn ≥ σn+1 = 0 = . . . = 0.

=⇒ SVD-type approximation of H possible!
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Alternative to State-Space Operator: Hankel operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact ⇒ H has discrete SVD

⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed

⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally challenging for large-scale systems.

Recent progress in [B./Werner 2020].
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ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx , C ∈ Rp×n.

Alternative to State-Space Operator: Hankel operator

H : u− 7→ y+, y+(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ for all t > 0.

H compact ⇒ H has discrete SVD

⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed

⇒ solution: Adamjan-Arov-Krein (AAK Theory, 1971/78).

But: computationally challenging for large-scale systems.

Recent progress in [B./Werner 2020].

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 15/52

mailto:benner@mpi-magdeburg.mpg.de


Model Reduction for Linear Systems

Linear, Time-Invariant (LTI) Systems
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Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

Assumptions: t0 = 0, x0 = x(0) = 0.

Laplace Transform / Frequency Domain

Application of Laplace transform

L : x(t) 7→ x(s) =

∫ ∞
0

e−stx(t) dt (⇒ ẋ(t) 7→ sx(s))

with s ∈ C leads to linear system of equations:

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s).
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Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

Σ :

{
ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

Assumptions: t0 = 0, x0 = x(0) = 0.

Laplace Transform / Frequency Domain

sx(s) = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s)

yields I/O-relation in frequency domain:

y(s) =
(
C (sIn − A)−1B + D︸ ︷︷ ︸

=:G(s)

)
u(s) = G (s)u(s).

G is the transfer function of Σ, G : Lm2 → L
p
2 (L2 := L(L2(−∞,∞))).
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Model Reduction as Approximation Problem

Approximation Problem

Approximate the dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m.

by reduced-order system

˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rp×r , D̂ ∈ Rp×m.

of order r � n, such that

‖y − ŷ‖ =
∥∥∥Gu − Ĝu

∥∥∥ ≤ ∥∥∥G − Ĝ
∥∥∥ ‖u‖ ≤ tolerance · ‖u‖ .

=⇒ Approximation problem: minorder (Ĝ)≤r

∥∥∥G − Ĝ
∥∥∥.
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Basics of Systems and Control Theory
Properties of linear systems

Definition

A linear system

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

is stable if its transfer function G (s) has all its poles in the left half plane
and it is asymptotically (or Lyapunov or exponentially) stable if all poles
are in the open left half plane C− := {z ∈ C | <(z) < 0}.

Lemma

Sufficient for asymptotic stability is that A is asymptotically stable (or
Hurwitz), i.e., the spectrum of A, denoted by Λ (A), satisfies Λ (A) ⊂ C−.

Note that by abuse of notation, often stable system is used for asymptotically

stable systems.
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Basics of Systems and Control Theory
Properties of linear systems

Questions:

For fixed x0 ∈ Rn and some x1 ∈ Rn, is there a feasible control function
u ∈ Uad (e.g., Uad ∈ {C k [0,T ], L2(0,T ),PC [0,T ]}, possibly with constraints

u(t) ≤ u(t) ≤ u(t)) and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of targets x1 reachable from x0?

For fixed x1 ∈ Rn and some x0 ∈ Rn, is there a feasible control function
u ∈ Uad and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of initial conditions x0 controllable to x1?
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Basics of Systems and Control Theory
Properties of linear systems

Questions:

For fixed x0 ∈ Rn and some x1 ∈ Rn, is there a feasible control function
u ∈ Uad (e.g., Uad ∈ {C k [0,T ], L2(0,T ),PC [0,T ]}, possibly with constraints

u(t) ≤ u(t) ≤ u(t)) and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of targets x1 reachable from x0?

For fixed x1 ∈ Rn and some x0 ∈ Rn, is there a feasible control function
u ∈ Uad and time t1 > t0 = 0 such that x(t1; u) = x1?
What is the set of initial conditions x0 controllable to x1?

Note: for LTI systems ẋ = Ax + Bu, both concepts are equivalent!
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Basics of Systems and Control Theory
Properties of linear systems

Definition (Controllability)

Consider the target (the state to be reached) x1 ∈ Rn.

a) An LTI system with initial value x(0) = x0 is controllable to x1 in time t1 > 0
if there exists u ∈ Uad such that x(t1; u) = x1.

(Equivalently, (t1, x
1) is reachable from (0, x0).)

b) x0 is controllable to x1 if there exists a t1 > 0 such that (t1, x
1) can be

reached from (0, x0).

c) If the system is controllable to x1 for all x0 ∈ Rn, it is (completely)
controllable.

The controllability set w.r.t. x1 is defined as C :=
⋃

t1>0
C(t1) where

C(t1) := {x0 ∈ Rn | ∃u ∈ Uad : x(t1; u) = x1}.

In short: an LTI system is controllable ⇐⇒ C = Rn.
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Basics of Systems and Control Theory
Properties of linear systems

Now: characterize controllability.
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Basics of Systems and Control Theory
Properties of linear systems

Now: characterize controllability.
Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).
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Basics of Systems and Control Theory
Properties of linear systems

Now: characterize controllability.
Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).

Hence, if x0 is controllable to x1:

x1 = x(t1) = eAt1x0 +

∫ t1

0

eA(t1−t)Bu(t)dt

This is equivalent to

e−At1x1 − x0 =

∫ t1

0

e−AtBu(t)dt.
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Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).

Hence, if x0 is controllable to x1:

x1 = x(t1) = eAt1x0 +

∫ t1

0

eA(t1−t)Bu(t)dt

This is equivalent to

e−At1x1 − x0 =

∫ t1

0

e−AtBu(t)dt.

Ansatz: u(t) = BT e−A
T tc =⇒

e−At1x1 − x0 =

∫ t1

0

e−AtBBT e−A
T tdtc =: P(0, t1)c .
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Basics of Systems and Control Theory
Properties of linear systems

Now: characterize controllability.
Variation of constants =⇒

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds = eAt(x0 +

∫ t

0

e−AsBu(s)ds).

Hence, if x0 is controllable to x1:

x1 = x(t1) = eAt1x0 +

∫ t1

0

eA(t1−t)Bu(t)dt

This is equivalent to

e−At1x1 − x0 =

∫ t1

0

e−AtBu(t)dt.

Ansatz: u(t) = BT e−A
T tc =⇒

e−At1x1 − x0 =

∫ t1

0

e−AtBBT e−A
T tdtc =: P(0, t1)c .

Hence, an LTI system is controllable iff this linear system is solvable for c ∈ Rn,
i.e., iff P(0, t1) is invertible. (Note: P(0, t1) = P(0, t1)T ≥ 0 by definition!)
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Basics of Systems and Control Theory
Properties of linear systems

Now: characterize controllability.

Theorem

For an LTI system defined by (A,B) ∈ Rn×n × Rn×m, T.F.A.E.:

a) The LTI system ẋ = Ax + Bu is controllable.

b) The finite time Gramian P(0, t1) is spd ∀ t1 > 0.

c) The controllability matrix

K (A,B) := [B,AB,A2B, . . . ,An−1B] ∈ Rn×n·m

has full rank n. (Note: range(K (A,B)) = C(t1) ∀ t1 > 0!)

d) If z is a left eigenvector of A, then z∗B 6= 0.

e) (Hautus test) rank([λI − A,B]) = n ∀λ ∈ C.
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Basics of Systems and Control Theory
Properties of linear systems

The Gramian characterization of controllability for stable systems can be based on
positive definiteness of the (infinite) controllability Gramian

P :=

∫ ∞
0

eAsBBT eA
T sds,

using congruence of P(0, t1) to
t1∫
0

eAsBBT eA
T sds and taking the limit t1 →∞.
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Basics of Systems and Control Theory
Properties of linear systems

The Gramian characterization of controllability for stable systems can be based on
positive definiteness of the (infinite) controllability Gramian

P :=

∫ ∞
0

eAsBBT eA
T sds,

using congruence of P(0, t1) to
t1∫
0

eAsBBT eA
T sds and taking the limit t1 →∞.

Theorem

For a stable LTI system defined by (A,B) ∈ Rn×n × Rn×m, T.F.A.E.:

a) The LTI system ẋ = Ax + Bu is controllable.

b) The controllability Gramian P is positive definite.
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Basics of Systems and Control Theory
Properties of linear systems

New question: suppose we have

y(t) = ỹ(t)

corresponding to two trajectories x , x̃ obtained by the same input function u(t).
Can we conclude that x(0) = x̃(0), or even stronger, that x(t) = x̃(t) for
t ≤ 0, t ≥ 0 (past/future)?

(Note that x(t0) = x̃(t0) is sufficient as trajectory uniquely determined. In other
words, is the mapping x0 → y(t) injective?)
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Basics of Systems and Control Theory
Properties of linear systems

New question: suppose we have

y(t) = ỹ(t)

corresponding to two trajectories x , x̃ obtained by the same input function u(t).
Can we conclude that x(0) = x̃(0), or even stronger, that x(t) = x̃(t) for
t ≤ 0, t ≥ 0 (past/future)?

(Note that x(t0) = x̃(t0) is sufficient as trajectory uniquely determined. In other
words, is the mapping x0 → y(t) injective?)

Definition (Observability)

An LTI system is reconstructable (observable) if for solution trajectories x(t), x̃(t)
obtained with the same input function u, we have

y(t) = ỹ(t) ∀t ≤ 0 (∀t ≥ 0)

=⇒ x(t) = x̃(t) ∀t ≤ 0 (∀t ≥ 0).
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Basics of Systems and Control Theory
Properties of linear systems

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
ẋ(t) = −AT x(t)− CTu(t) is controllable.
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Basics of Systems and Control Theory
Properties of linear systems

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
ẋ(t) = −AT x(t)− CTu(t) is controllable.

Theorem

For an LTI system defined by (A,C ) ∈ Rn×n × Rp×n, T.F.A.E.:

a) The LTI system is reconstructable.

b) The LTI system is observable.

c) The observability matrix

O(A,C ) =
[
CT ,ATCT , (A2)TC , . . . , (An−1)TCT

]T ∈ Rnp×n has rank n.

d) If Ax = λx , then CT x 6= 0.

e) (Hautus test) rank

[
λI − A

C

]
= n.
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Basics of Systems and Control Theory
Properties of linear systems

Characterization of observability/reconstructability:

Theorem (Duality)

An LTI system is reconstructable if and only if the dual system
ẋ(t) = −AT x(t)− CTu(t) is controllable.

Theorem

A stable LTI system is observable if and only if the observability Gramian

Q :=

∞∫
0

eA
T tCTCeAtdt

is symmetric positive definite.
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Basics of Systems and Control Theory
Properties of linear systems

Controllability/observability are sometimes too strong.

Weaker requirement: is there u ∈ Uad to steer x0 to vicinity of x1?

For LTI systems, it suffices to consider x1 = 0!

Hence, is there u ∈ Uad so that limt→∞ x(t; u) = 0 (∀ x0 ∈ Rn)?

If the answer is yes, then the LTI system is called stabilizable
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Basics of Systems and Control Theory
Properties of linear systems

Controllability/observability are sometimes too strong.

Weaker requirement: is there u ∈ Uad to steer x0 to vicinity of x1?

For LTI systems, it suffices to consider x1 = 0!

Hence, is there u ∈ Uad so that limt→∞ x(t; u) = 0 (∀ x0 ∈ Rn)?

If the answer is yes, then the LTI system is called stabilizable

Theorem

For an LTI system defined by (A,B) ∈ Rn×n × Rn×m, T.F.A.E.:

a) The LTI system is stabilizable.

b) ∃ feedback operator/matrix F ∈ Rm×n with Λ(A + BF ) ⊂ C−.

c) If p∗A = λ̃p∗ and Re(λ) ≥ 0, then p∗B 6= 0.

d) rank([A− λI ,B]) = n ∀λ ∈ C with Re(λ) ≥ 0.

e) Λ(A3) ⊂ C− in the (controllability) Kalman decomposition of (A,B),

V TAV =

[
A1 A2

0 A3

]
,V TB =

[
B1

0

]
.
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Basics of Systems and Control Theory
Properties of linear systems

∃ dual concept of stabilizability, analogous to duality of controllability and
observability.

Definition (Detectability)

An LTI system is detectable if for any solution x(t) of ẋ = Ax with Cx(t) ≡ 0 we
have lim

t→∞
x(t) = 0.

(We can not observe all of x , but the unobservable part is stable.)
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Basics of Systems and Control Theory
Properties of linear systems

∃ dual concept of stabilizability, analogous to duality of controllability and
observability.

Theorem

For an LTI system defined by (A,C ) ∈ Rn×n × Rp×n, T.F.A.E.:

a) The LTI system is detectable.

b) (AT ,CT ) is stabilizable.

c) Ax = λx ,Re(λ) ≥ 0⇒ CT x 6= 0.

d) rank

[
λI − A

C

]
= n for all λ,Re(λ) ≥ 0.

e) In the observability Kalman decomposition of (AT ,CT ),

W TAW =

[
A1 0
A2 A3

]
,CW = [C1 0],

we have Λ (A3) ⊂ C−.
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Realization Theory for Linear Systems
Basic principles

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G (s) = C (sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m is called a realization
of Σ.
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Realization Theory for Linear Systems
Basic principles

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G (s) = C (sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m is called a realization
of Σ.

Realizations are not unique!

Transfer function is invariant under state-space transformations,

T :

{
x → Tx ,

(A,B,C ,D) → (TAT−1,TB,CT−1,D),
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Realization Theory for Linear Systems
Basic principles

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G (s) = C (sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m is called a realization
of Σ.

Realizations are not unique!

Transfer function is invariant under addition of uncontrollable/unobservable states:

d

dt

[
x
x1

]
=

[
A 0

0 A1

][
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [ x
x1

]
+ Du(t),

d

dt

[
x
x2

]
=

[
A 0

0 A2

][
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [ x
x2

]
+ Du(t),

for arbitrary Aj ∈ Rnj×nj , j = 1, 2, B1 ∈ Rn1×m, C2 ∈ Rq×n2 and any n1, n2 ∈ N.
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Realization Theory for Linear Systems
Basic principles

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G (s) = C (sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m is called a realization
of Σ.

Realizations are not unique!

Hence,

(A,B,C ,D),

([
A 0

0 A1

]
,

[
B
B1

]
,
[
C 0

]
,D

)
,

(TAT−1,TB,CT−1,D),

([
A 0

0 A2

]
,

[
B
0

]
,
[
C C2

]
,D

)
,

are all realizations of Σ!
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Realization Theory for Linear Systems
Basic principles

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G (s) = C (sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m is called a realization
of Σ.

Definition

The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.
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Realization Theory for Linear Systems
Basic principles

Definition

For a linear (time-invariant) system

Σ :

{
ẋ(t) = Ax(t) + Bu(t), with transfer function
y(t) = Cx(t) + Du(t), G (s) = C (sI − A)−1B + D,

the quadruple (A,B,C ,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m is called a realization
of Σ.

Definition

The McMillan degree of Σ is the unique minimal number n̂ ≥ 0 of states
necessary to describe the input-output behavior completely.
A minimal realization is a realization (Â, B̂, Ĉ , D̂) of Σ with order n̂.

Theorem

A realization (A,B,C ,D) of a linear system is minimal ⇐⇒
(A,B) is controllable and (A,C ) is observable.
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a linear system Σ is balanced if its infinite
controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

When does a balanced realization exist?
Assume A to be Hurwitz, i.e. Λ (A) ⊂ C−. Then:

Theorem

Given a stable minimal linear system Σ : (A,B,C ,D), a balanced
realization is obtained by the state-space transformation with

Tb := Σ−
1
2V TR,

where P = STS , Q = RTR (e.g., Cholesky decompositions) and
SRT = UΣV T is the SVD of SRT .

Proof. Easy.© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 25/52
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem

The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem

The infinite controllability/observability Gramians P/Q satisfy the Lyapunov
equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Proof. Exercise!
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system
invariants, i.e. they are unaltered by state-space transformations!
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Realization Theory for Linear Systems
Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are Λ (PQ)
1
2 . Now let

(Â, B̂, Ĉ ,D) = (TAT−1,TB,CT−1,D)

be any transformed realization with associated controllability Lyapunov equation

0 = ÂP̂ + P̂ÂT + B̂B̂T = TAT−1P̂ + P̂T−TATTT + TBBTTT .
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Realization Theory for Linear Systems
Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are Λ (PQ)
1
2 . Now let

(Â, B̂, Ĉ ,D) = (TAT−1,TB,CT−1,D)

be any transformed realization with associated controllability Lyapunov equation

0 = ÂP̂ + P̂ÂT + B̂B̂T = TAT−1P̂ + P̂T−TATTT + TBBTTT .

This is equivalent to

0 = A(T−1P̂T−T ) + (T−1P̂T−T )AT + BBT .
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Realization Theory for Linear Systems
Balanced Realizations

Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are
system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are Λ (PQ)
1
2 . Now let

(Â, B̂, Ĉ ,D) = (TAT−1,TB,CT−1,D)

be any transformed realization with associated controllability Lyapunov equation

0 = ÂP̂ + P̂ÂT + B̂B̂T = TAT−1P̂ + P̂T−TATTT + TBBTTT .

This is equivalent to

0 = A(T−1P̂T−T ) + (T−1P̂T−T )AT + BBT .

The uniqueness of the solution of the Lyapunov equation implies that P̂ = TPTT and,
analogously, Q̂ = T−TQT−1. Therefore,

P̂Q̂ = TPQT−1,

showing that Λ (P̂Q̂) = Λ (PQ) = {σ2
1 , . . . , σ

2
n}.
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Realization Theory for Linear Systems
Balanced Realizations

Definition

A realization (A,B,C ,D) of a stable linear system Σ is balanced if its
infinite controllability/observability Gramians P/Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n − 1).

σ1, . . . , σn are the Hankel singular values of Σ.

Note: σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by definition, and σ1, . . . , σn > 0 in case of
minimality!

Remark

For non-minimal systems, the Gramians can also be transformed into diagonal
matrices with the leading n̂ × n̂ submatrices equal to diag(σ1, . . . , σn̂), and

P̂Q̂ = diag(σ2
1 , . . . , σ

2
n̂, 0, . . . , 0).

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the 2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u∗(ω)u(ω) dω.

Assume A is (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the 2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u∗(ω)u(ω) dω.

Assume A is (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M ≤ ∞ ⇒∫ ∞

−∞
y∗(ω)y(ω) dω =

∫ ∞
−∞

u∗(ω)G∗(ω)G(ω)u(ω) dω
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the 2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u∗(ω)u(ω) dω.

Assume A is (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M ≤ ∞ ⇒∫ ∞

−∞
y∗(ω)y(ω) dω =

∫ ∞
−∞

u∗(ω)G∗(ω)G(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2 ‖u(ω)‖2 dω

(Here:, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 26/52

mailto:benner@mpi-magdeburg.mpg.de


Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the 2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u∗(ω)u(ω) dω.

Assume A is (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M ≤ ∞ ⇒∫ ∞

−∞
y∗(ω)y(ω) dω =

∫ ∞
−∞

u∗(ω)G∗(ω)G(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2 ‖u(ω)‖2 dω

= M2

∫ ∞
−∞

u(ω)∗u(ω) dω < ∞.

(Here:, ‖ . ‖ denotes the Euclidian vector or spectral matrix norm.)
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the 2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u∗(ω)u(ω) dω.

Assume A is (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Then for all s ∈ C+ ∪ R, ‖G (s)‖ ≤ M ≤ ∞ ⇒∫ ∞

−∞
y∗(ω)y(ω) dω =

∫ ∞
−∞

u∗(ω)G∗(ω)G(ω)u(ω) dω

=

∫ ∞
−∞
‖G(ω)u(ω)‖2 dω ≤

∫ ∞
−∞

M2 ‖u(ω)‖2 dω

= M2

∫ ∞
−∞

u(ω)∗u(ω) dω < ∞.

=⇒ y ∈ Lp2(−∞,∞) ∼= Lp
2 .
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the 2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u∗(ω)u(ω) dω.

Assume A is (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.
Consequently, the 2-induced operator norm

‖G‖∞ := sup
‖u‖2 6=0

‖Gu‖2

‖u‖2

is well defined. It can be shown that

‖G‖∞ := sup
ω∈R
‖G (ω)‖ = sup

ω∈R
σmax (G (ω)) .
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D

and input functions u ∈ Lm
2
∼= Lm2 (−∞,∞), with the 2-norm

‖u‖2
2 :=

1

2π

∫ ∞
−∞

u∗(ω)u(ω) dω.

Assume A is (asympotically) stable: Λ (A) ⊂ C− := {z ∈ C : re z < 0}.

Hardy space H∞
Function space of analytic and bounded (in C+) matrix-/scalar-valued functions.
The H∞-norm is

‖F‖∞ := sup
re s>0

σmax (F (s)) = sup
ω∈R

σmax (F (ω)) .

Stable transfer functions are in the Hardy spaces

H∞ in the SISO case (single-input, single-output, m = p = 1);
Hp×m
∞ in the MIMO case (multi-input, multi-output, m > 1, p > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!
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System Norms

Consider the transfer function

G (s) = C (sI − A)−1 B + D.

Paley-Wiener Theorem (Parseval’s equation/Plancherel Theorem)

L2(−∞,∞) ∼= L2, L2(0,∞) ∼= H2

Consequently, 2-norms in time and frequency domains coincide!

H∞ approximation error

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂ + D̂.

‖y − ŷ‖2 =
∥∥∥Gu − Ĝu

∥∥∥
2
≤
∥∥∥G − Ĝ

∥∥∥
∞
‖u‖2 .

=⇒ compute reduced-order model such that
∥∥∥G − Ĝ

∥∥∥
∞
< tol!

Note: error bound holds in time- and frequency domain due to Paley-Wiener!
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic in C+ and
bounded w.r.t. the H2-norm

‖F‖2 :=

(
sup

reσ>0

∫ ∞
−∞
‖F (σ + ω)‖2

F dω

) 1
2

=

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

Stable transfer functions are in the Hardy spaces

H2 in the SISO case (single-input, single-output, m = p = 1);

Hp×m
2 in the MIMO case (multi-input, multi-output, m > 1, p > 1).
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Qualitative and Quantitative Study of the Approximation Error
System Norms

Consider transfer function G (s) = C (sI − A)−1 B, i.e. D = 0.

Hardy space H2

Function space of matrix-/scalar-valued functions that are analytic in C+ and
bounded w.r.t. the H2-norm

‖F‖2 =

(∫ ∞
−∞
‖F (ω)‖2

F dω

) 1
2

.

H2 approximation error for impulse response (u(t) = u0δ(t))

Reduced-order model ⇒ transfer function Ĝ (s) = Ĉ (sIr − Â)−1B̂.

‖y − ŷ‖2 =
∥∥∥Gu0δ − Ĝu0δ

∥∥∥
2
≤
∥∥∥G − Ĝ

∥∥∥
2
‖u0‖ .

=⇒ compute reduced-order model such that
∥∥∥G − Ĝ

∥∥∥
2
< tol!
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Qualitative and Quantitative Study of the Approximation Error
Approximation Problems

H∞-norm best approximation problem for given reduced order r
in general open; balanced truncation yields suboptimal
solution with computable H∞-norm bound.

H2-norm necessary conditions for best approximation known; (lo-
cal) optimizer computable with iterative rational Krylov
algorithm (IRKA)

Hankel-norm
‖G‖H := σmax

optimal Hankel norm approximation (AAK theory)
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Qualitative and Quantitative Study of the Approximation Error
Computable error measures

Evaluating system norms is computationally very (sometimes too) expensive.

Other measures

absolute errors
∥∥∥G (ωj)− Ĝ (ωj)

∥∥∥
2
,
∥∥∥G (ωj)− Ĝ (ωj)

∥∥∥
∞

(j = 1, . . . ,Nω);

relative errors
‖G(ωj )−Ĝ(ωj )‖

2

‖G(ωj )‖2
,
‖G(ωj )−Ĝ(ωj )‖∞
‖G(ωj )‖∞

;

”eyeball norm”, i.e. look at frequency response/Bode (magnitude) plot:

for SISO system, log-log plot frequency vs. |G(ω)| (or |G(ω)− Ĝ(ω)|) in
decibels, 1 dB ' 20 log10(value);
for MIMO systems, p ×m array of of plots Gij .
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1. Introduction
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Extensions

3. Balanced Truncation

4. Final Remarks
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Model Reduction by Projection
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e., want

‖y − ŷ‖ < tolerance · ‖u‖ ∀u ∈ L2(R,Rm).

=⇒ Need computable error bound/estimate!

Preserve physical properties:

– stability (poles of G in C−),
– minimum phase (zeroes of G in C−),
– passivity∫ t

−∞
u(τ)T y(τ) dτ ≥ 0 ∀t ∈ R, ∀u ∈ L2(R,Rm).

(“system does not generate energy”).

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 31/52

mailto:benner@mpi-magdeburg.mpg.de


Model Reduction by Projection
Goals

Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e., want
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Model Reduction by Projection
Linear Algebra Basics

Projector

A projector is a matrix P ∈ Rn×n with P2 = P. Let V = range(P), then P is
projector onto V. On the other hand, if {v1, . . . , vr} is a basis of V and
V = [ v1, . . . , vr ], then P = V (V TV )−1V T is a projector onto V.

Properties:

If P = PT , then P is an orthogonal projector (aka: Galerkin projection),
otherwise an oblique projector. (aka: Petrov-Galerkin projection.)

P is the identity operator on V, i.e., Pv = v ∀v ∈ V.

I − P is the complementary projector onto kerP.

If V is an A-invariant subspace corresponding to a subset of A’s spectrum,
then we call P a spectral projector.

Let W ⊂ Rn be another r -dimensional subspace and W = [w1, . . . ,wr ] be a
basis matrix for W, then P = V (W TV )−1W T is an oblique projector onto
V along W.
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Model Reduction by Projection

Methods:

1. Modal Truncation

2. Rational Interpolation (Padé-Approximation and (rational) Krylov
Subspace Methods)  Part II of tutorial, by Serkan Gugercin!

3. Balanced Truncation

4. many more. . .

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
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Model Reduction by Projection

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , where

range(V ) = V, range(W ) =W, W TV = Ir .

Then, with x̂ = W T x , we obtain x ≈ V x̂ so that

‖x − x̃‖ = ‖x − V x̂‖ ,

and the reduced-order model is

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).
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Model Reduction by Projection

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(
VW T ẋ − AVW T x − Bu

)
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Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(
VW T ẋ − AVW T x − Bu

)
= W T ẋ︸ ︷︷ ︸

˙̂x

−W TAV︸ ︷︷ ︸
=Â

W T x︸ ︷︷ ︸
=x̂

−W TB︸ ︷︷ ︸
=B̂

u
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Model Reduction by Projection

Joint feature of these methods:
computation of reduced-order model (ROM) by projection!
Assume trajectory x(t; u) is contained in low-dimensional subspace V. Thus, use
Galerkin or Petrov-Galerkin-type projection of state-space onto V along
complementary subspace W: x ≈ VW T x =: x̃ , and the reduced-order model is
x̂ = W T x

Â := W TAV , B̂ := W TB, Ĉ := CV , (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x − Ax̃ − Bu ⊥ W, since

W T
(

˙̃x − Ax̃ − Bu
)

= W T
(
VW T ẋ − AVW T x − Bu

)
= W T ẋ︸ ︷︷ ︸

˙̂x

−W TAV︸ ︷︷ ︸
=Â

W T x︸ ︷︷ ︸
=x̂

−W TB︸ ︷︷ ︸
=B̂

u

= ˙̂x − Âx̂ − B̂u = 0.
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Model Reduction by Projection

Projection  Rational Interpolation

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G (s)− Ĝ (s) =
(
C (sIn − A)−1B + D

)
−
(
Ĉ (sIn − Â)−1B̂ + D̂

)
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Model Reduction by Projection

Projection  Rational Interpolation

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G (s)− Ĝ (s) =
(
C (sIn − A)−1B + D

)
−
(
Ĉ (sIn − Â)−1B̂ + D̂

)
= C

(
(sIn − A)−1 − V (sIr − Â)−1W T

)
B
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Model Reduction by Projection

Projection  Rational Interpolation

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G (s)− Ĝ (s) =
(
C (sIn − A)−1B + D

)
−
(
Ĉ (sIn − Â)−1B̂ + D̂

)
= C

(
(sIn − A)−1 − V (sIr − Â)−1W T

)
B

= C
(
In − V (sIr − Â)−1W T (sIn − A)︸ ︷︷ ︸

=:P(s)

)
(sIn − A)−1B.
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Model Reduction by Projection

Projection  Rational Interpolation

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G (s)− Ĝ (s) =
(
C (sIn − A)−1B + D

)
−
(
Ĉ (sIn − Â)−1B̂ + D̂

)
= C

(
In − V (sIr − Â)−1W T (sIn − A)︸ ︷︷ ︸

=:P(s)

)
(sIn − A)−1B.

P(s) is a projector onto V:

range(P(s)) ⊂ range(V ), all matrices have full rank ⇒ ”=”, and

P(s)2 = V (sIr − Â)−1W T (sIn − A)V (sIr − Â)−1W T (sIn − A)
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Model Reduction by Projection

Projection  Rational Interpolation

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G (s)− Ĝ (s) =
(
C (sIn − A)−1B + D

)
−
(
Ĉ (sIn − Â)−1B̂ + D̂

)
= C

(
In − V (sIr − Â)−1W T (sIn − A)︸ ︷︷ ︸

=:P(s)

)
(sIn − A)−1B.

P(s) is a projector onto V:

range(P(s)) ⊂ range(V ), all matrices have full rank ⇒ ”=”, and

P(s)2 = V (sIr − Â)−1W T (sIn − A)V (sIr − Â)−1W T (sIn − A)

= V (sIr − Â)−1 (sIr − Â)(sIr − Â)−1︸ ︷︷ ︸
=Ir

W T (sIn − A) = P(s).
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Model Reduction by Projection

Projection  Rational Interpolation

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G (s)− Ĝ (s) =
(
C (sIn − A)−1B + D

)
−
(
Ĉ (sIn − Â)−1B̂ + D̂

)
= C

(
In − V (sIr − Â)−1W T (sIn − A)︸ ︷︷ ︸

=:P(s)

)
(sIn − A)−1B.

P(s) is a projector onto V =⇒

Given s∗ ∈ C \
(

Λ (A) ∪ Λ (Â)
)

,

if (s∗In − A)−1B ∈ V, then (In − P(s∗))(s∗In − A)−1B = 0,

hence G (s∗)− Ĝ (s∗) = 0 ⇒ G (s∗) = Ĝ (s∗), i.e., Ĝ interpolates G in s∗!
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Model Reduction by Projection

Projection  Rational Interpolation

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

the error transfer function can be written as

G (s)− Ĝ (s) =
(
C (sIn − A)−1B + D

)
−
(
Ĉ (sIn − Â)−1B̂ + D̂

)
= C

(
In − V (sIr − Â)−1W T (sIn − A)︸ ︷︷ ︸

=:P(s)

)
(sIn − A)−1B.

Analogously, = C (sIn − A)−1
(
In − (sIn − A)V (sIr − Â)−1W T︸ ︷︷ ︸

=:Q(s)

)
B.

Q(s)∗ is a projector onto W =⇒ Given s∗ ∈ C \
(

Λ (A) ∪ Λ (Â)
)

,

if (s∗In − A)−TCT ∈ W, then C (s∗In − A)−1(In − Q(s∗)) = 0,

hence G (s∗)− Ĝ (s∗) = 0 ⇒ G (s∗) = Ĝ (s∗), i.e., Ĝ interpolates G in s∗!
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Model Reduction by Projection

Theorem [Grimme 1997, Villemagne/Skelton 1987]

Given the ROM

Â = W TAV , B̂ = W TB, Ĉ = CV , (D̂ = D),

and s∗ ∈ C \ (Λ (A) ∪ Λ (Â)), if either

(s∗In − A)−1B ∈ range(V ), or

(s∗In − A)−TCT ∈ range(W ),

then at s = s∗, we obtain the (rational) interpolation condition

G (s∗) = Ĝ (s∗).

Note: extension to Hermite interpolation  Part II!
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Model Reduction by Projection
Extensions

Base enrichment

Static modes are defined by setting ẋ = 0 and assuming unit loads, i.e.,
u(t) ≡ ej , j = 1, . . . ,m:

0 = Ax(t) + Bej =⇒ x(t) ≡ −A−1bj .

Projection subspace V is then augmented by A−1[ b1, . . . , bm ] = A−1B.

Interpolation-projection framework =⇒ G (0) = Ĝ (0)!

If two-sided projection is used, complimentary subspace can be augmented
by A−TCT =⇒ G ′(0) = Ĝ ′(0)!

Note: if m 6= q, add random vectors or delete some of the columns in A−TCT .
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Model Reduction by Projection
Extensions

Guyan reduction (static condensation)

Partition states in masters x1 ∈ Rr and slaves x2 ∈ Rn−r (FEM terminology)
Assume stationarity, i.e., ẋ = 0 and solve for x2 in

0 =

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

⇒ x2 = −A−1
22 A21x1 − A−1

22 B2u.

Inserting this into the first part of the dynamic system

ẋ1 = A11x1 + A12x2 + B1u, y = C1x1 + C2x2

then yields the reduced-order model

ẋ1 = (A11 − A12A
−1
22 A21)x1 + (B1 − A12A

−1
22 B2)u

y = (C1 − C2A
−1
22 A21)x1 − C2A

−1
22 B2u.
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Outline

1. Introduction

2. Model Reduction by Projection

3. Balanced Truncation
The basic method
ADI Methods for Lyapunov Equations
Balancing-Related Model Reduction

4. Final Remarks
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Balanced Truncation

Basic principle:

Recall: an LTI system Σ, realized by (A,B,C ,D), is called balanced,
if the Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ =: CeAt

∫ 0

−∞
e−AτBu(τ) dτ︸ ︷︷ ︸

=:z
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ =: CeAt

∫ 0

−∞
e−AτBu(τ) dτ︸ ︷︷ ︸

=:z

= CeAtz .
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ = CeAtz .

Hankel singular values = square roots of eigenvalues of H∗H,

H∗y(t) =

∫ ∞
0

BT eA
T (τ−t)CT y(τ) dτ
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ = CeAtz .

Hankel singular values = square roots of eigenvalues of H∗H,

H∗y(t) =

∫ ∞
0

BT eA
T (τ−t)CT y(τ) dτ = BT e−AT t

∫ ∞
0

eA
T τCT y(τ) dτ.
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ = CeAtz .

Hankel singular values = square roots of eigenvalues of H∗H,

H∗y(t) = = BT e−AT t

∫ ∞
0

eA
T τCT y(τ) dτ.

Hence,

H∗Hu(t) = BT e−AT t

∫ ∞
0

eA
T τCTCeAτz dτ
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ = CeAtz .

Hankel singular values = square roots of eigenvalues of H∗H,

H∗y(t) = = BT e−AT t

∫ ∞
0

eA
T τCT y(τ) dτ.

Hence,

H∗Hu(t) = BT e−AT t

∫ ∞
0

eA
T τCTCeAτz dτ

= BT e−AT t

∫ ∞
0

eA
T τCTCeAτ dτ︸ ︷︷ ︸
≡Q

z
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ = CeAtz .

Hankel singular values = square roots of eigenvalues of H∗H,

H∗y(t) = = BT e−AT t

∫ ∞
0

eA
T τCT y(τ) dτ.

Hence,

H∗Hu(t) = BT e−AT t

∫ ∞
0

eA
T τCTCeAτz dτ

= BT e−AT tQz
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

y(t) = Hu(t) =

∫ 0

−∞
CeA(t−τ)Bu(τ) dτ = CeAtz .

Hankel singular values = square roots of eigenvalues of H∗H,

H∗y(t) = = BT e−AT t

∫ ∞
0

eA
T τCT y(τ) dτ.

Hence,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of H∗H,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).

=⇒ u(t) = 1
σ2 B

T e−AT tQz
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of H∗H,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).

=⇒ u(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0

−∞ e−AτBu(τ) dτ)
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of H∗H,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).

=⇒ u(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0

−∞ e−AτBu(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of H∗H,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).

=⇒ u(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0

−∞ e−AτBu(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ 0

−∞
e−AτBBT e−AT τ dτ Qz
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of H∗H,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).

=⇒ u(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0

−∞ e−AτBu(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ 0

−∞
e−AτBBT e−AT τ dτ Qz

=
1

σ2

∫ ∞
0

eAtBBT eA
T t dt︸ ︷︷ ︸

≡P

Qz
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of H∗H,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).

=⇒ u(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0

−∞ e−AτBu(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ ∞
0

eAtBBT eA
T t dt︸ ︷︷ ︸

≡P

Qz

=
1

σ2
PQz
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Balanced Truncation

Basic principle:

Lyapunov eqns.: AP + PAT + BBT = 0, ATQ + QA + CTC = 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of H∗H,

H∗Hu(t) = BT e−AT tQz
.

= σ2u(t).

=⇒ u(t) = 1
σ2 B

T e−AT tQz =⇒ (recalling z =
∫ 0

−∞ e−AτBu(τ) dτ)

z =

∫ 0

−∞
e−AτB

1

σ2
BT e−AT τQz dτ

=
1

σ2

∫ ∞
0

eAtBBT eA
T t dt︸ ︷︷ ︸

≡P

Qz

=
1

σ2
PQz

⇐⇒ PQz = σ2z .
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Balanced Truncation

Basic principle:

Recall: an LTI system Σ, realized by (A,B,C ,D), is called balanced,
if the Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

Λ (PQ)
1
2 = {σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization of the system via state-space
transformation

T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

]
,D

)

Truncation  (Â, B̂, Ĉ , D̂) := (A11,B1,C1,D).
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Balanced Truncation

Motivation:

HSVs are system invariants: they are preserved under
T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D):

in transformed coordinates, the Gramians satisfy

(TAT−1)(TPTT ) + (TPTT )(TAT−1)T + (TB)(TB)T = 0,

(TAT−1)T (T−TQT−1) + (T−TQT−1)(TAT−1) + (CT−1)T (CT−1) = 0

⇒ (TPTT )(T−TQT−1) = TPQT−1,

hence Λ (PQ) = Λ ((TPTT )(T−TQT−1)).
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Balanced Truncation

Motivation:

HSVs are system invariants: they are preserved under
T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D).

HSVs determine the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 36/52

mailto:benner@mpi-magdeburg.mpg.de


Balanced Truncation

Motivation:

HSVs are system invariants: they are preserved under
T : (A,B,C ,D) 7→ (TAT−1,TB,CT−1,D).

HSVs determine the energy transfer given by the Hankel map

H : L2(−∞, 0) 7→ L2(0,∞) : u− 7→ y+.

In balanced coordinates . . . energy transfer from u− to y+:

E := sup
u∈L2(−∞,0]

x(0)=x0

∞∫
0

y(t)T y(t) dt

0∫
−∞

u(t)Tu(t) dt

=
1

‖x0‖2

n∑
j=1

σ2
j x

2
0,j

=⇒ Truncate states corresponding to “small” HSVs
=⇒ complete analogy to best approximation via SVD!
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Balanced Truncation

Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, P = STS , Q = RTR.

2. Compute SVD SRT = [U1, U2 ]

[
Σ1

Σ2

] [
V T

1

V T
2

]
.

3. ROM is (W TAV ,W TB,CV ,D), where

W = RTV1Σ
− 1

2
1 , V = STU1Σ

− 1
2

1 .
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=⇒ VW T is an oblique projector, hence balanced truncation is a
Petrov-Galerkin projection method.
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Balanced Truncation

Properties:

Reduced-order model is stable with HSVs σ1, . . . , σr .

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2 .
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Balanced Truncation

Properties:

General misconception: complexity O(n3) – true for several
implementations! (e.g., MATLAB, SLICOT).

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 36/52

mailto:benner@mpi-magdeburg.mpg.de


Balanced Truncation

Properties:

General misconception: complexity O(n3) – true for several
implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 36/52

mailto:benner@mpi-magdeburg.mpg.de


Balanced Truncation

Properties:

General misconception: complexity O(n3) – true for several
implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:

– Instead of Gramians P,Q
compute S ,R ∈ Rn×k , k � n,
such that

P ≈ SST , Q ≈ RRT .

– Compute S ,R with
problem-specific Lyapunov
solvers of “low” complexity
directly.

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 36/52

mailto:benner@mpi-magdeburg.mpg.de


Balanced Truncation

Properties:

General misconception: complexity O(n3) – true for several
implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:

Sparse Balanced Truncation:

– Implementation using sparse Lyapunov solver
(→ ADI+sparse LU).

– Complexity O(n(k2 + r2)).

– Software:

+ MATLAB toolbox LyaPack (Penzl 1999),
+ Software library M.E.S.S.a in C/MATLAB [B./Saak/Köhler/uvm.],
+ pyMOR.

aMatrix Equation Sparse Solvers
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ADI Methods for Lyapunov Equations
Background

Recall Peaceman-Rachford ADI:

Consider Au = s where A ∈ Rn×n spd, s ∈ Rn.

ADI iteration idea: decompose A = H + V with H,V ∈ Rn×n such that

(H + pI )v = r
(V + pI )w = t

can be solved easily/efficiently.

ADI Iteration

If H,V spd ⇒ ∃pk , k = 1, 2, . . . , such that

u0 = 0
(H + pk I )uk− 1

2
= (pk I − V )uk−1 + s

(V + pk I )uk = (pk I − H)uk− 1
2

+ s

converges to u ∈ Rn solving Au = s.
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ADI Methods for Lyapunov Equations

The Lyapunov operator

L : P 7→ AX + XAT

can be decomposed into the linear operators

LH : X 7→ AX , LV : X 7→ XAT .

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation [Wachspress 1988]

X0 = 0,
(A + pk I )Xk− 1

2
= −W − Xk−1(AT − pk I ),

(A + pk I )X
T
k = −W − XT

k− 1
2

(AT − pk I ).
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ADI Methods for Lyapunov Equations
Low-Rank ADI

Consider AX + XAT = −BBT for stable A, B ∈ Rn×m with m� n.

ADI iteration for the Lyapunov equation [Wachspress 1988]

For k = 1, . . . , kmax

X0 = 0
(A + pk I )Xk− 1

2
= −BBT − Xk−1(AT − pk I )

(A + pk I )X
T
k = −BBT − XT

k− 1
2

(AT − pk I )

Rewrite as one step iteration and factorize Xk = ZkZ
T
k , k = 0, . . . , kmax

Z0Z
T
0 = 0

ZkZ
T
k = −2pk(A + pk I )

−1BBT (A + pk I )
−T

+(A + pk I )
−1(A− pk I )Zk−1Z

T
k−1(A− pk I )

T (A + pk I )
−T

. . . low-rank Cholesky factor ADI [Penzl 1997/2000, Li/White 1999/2002,

B./Li/Penzl 1999/2008, Gugercin/Sorensen/Antoulas 2003]
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ADI Methods for Lyapunov Equations
Low-rank ADI

Zk = [
√
−2pk(A + pk I )

−1B, (A + pk I )
−1(A− pk I )Zk−1] [Penzl ’00]

Observing that (A− pi I ), (A + pk I )
−1 commute, we rewrite Zkmax as

Zkmax = [zkmax , Pkmax−1zkmax , Pkmax−2(Pkmax−1zkmax ), . . . , P1(P2 · · ·Pkmax−1zkmax )],

where
zkmax =

√
−2pkmax (A + pkmax I )

−1B

and

Pi :=

√
−2pi√
−2pi+1

[
I − (pi + pi+1)(A + pi I )

−1
]
.

[Li/White ’02]

 Need to solve only one (sparse) linear system with m right-hand
sides per iteration!

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 40/52

mailto:benner@mpi-magdeburg.mpg.de


ADI Methods for Lyapunov Equations
Low-rank ADI

Zk = [
√
−2pk(A + pk I )

−1B, (A + pk I )
−1(A− pk I )Zk−1] [Penzl ’00]

Observing that (A− pi I ), (A + pk I )
−1 commute, we rewrite Zkmax as

Zkmax = [zkmax , Pkmax−1zkmax , Pkmax−2(Pkmax−1zkmax ), . . . , P1(P2 · · ·Pkmax−1zkmax )],

where
zkmax =

√
−2pkmax (A + pkmax I )

−1B

and

Pi :=

√
−2pi√
−2pi+1

[
I − (pi + pi+1)(A + pi I )

−1
]
.

[Li/White ’02]

 Need to solve only one (sparse) linear system with m right-hand
sides per iteration!

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 40/52

mailto:benner@mpi-magdeburg.mpg.de


ADI Methods for Lyapunov Equations
Low-rank ADI

Zk = [
√
−2pk(A + pk I )

−1B, (A + pk I )
−1(A− pk I )Zk−1] [Penzl ’00]

Observing that (A− pi I ), (A + pk I )
−1 commute, we rewrite Zkmax as

Zkmax = [zkmax , Pkmax−1zkmax , Pkmax−2(Pkmax−1zkmax ), . . . , P1(P2 · · ·Pkmax−1zkmax )],

where
zkmax =

√
−2pkmax (A + pkmax I )

−1B

and

Pi :=

√
−2pi√
−2pi+1

[
I − (pi + pi+1)(A + pi I )

−1
]
.

[Li/White ’02]

 Need to solve only one (sparse) linear system with m right-hand
sides per iteration!

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 40/52

mailto:benner@mpi-magdeburg.mpg.de


ADI Methods for Lyapunov Equations
Lyapunov equation 0 = AX + XAT + BBT .

Algorithm [Penzl 1997/2000, Li/White 1999/2002, B. 2004, B./Li/Penzl 1999/2008]

V1 ←
√
−2 re p1(A + p1I )

−1B, Z1 ← V1

FOR k = 2, 3, . . .

Vk ←
√

re pk
re pk−1

(
Vk−1 − (pk + pk−1)(A + pk I )

−1Vk−1

)
Zk ←

[
Zk−1 Vk

]
Zk ← rrlq(Zk , τ) % column compression, optional

At convergence, ZkmaxZ
T
kmax
≈ X , where (without column compression)

Zkmax =
[
V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic is possible: combine two steps
[B./Li/Penzl 1999/2008] or employ the relations of consecutive complex factors
[B./Kürschner/Saak 2011].
Current implementations (pyMOR, M.E.S.S.) employ low-rank property of
residual, update residual in each step, and compute new shifts on the fly!
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[B./Kürschner/Saak 2011].
Current implementations (pyMOR, M.E.S.S.) employ low-rank property of
residual, update residual in each step, and compute new shifts on the fly!

© Peter Benner, benner@mpi-magdeburg.mpg.de Balancing-based Methods 41/52

mailto:benner@mpi-magdeburg.mpg.de


ADI Methods for Lyapunov Equations
Lyapunov equation 0 = AX + XAT + BBT .

Algorithm [Penzl 1997/2000, Li/White 1999/2002, B. 2004, B./Li/Penzl 1999/2008]

V1 ←
√
−2 re p1(A + p1I )

−1B, Z1 ← V1

FOR k = 2, 3, . . .

Vk ←
√

re pk
re pk−1

(
Vk−1 − (pk + pk−1)(A + pk I )

−1Vk−1

)
Zk ←

[
Zk−1 Vk

]
Zk ← rrlq(Zk , τ) % column compression, optional

At convergence, ZkmaxZ
T
kmax
≈ X , where (without column compression)

Zkmax =
[
V1 . . . Vkmax

]
, Vk = ∈ Cn×m.

Note: Implementation in real arithmetic is possible: combine two steps
[B./Li/Penzl 1999/2008] or employ the relations of consecutive complex factors
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Numerical Results for ADI
Optimal Cooling of Steel Profiles

Mathematical model: boundary control for
linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , 1 ≤ k ≤ 7,

∂

∂n
x = 0, ξ ∈ Γ7.

=⇒ m = 7, p = 6.

FEM Discretization, different models for
initial mesh (n = 371),
1, 2, 3, 4 steps of mesh refinement ⇒
n = 1357, 5177, 20209, 79841.

2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Source: Physical model: courtesy of Mannesmann/Demag.
Math. model: Tröltzsch/Unger 1999/2001, Penzl 1999, Saak 2003.
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Numerical Results for ADI
Optimal Cooling of Steel Profiles

Solve dual Lyapunov equations needed for balanced truncation, i.e.,

APMT + MPAT + BBT = 0, ATQM + MTQA + CTC = 0,

for 79, 841.
25 shifts chosen by Penzl heuristic from 50/25 Ritz values of A of
largest/smallest magnitude, no column compression performed.
M.E.S.S. requires no factorization of mass matrix.
Computations done on Core2Duo at 2.8GHz with 3GB RAM and
32Bit-MATLAB.
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Other Projection-based Lyapunov Solvers
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1. Compute orthonormal basis range(Z ), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .
2. Set Â := ZTAZ , B̂ := ZTB.
3. Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4. Use X ≈ ZX̂ZT .

Examples:

Krylov subspace methods, i.e., for m = 1:

Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Saad 1990, Jaimoukha/Kasenally 1994, Jbilou 2002–08].

Extended (and rational) Krylov method (EKSM, RKSM) [Simoncini 2007,

Druskin/Knizhnerman/Simoncini 2011],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Z = K(A,B, r) = span{B,AB,A2B, . . . ,Ar−1B}

[Saad 1990, Jaimoukha/Kasenally 1994, Jbilou 2002–08].

Extended (and rational) Krylov method (EKSM, RKSM) [Simoncini 2007,

Druskin/Knizhnerman/Simoncini 2011],

Z = K(A,B, r) ∪ K(A−1,B, r).
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Other Projection-based Lyapunov Solvers
Lyapunov equation 0 = AX + XAT + BBT

Projection-based methods for Lyapunov equations with A + AT < 0:
1. Compute orthonormal basis range(Z ), Z ∈ Rn×r , for subspace Z ⊂ Rn,

dimZ = r .
2. Set Â := ZTAZ , B̂ := ZTB.
3. Solve small-size Lyapunov equation ÂX̂ + X̂ ÂT + B̂B̂T = 0.
4. Use X ≈ ZX̂ZT .

Examples:

ADI subspace [B./R.-C. Li/Truhar 2008]:

Z = colspan
[
V1, . . . , Vr

]
.

Note:

1. ADI subspace is rational Krylov subspace [J.-R. Li/White 2002].
2. Similar approach: ADI-preconditioned global Arnoldi method

[Jbilou 2008].
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Balanced Truncation
Numerical example for BT: Optimal Cooling of Steel Profiles

n = 1357, Absolute Error

– BT model computed with sign
function method,

– MT w/o static condensation,
same order as BT model.

n = 79841, Absolute Error

– BT model computed using
M.E.S.S. in MATLAB,

– dualcore, computation time: <10
min.
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Balanced Truncation
Numerical example for BT: Microgyroscope (Butterfly Gyro)

By applying AC voltage to
electrodes, wings are forced to
vibrate in anti-phase in wafer plane.

Coriolis forces induce motion of
wings out of wafer plane yielding
sensor data.

Vibrating micro-mechanical
gyroscope for inertial navigation.

Rotational position sensor.

Source: http://modelreduction.org/index.php/Modified_Gyroscope
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Balanced Truncation
Numerical example for BT: Microgyroscope (Butterfly Gyro)

FEM discretization of structure dynamical model using quadratic tetrahedral
elements (ANSYS-SOLID187)
 n = 34, 722, m = 1, p = 12.

Reduced model computed using SpaRed, r = 30.

Frequency Repsonse Analysis Hankel Singular Values
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Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.
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Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Classical Balanced Truncation (BT) [Mullis/Roberts 1976, Moore 1981]

P = controllability Gramian of system given by (A,B,C ,D).

Q = observability Gramian of system given by (A,B,C ,D).

P,Q solve dual Lyapunov equations

AP + PAT + BBT = 0, ATQ + QA + CTC = 0.
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P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

LQG Balanced Truncation (LQGBT) [Jonckheere/Silverman 1983]

P/Q = controllability/observability Gramian of closed-loop system
based on LQG compensator.

P,Q solve dual algebraic Riccati equations (AREs)

0 = AP + PAT − PCTCP + BTB,

0 = ATQ + QA− QBBTQ + CTC .
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Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Balanced Stochastic Truncation (BST) [Desai/Pal 1984, Green 1988]

P = controllability Gramian of system given by (A,B,C ,D), i.e.,
solution of Lyapunov equation AP + PAT + BBT = 0.

Q = observability Gramian of right spectral factor of power spectrum
of system given by (A,B,C ,D), i.e., solution of ARE

ÂTQ + QÂ + QBW (DDT )−1BT
WQ + CT (DDT )−1C = 0,

where Â := A− BW (DDT )−1C , BW := BDT + PCT .
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Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Positive-Real Balanced Truncation (PRBT) [Green ’88]

Based on positive-real equations, related to positive real
(Kalman-Yakubovich-Popov-Anderson) lemma.

P,Q solve dual AREs

0 = ĀP + PĀT + PCT R̄−1CP + BR̄−1BT ,

0 = ĀTQ + QĀ + QBR̄−1BTQ + CT R̄−1C ,

where R̄ = D + DT , Ā = A− BR̄−1C .
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Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices P = STS , Q = RTR, compute
balancing state-space transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Other Balancing-Based Methods

Bounded-real balanced truncation (BRBT) – based on bounded real
lemma [Opdenacker/Jonckheere ’88];

H∞ balanced truncation (HinfBT) – closed-loop balancing based on
H∞ compensator [Mustafa/Glover ’91].

Both approaches require solution of dual AREs.

Frequency-weighted versions of the above approaches.
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Balancing-Related Model Reduction
Properties

Guaranteed preservation of physical properties like

– stability (all),
– passivity (PRBT),
– minimum phase (BST).

Computable error bounds, e.g.,

BT: ‖G − Gr‖∞ ≤ 2
n∑

j=r+1

σBT
j ,

LQGBT: ‖G − Gr‖∞ ≤ 2
n∑

j=r+1

σLQG
j√

1+(σLQG
j

)2

BST: ‖G − Gr‖∞ ≤
( n∏

j=r+1

1+σBST
j

1−σBST
j

− 1
)
‖G‖∞ ,

Can be combined with singular perturbation approximation ( = Guyan
reduction applied to balanced realization!) for improved steady-state
performance.

Computations can be modularized  software packages M-M.E.S.S.,
MORLAB, see http://www.mpi-magdeburg.mpg.de/823508/software.
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Outline

1. Introduction

2. Model Reduction by Projection

3. Balanced Truncation

4. Final Remarks
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Current Research Topics

Special methods for second-order (mechanical) and delay systems.

Extensions to bilinear, quadratic-bilinear, polynomial, and stochastic
systems.

Empirical variants using snapshots  ICERM semester visitor
Christian Himpe!

MOR methods for discrete-time systems.

Extensions to descriptor systems Eẋ = Ax + Bu, E singular.

Parametric model reduction:

ẋ = A(p)x + B(p)u, y = C (p)x ,

where p ∈ Rd is a free parameter vector; parameters should be
preserved in the reduced-order model.
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