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A Process Chain in Computational Sciences and Engineering (CSE)
Model Order Reduction (MOR)
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A Process Chain in Computational Sciences and Engineering (CSE)
Data-Driven Sciences
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A Process Chain in Computational Sciences and Engineering (CSE)

Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.
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A Process Chain in Computational Sciences and Engineering (CSE)

Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.

 Data-enhanced model reduction methods.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction
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Outline

1. Model Order Reduction of Dynamical Systems
Model Reduction of Linear Systems
Model Reduction in Frequency Domain
MOR Methods Based on Projection

2. Data-driven/-enhanced Model Reduction
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Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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outputs ŷ(t) ∈ Rp.

Goals:
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Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Reduction of Linear Systems
Model Reduction Schematically

E,A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m

Ê, Â ∈ Rr×r

B̂ ∈ Rr×m

Ĉ ∈ Rp×r

D̂ ∈ Rp×m
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Model Reduction in Frequency Domain
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),
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Model Reduction in Frequency Domain
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),

=⇒ I/O-relation in frequency domain:

Y (s) =
(
C(sIn −A)−1B +D︸ ︷︷ ︸

=:H(s)

)
U(s).

H(s) is the transfer function of Σ.
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Model Reduction in Frequency Domain
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),

=⇒ I/O-relation in frequency domain:

Y (s) =
(
C(sIn −A)−1B +D︸ ︷︷ ︸

=:H(s)

)
U(s).

H(s) is the transfer function of Σ.

Model reduction in frequency domain: Fast evaluation of mapping U → Y .

© benner@mpi-magdeburg.mpg.de Learning Compact Dynamical Models from Data 8/23

mailto:benner@mpi-magdeburg.mpg.de


Model Reduction in Frequency Domain
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the time domain dynamical system

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m,

by reduced-order system

˙̂x = Âx̂+ B̂u, Â ∈ Rr×r, B̂ ∈ Rr×m,

ŷ = Ĉx̂+ D̂u, Ĉ ∈ Rp×r, D̂ ∈ Rp×m

of order r � n, such that

||y − ŷ|| '
∣∣∣∣∣∣Y − Ŷ ∣∣∣∣∣∣ =

∣∣∣∣∣∣HU − ĤU
∣∣∣∣∣∣

≤
∣∣∣∣∣∣H− Ĥ

∣∣∣∣∣∣ · ||U || ' ∣∣∣∣∣∣H− Ĥ
∣∣∣∣∣∣ · ||u||

≤ tolerance · ||u|| .

© benner@mpi-magdeburg.mpg.de Learning Compact Dynamical Models from Data 8/23

mailto:benner@mpi-magdeburg.mpg.de


MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
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MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.
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Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.

Then, with x̂ = WTx, we obtain x ≈ V x̂ = VWTx =: x̃ so that

||x− x̃|| = ||x− V x̂|| .
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Then, with x̂ = WTx, we obtain x ≈ V x̂ = VWTx =: x̃ so that

||x− x̃|| = ||x− V x̂|| .

The reduced-order model is

x̂ = WTx, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).
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range (V ) = V, range (W ) =W, WTV = Ir.

The reduced-order model is

x̂ = WTx, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x−Ax̃−Bu ⊥ W, since

WT ( ˙̃x−Ax̃−Bu
)

= WT
(
VWT ẋ−AVWTx−Bu

)
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(
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(
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−WTAV︸ ︷︷ ︸
=Â

WTx︸ ︷︷ ︸
=x̂

−WTB︸ ︷︷ ︸
=B̂

u

= ˙̂x− Âx̂− B̂u = 0.
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MOR Methods Based on Projection

Classes of Projection-based MOR Methods

1 Modal Truncation

2 Rational Interpolation / Moment Matching
(Padé-Approximation and (rational) Krylov Subspace Methods)

3 Balanced Truncation

4 Proper Orthogonal Decomposition (POD) / Principal Component Analysis (PCA)

5 Reduced Basis Method

6 . . .

MOR projects in Phase I of GRK 2297/1 ”MathCoRe” are mostly based on projection:

Ph.D. projects of Shaimaa Monem, Steffen Werner, Jennifer Przybilla.
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MOR Methods Based on Projection
Example: Thermal model of experimental machine tool MAX

50 subassemblies CAD model

FEM
 

FE-Model: 1.2M DOFs
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MAX: Results considering an inhomogeneous initial condition T0 6= 0
Results by Julia Vettermann (MiIT, TUC)

FE-coupled

method red. order tol 10−3 tred
2phase 196 6.5h
BTX0 174 4.5h

output-coupled

method red. order tol 10−3 tred
2phase 3005 2h
BTX0 2515 1.8h

→ Required storage for reduced matrices just 1MB!

0 1 2 3 4 5 6 7 8
t [h]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

T(
t) 

- T
(0

) [
K]

temperature change in output (16, 0)
full
2Phase,1.0e-2
2Phase,1.0e-3
2Phase,1.0e-4
2Phase,1.0e-5
BTX0,1.0e-2
BTX0,1.0e-3
BTX0,1.0e-4
BTX0,1.0e-5

Vettermann, J., Sauerzapf, S., Naumann, A., Beitelschmidt, M., Herzog, R., Benner, P., Saak, J. (2020): Model order
reduction methods for coupled machine tool models. Submitted.
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What about the Data?

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.

The reduced-order model is

x̂ =WT x, Â :=WTAV, B̂ :=WTB, Ĉ := CV, (D̂ := D).

We need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

 intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

 non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!

 New Ph.D. projects in Phase II of GRK 2297/1 ”MathCoRe” (Yevgeniya Filanova, . . . ).
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction
A few Remarks on System Identification and DNNs
DMD in a Nutshell
Operator Inference
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate Σ, given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).
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Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).
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Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . . ]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . . ]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . . ]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, . . . ],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference: time domain [Peherstorfer/Willcox 2016; Kramer, Qian, B., Goyal,. . . ]
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A few Remarks on System Identification and DNNs

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumpitions,
including artificial neural networks. . .
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A few Remarks on System Identification and DNNs

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.
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A few Remarks on System Identification and DNNs

A book from 1996. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

Suykens, J.A.K., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.
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DMD in a Nutshell
Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
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Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.
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ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.

Basic DMD Algorithm

Set X0 := [x0, x1, . . . , xK−1 ] ∈ Rn×K , X1 := [x1, x2, . . . , xK ] ∈ Rn×K and note that
X1 = AX0 is desired  over-/underdetermined linear system, solved by linear least-squares
problem (regression):

A∗ := argminA∈Rn×n‖X1 −AX0‖F+β‖A‖q
with a potential regularization term choosing β > 0, q = 0, 1, 2.

Computation usually via singular value decomposition (SVD), many variants.
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DMD in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.
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DMD in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.

Take state, control, and output snapshots

xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment  nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.
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Take state, control, and output snapshots

xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment  nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.

Basic ioDMD Algorithm (≡ N4SID)

Let S := Rn×n × Rn×m × Rp×n × Rp×m. Set X0, X1 as before and

U0 := [u0, u1, . . . , uK−1 ] ∈ Rm×K , Y0 := [ y0, y1, . . . , yK−1 ] ∈ Rp×K .

Solve the linear least-squares problem (regression):

(A∗, B∗, C∗, D∗) := argmin(A,B,C,D)∈S

∥∥∥∥[X1

Y0

]
−
[
A B
C D

] [
X0

U0

]∥∥∥∥
F

+β‖ [ABC D ] ‖q

with a potential regularization term choosing β > 0, q = 0, 1, 2.
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DMD in a Nutshell
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Mezić, I. (2005): Spectral properties of dynamical systems, model reduction and
decompositions. Nonlinear Dyn. 41(1):309—325. 10.1007/s11071-005-2824-x

Schmid, P.J. (2010): Dynamic mode decomposition of numerical and experimental data. J.
Fluid Mech. 656:5—28. 10.1017/S0022112010001217

Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L. (2016): Dynamic Mode
Decomposition: Data-Driven Modeling of Complex Systems. SIAM, Philadelphia.

Proctor, J.L., Brunton, S.L., Kutz, J.N. (2016): Dynamic mode decomposition with
control. SIAM J. Appl. Dyn. Syst. 15(1):142—161. 10.1137/15M1013857

Benner, P., Himpe, C., Mitchell, T. (2018): On reduced input-output dynamic mode
decomposition. Adv. Comp. Math. 44(6):1751–1768. 10.1007/s10444-018-9592-x

Gosea, I.V., Pontes Duff, I. (2020): Toward fitting structured nonlinear systems by means
of dynamic mode decomposition. arXiv:2003.06484.
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Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK ] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := arg minÂ∈Rr×r‖X̂1 − ÂX̂0‖F +β‖Â‖q.

Can be combined with ioDMD to obtain reduced-order LTI system.
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4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := arg minÂ∈Rr×r‖X̂1 − ÂX̂0‖F +β‖Â‖q.

Can be combined with ioDMD to obtain reduced-order LTI system.
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Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK ] ∈ Rn×(K+1), U := [u0, u1, . . . , uK ] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA)  X̂.

Compress snapshot matrix of time derivatives: if residuals f(tj , uj) are available

˙̂
X := [ ẋ(0), ẋ(t1), . . . , ẋ(tK) ] ≈ [ f(x0, u0), f(x1, u1), . . . , f(xK , uK) ] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences  ˙̂
X.

Solve the linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

]  X̂X̂2

U

∥∥
F
+β‖

[
Â Ĥ B̂

]
‖q

with potential regularization as before and X̂2 := [x0 ⊗ x0, . . . , xK ⊗ xK ].
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˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK ] ∈ Rn×(K+1), U := [u0, u1, . . . , uK ] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA)  X̂.

Compress snapshot matrix of time derivatives: if residuals f(tj , uj) are available

˙̂
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Operator Inference
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Conclusions

DMD and operator inference are regression-based powerful methods to infer linear
and certain nonlinear system from data.

Both look simple, but the devil is in the details.

Choice of good observables? (Learning to learn?)

Statistical aspects are not to well understood: impact of noisy data on inferred
system matrices?

Combination with neural networks to solve nonlinear regression problems?

Relation to physics-informed neural networks?

Error bounds for non-intrusive MOR not well developed yet.
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