SVD-BASED MODEL ORDER REDUCTION

Peter Benner

October 28, 2020

Methods of Model Order Reduction
Shanghai University
1. Introduction to SVD-based Model Order Reduction

2. Model Reduction by Projection

3. Balanced Truncation

4. Final Remarks
1. Introduction to SVD-based Model Order Reduction
 - Model Reduction for Dynamical Systems
 - Motivation for SVD-based Methods
 - SVD-based MOR for LTI Systems

2. Model Reduction by Projection

3. Balanced Truncation

4. Final Remarks
Model Reduction for Dynamical Systems

Dynamical Systems

\[
\Sigma : \begin{cases}
\dot{x}(t) &= f(t, x(t), u(t)), \quad x(t_0) = x_0, \\
y(t) &= g(t, x(t), u(t))
\end{cases}
\]

with

- **states** \(x(t) \in \mathbb{R}^n\),
- **inputs** \(u(t) \in \mathbb{R}^m\),
- **outputs** \(y(t) \in \mathbb{R}^p\).
Model Reduction for Dynamical Systems

Original System

\[\Sigma : \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\
y(t) = g(t, x(t), u(t)). \end{cases} \]

- states \(x(t) \in \mathbb{R}^n \),
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(y(t) \in \mathbb{R}^p \).

Goal:

\[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \text{ for all admissible input signals.} \]
Model Reduction for Dynamical Systems

Original System

\[\Sigma : \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)) \end{cases} \]

- states \(x(t) \in \mathbb{R}^n \),
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(y(t) \in \mathbb{R}^p \).

Reduced-Order System

\[\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) = \hat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t) = \hat{g}(t, \hat{x}(t), u(t)) \end{cases} \]

- states \(\hat{x}(t) \in \mathbb{R}^r, r \ll n \),
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(\hat{y}(t) \in \mathbb{R}^p \).

Goal:

\[\| y - \hat{y} \| < \text{tolerance} \cdot \| u \| \text{ for all admissible input signals.} \]
Model Reduction for Dynamical Systems

Original System

\[\Sigma : \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)) \end{cases} \]

- states \(x(t) \in \mathbb{R}^n \),
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(y(t) \in \mathbb{R}^p \).

Reduced-Order System

\[\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) = \hat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t) = \hat{g}(t, \hat{x}(t), u(t)) \end{cases} \]

- states \(\hat{x}(t) \in \mathbb{R}^r, \quad r \ll n \)
- inputs \(u(t) \in \mathbb{R}^m \),
- outputs \(\hat{y}(t) \in \mathbb{R}^p \).

Goal:

\[\| y - \hat{y} \| < \text{tolerance} \cdot \| u \| \] for all admissible input signals.
Model Reduction for Dynamical Systems

Original System

\[\Sigma : \begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ y(t) = g(t, x(t), u(t)) \end{cases} \]

- States \(x(t) \in \mathbb{R}^n \),
- Inputs \(u(t) \in \mathbb{R}^m \),
- Outputs \(y(t) \in \mathbb{R}^p \).

Reduced-Order System

\[\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) = \hat{f}(t, \hat{x}(t), u(t)), \\ \hat{y}(t) = \hat{g}(t, \hat{x}(t), u(t)) \end{cases} \]

- States \(\hat{x}(t) \in \mathbb{R}^r, r \ll n \)
- Inputs \(u(t) \in \mathbb{R}^m \)
- Outputs \(\hat{y}(t) \in \mathbb{R}^p \).

Goal:
\[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \text{ for all admissible input signals.} \]

Secondary goal: reconstruct approximation of \(x \) from \(\hat{x} \).
Linear, Time-Invariant (LTI) Systems

\[\Sigma : \begin{cases}
 \dot{x} &= Ax + Bu, \\
 y &= Cx + Du,
\end{cases} \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \]

Assumptions: \(t_0 = 0, \ x_0 = x(0) = 0. \)

Laplace Transform / Frequency Domain

Application of Laplace transform

\[\mathcal{L} : x(t) \mapsto x(s) = \int_0^\infty e^{-st} x(t) \, dt \quad (\Rightarrow \ \dot{x}(t) \mapsto sx(s)) \]

with \(s \in \mathbb{C} \) leads to linear system of equations:

\[sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s). \]
Linear Systems in Frequency Domain

Linear, Time-Invariant (LTI) Systems

\[\Sigma : \begin{cases} \dot{x} &= Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\ y &= Cx + Du, & C \in \mathbb{R}^{p \times n}, & D \in \mathbb{R}^{p \times m}. \end{cases} \]

Assumptions: \(t_0 = 0, \ x_0 = x(0) = 0. \)

Laplace Transform / Frequency Domain

\[sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s) + Du(s) \]

yields I/O-relation in frequency domain:

\[y(s) = \left(C(sI_n - A)^{-1}B + D \right)u(s) = G(s)u(s). \]

\(G \) is the transfer function of \(\Sigma \), \(G : \mathcal{L}_2^m \to \mathcal{L}_2^p \) \((\mathcal{L}_2 := \mathcal{L}(L_2(-\infty, \infty)))\).
Model Order Reduction Problem

Approximate the dynamical system

\[\dot{x} = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \]
\[y = Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \]

by reduced-order system

\[\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \]
\[\hat{y} = \hat{C}\hat{x} + \hat{D}u, \quad \hat{C} \in \mathbb{R}^{p \times r}, \quad \hat{D} \in \mathbb{R}^{p \times m}. \]

of order \(r \ll n \), such that

\[\|y - \hat{y}\| = \|Gu - \hat{Gu}\| \leq \|G - \hat{G}\| \|u\| \leq \text{tolerance} \cdot \|u\|. \]
Model Order Reduction Problem

Approximate the dynamical system

\[
\dot{x} = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y = Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\]

by reduced-order system

\[
\dot{x} = \hat{A}\hat{x} + \hat{B}u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \quad \hat{B} \in \mathbb{R}^{r \times m}, \\
\hat{y} = \hat{C}\hat{x} + \hat{D}u, \quad \hat{C} \in \mathbb{R}^{p \times r}, \quad \hat{D} \in \mathbb{R}^{p \times m}.
\]

of order \(r \ll n \), such that

\[
\|y - \hat{y}\| = \|Gu - \hat{G}u\| \leq \|G - \hat{G}\| \|u\| \leq \text{tolerance} \cdot \|u\|.
\]

\[\implies\] Approximation problem:

\[
\min_{\text{order } (\hat{G}) \leq r} \|G - \hat{G}\| \quad \text{for } \mathcal{H}_2/\mathcal{H}_\infty \text{ norm.}
\]
A digital image with \(n_x \times n_y \) pixels can be represented as matrix
\(X \in \mathbb{R}^{n_x \times n_y} \), where \(x_{ij} \) contains color information of pixel \((i,j)\).

Memory: \(4 \cdot n_x \cdot n_y \) bytes.
A digital image with $n_x \times n_y$ pixels can be represented as matrix $X \in \mathbb{R}^{n_x \times n_y}$, where x_{ij} contains color information of pixel (i, j).

Memory: $4 \cdot n_x \cdot n_y$ bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-r approximation to $X \in \mathbb{R}^{n_x \times n_y}$ w.r.t. spectral norm:

$$\hat{X} = \sum_{j=1}^{r} \sigma_j u_j v_j^T,$$

where $X = U \Sigma V^T$ is the singular value decomposition (SVD) of X. The approximation error is $\|X - \hat{X}\|_2 = \sigma_{r+1}$.
A digital image with \(n_x \times n_y \) pixels can be represented as matrix \(X \in \mathbb{R}^{n_x \times n_y} \), where \(x_{ij} \) contains color information of pixel \((i,j)\).

Memory: \(4 \cdot n_x \cdot n_y \) bytes.

Theorem: (Schmidt-Mirsky/Eckart-Young)

Best rank-\(r\) approximation to \(X \in \mathbb{R}^{n_x \times n_y} \) w.r.t. spectral norm:

\[
\hat{X} = \sum_{j=1}^{r} \sigma_j u_j v_j^T,
\]

where \(X = U\Sigma V^T \) is the singular value decomposition (SVD) of \(X \).

The approximation error is \(\|X - \hat{X}\|_2 = \sigma_{r+1} \).

Idea for dimension reduction

Instead of \(X \) save \(u_1, \ldots, u_r, \sigma_1 v_1, \ldots, \sigma_r v_r \).

\(~\rightarrow\) memory = \(4r \times (n_x + n_y) \) bytes.
Motivation for SVD-based Methods
Example: Image Compression by Truncated SVD

Example: Clown

Original image

320 × 200 pixel
⇽ ≈ 256 kb
Motivation for SVD-based Methods
Example: Image Compression by Truncated SVD

Example: Clown

320 × 200 pixel
⇒ ≈ 256 kb

rank $r = 50$, ≈ 104 kb
Motivation for SVD-based Methods

Example: Image Compression by Truncated SVD

Example: Clown

- rank $r = 50$, ≈ 104 kb
- rank $r = 20$, ≈ 42 kb

320×200 pixel
$\approx \approx 256$ kb
Example: Gatlinburg

Organizing committee

640 × 480 pixel, ≈ 1229 kb
Motivation for SVD-based Methods
Dimension Reduction via SVD

Example: Gatlinburg

Organizing committee
Gatlinburg/Householder Meeting 1964:
James H. Wilkinson, Wallace Givens,
George Forsythe, Alston Householder,
Peter Henrici, Fritz L. Bauer.

- rank $r = 100$, ≈ 448 kb
- rank $r = 50$, ≈ 224 kb

640 \times 480 pixel, ≈ 1229 kb
Image data compression via SVD works, if the singular values decay (exponentially).

Singular Values of the Image Data Matrices
Linear, Time-Invariant (LTI) Systems

\[
\begin{align*}
\dot{x} &= f(t, x, u) = Ax + Bu, & A &\in \mathbb{R}^{n \times n}, & B &\in \mathbb{R}^{n \times m}, \\
y &= g(t, x, u) = Cx + Du, & C &\in \mathbb{R}^{p \times n}, & D &\in \mathbb{R}^{p \times m}.
\end{align*}
\]
Linear, Time-Invariant (LTI) Systems

\[\dot{x} = f(t, x, u) = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \]
\[y = g(t, x, u) =Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \]

Assumptions (for now): \(t_0 = 0, \ x_0 = x(0) = 0, \ D = 0. \)
SVD-based MOR for LTI Systems

Linear, Time-Invariant (LTI) Systems

\[
\dot{x} = f(t, x, u) = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y = g(t, x, u) = Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\]

State-Space Description for I/O-Relation

Variation-of-constants \(\implies \)

\[
S : u \mapsto y, \quad y(t) = \int_{-\infty}^{t} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.
\]
Linear, Time-Invariant (LTI) Systems

\[\dot{x} = f(t, x, u) = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \]

\[y = g(t, x, u) = Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}. \]

State-Space Description for I/O-Relation

Variation-of-constants \(\implies \)

\[S : u \mapsto y, \quad y(t) = \int_{-\infty}^{t} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}. \]

\(S : \mathcal{U} \rightarrow \mathcal{Y} \) is a linear operator between (function) spaces.
Linear, Time-Invariant (LTI) Systems

\[
\begin{align*}
\dot{x} &= f(t, x, u) = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y &= g(t, x, u) = Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\end{align*}
\]

State-Space Description for I/O-Relation

Variation-of-constants \(\Rightarrow\)

\[
y(t) = \int_{-\infty}^{t} C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.
\]

- \(S : \mathcal{U} \to \mathcal{Y}\) is a linear operator between (function) spaces.
- Recall: matrix in \(\mathbb{R}^{n \times m}\) is a linear operator, mapping \(\mathbb{R}^{m} \to \mathbb{R}^{n}\)!
Linear, Time-Invariant (LTI) Systems

\[
\begin{align*}
\dot{x} &= f(t, x, u) = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y &= g(t, x, u) = Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\end{align*}
\]

State-Space Description for I/O-Relation

Variation-of-constants \(\implies\)

\[
S : u \mapsto y, \quad y(t) = \int_{-\infty}^{t} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all} \ t \in \mathbb{R}.
\]

- \(S : \mathcal{U} \to \mathcal{Y}\) is a linear operator between (function) spaces.
- Recall: matrix in \(\mathbb{R}^{n \times m}\) is a linear operator, mapping \(\mathbb{R}^{m} \to \mathbb{R}^{n}\)!
- Basic Idea: use SVD approximation as for matrix \(A\)!
Linear, Time-Invariant (LTI) Systems

\[
\dot{x} = f(t, x, u) = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y = g(t, x, u) =Cx + Du, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}.
\]

State-Space Description for I/O-Relation

Variation-of-constants \(\implies\)

\[
S: u \mapsto y, \quad y(t) = \int_{-\infty}^{t} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all} \ t \in \mathbb{R}.
\]

- \(S: \mathcal{U} \rightarrow \mathcal{Y}\) is a linear operator between (function) spaces.
- Recall: matrix in \(\mathbb{R}^{n \times m}\) is a linear operator, mapping \(\mathbb{R}^m \rightarrow \mathbb{R}^n\)!
- Basic Idea: use SVD approximation as for matrix \(A\)!
- Problem: in general, \(S\) does not have a discrete SVD and can therefore not be approximated as in the matrix case!
Linear, Time-Invariant (LTI) Systems

\[
\begin{align*}
\dot{x} &= Ax + Bu, & A &\in \mathbb{R}^{n \times n}, & B &\in \mathbb{R}^{n \times m}, \\
y &= Cx, & C &\in \mathbb{R}^{p \times n}.
\end{align*}
\]

Alternative to State-Space Operator: Hankel operator

Instead of

\[
S : u \mapsto y, \quad y(t) = \int_{-\infty}^{t} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.
\]

use Hankel operator

\[
\mathcal{H} : u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t > 0.
\]
Linear, Time-Invariant (LTI) Systems

\[
\dot{x} = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y = Cx, \quad C \in \mathbb{R}^{p \times n}.
\]

Alternative to State-Space Operator: Hankel operator

Instead of

\[
S : u \mapsto y, \quad y(t) = \int_{-\infty}^{t} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.
\]

use Hankel operator

\[
\mathcal{H} : u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t > 0.
\]

\(\mathcal{H}\) compact, finite-dimensional \(\Rightarrow\) \(\mathcal{H}\) has discrete SVD

\(\sim\) Hankel singular values \(\{\sigma_j\}_{j=1}^{\infty} : \sigma_1 \geq \ldots \geq \sigma_n \geq \sigma_{n+1} = 0 = \ldots = 0.\)
Linear, Time-Invariant (LTI) Systems

\[
\begin{align*}
\dot{x} &= Ax + Bu, & A \in \mathbb{R}^{n \times n}, & B \in \mathbb{R}^{n \times m}, \\
y &= Cx, & C \in \mathbb{R}^{p \times n}.
\end{align*}
\]

Alternative to State-Space Operator: Hankel operator

Instead of

\[
S : u \mapsto y, \quad y(t) = \int_{-\infty}^{t} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t \in \mathbb{R}.
\]

use Hankel operator

\[
\mathcal{H} : u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t > 0.
\]

\(\mathcal{H}\) compact, finite-dimensional \(\Rightarrow\) \(\mathcal{H}\) has discrete SVD

\(~\sim Hankel singular values\quad \{\sigma_j\}_{j=1}^{\infty} : \sigma_1 \geq \ldots \geq \sigma_n \geq \sigma_{n+1} = 0 = \ldots = 0.\)

\(\Rightarrow\) SVD-type approximation of \(\mathcal{H}\) possible!
Linear, Time-Invariant (LTI) Systems

\[\dot{x} = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \]
\[y = Cx, \quad C \in \mathbb{R}^{p \times n}. \]

Alternative to State-Space Operator: Hankel operator

- \(\mathcal{H} \) compact
- \(\mathcal{H} \) has discrete SVD
- Hankel singular values

Hankel Singular Values for Atmospheric Storm Model

© Peter Benner, benner@mpi-magdeburg.mpg.de

SVD-based MOR
Linear, Time-Invariant (LTI) Systems

\[
\dot{x} = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m},
\]

\[
y = Cx, \quad C \in \mathbb{R}^{p \times n}.
\]

Alternative to State-Space Operator: Hankel operator

\[\mathcal{H} : u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \quad \text{for all } t > 0. \]

\(\mathcal{H} \) compact \(\Rightarrow \) \(\mathcal{H} \) has discrete SVD

\(\Rightarrow \) Best approximation problem w.r.t. 2-induced operator norm well-posed
Linear, Time-Invariant (LTI) Systems

\[\dot{x} = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \]
\[y = Cx, \quad C \in \mathbb{R}^{p \times n}. \]

Alternative to State-Space Operator: Hankel operator

\[\mathcal{H} : u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau \text{ for all } t > 0. \]

\[\mathcal{H} \text{ compact} \Rightarrow \mathcal{H} \text{ has discrete SVD} \]

⇒ Best approximation problem w.r.t. 2-induced operator norm well-posed
Linear, Time-Invariant (LTI) Systems

\[
\dot{x} = Ax + Bu, \quad A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \\
y = Cx, \quad C \in \mathbb{R}^{p \times n}.
\]

Alternative to State-Space Operator: Hankel operator

The Hankel operator \(\mathcal{H} \) can be defined as

\[
\mathcal{H} : u_- \mapsto y_+, \quad y_+(t) = \int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) \, d\tau \quad \text{for all } t > 0.
\]

If \(\mathcal{H} \) is compact, then \(\mathcal{H} \) has a discrete SVD. This makes the best approximation problem with respect to the 2-induced operator norm well-posed.

Furthermore, the solution to this problem is given by the Adamjan-Arov-Krein (AAK Theory, 1971/78).

However, this can be computationally challenging for large-scale systems.

Recent progress in [B./Werner 2020].
1. Introduction to SVD-based Model Order Reduction

2. Model Reduction by Projection
 - Linear Algebra Basics
 - Projection Basics
 - Extensions

3. Balanced Truncation

4. Final Remarks
Goals

- Automatic generation of compact models.

\[\| y - \hat{y} \| < \text{tolerance} \cdot \| u \| \quad \forall u \in L^2(\mathbb{R}, \mathbb{R}^m) \]

Need computable error bound/estimate!

Preserve physical properties:
- stability (poles of \(G \) in \(\mathbb{C}^- \)),
- minimum phase (zeroes of \(G \) in \(\mathbb{C}^- \)),
- passivity

\[\int_{-\infty}^t u(\tau) T y(\tau) \, d\tau \geq 0 \quad \forall t \in \mathbb{R}, \forall u \in L^2(\mathbb{R}, \mathbb{R}^m) \]

"system does not generate energy".
- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want
 \[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

\[\Rightarrow \text{Need computable error bound/estimate!} \]
Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e., want

\[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

\[\implies \text{Need computable error bound/estimate!} \]

Preserve physical properties:
Model Reduction by Projection
Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

\[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

\[\implies \text{Need computable error bound/estimate!} \]
- Preserve physical properties:
 - stability (poles of } G \text{ in } \mathbb{C}^-),
Automatic generation of compact models.

Satisfy desired error tolerance for all admissible input signals, i.e., want

\[\| y - \hat{y} \| < \text{tolerance} \cdot \| u \| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

\[\implies \text{Need computable error bound/estimate!} \]

Preserve physical properties:

- stability (poles of \(G \) in \(\mathbb{C}^- \)),
- minimum phase (zeroes of \(G \) in \(\mathbb{C}^- \)),

Model Reduction by Projection

Goals

- Automatic generation of compact models.
- Satisfy desired error tolerance for all admissible input signals, i.e., want

 \[\|y - \hat{y}\| < \text{tolerance} \cdot \|u\| \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

 \[\implies \text{Need computable error bound/estimate!} \]

- Preserve physical properties:
 - stability (poles of \(G \) in \(\mathbb{C}^- \)),
 - minimum phase (zeroes of \(G \) in \(\mathbb{C}^- \)),
 - passivity

 \[\int_{-\infty}^{t} u(\tau)^T y(\tau) d\tau \geq 0 \quad \forall t \in \mathbb{R}, \quad \forall u \in L_2(\mathbb{R}, \mathbb{R}^m). \]

 ("system does not generate energy").
A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.

Let $V = \text{range}(P)$, then P is a projector onto V.

If \{ $v_1, ..., v_r$ \} is a basis of V and $V = [v_1, ..., v_r]$, then $P = V (V^T V)^{-1} V^T$ is a projector onto V.

© Peter Benner, benner@mpi-magdeburg.mpg.de
Projector

- A projector is a matrix \(P \in \mathbb{R}^{n \times n} \) with \(P^2 = P \).
- Let \(\mathcal{V} = \text{range}(P) \), then \(P \) is projector onto \(\mathcal{V} \).
A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.

Let $\mathcal{V} = \text{range}(P)$, then P is projector onto \mathcal{V}.

If $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^T V)^{-1} V^T$ is a projector onto \mathcal{V}.
Projector

- A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.
- Let $\mathcal{V} = \text{range}(P)$, then P is projector onto \mathcal{V}.
- If $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^T V)^{-1} V^T$ is a projector onto \mathcal{V}.

Properties:

- If $P = P^T$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector. (aka: Petrov-Galerkin projection.)
Projector

- A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.
- Let $\mathcal{V} = \text{range}(P)$, then P is projector onto \mathcal{V}.
- If $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^T V)^{-1} V^T$ is a projector onto \mathcal{V}.

Properties:

- If $P = P^T$, then P is an **orthogonal projector** (aka: Galerkin projection), otherwise an **oblique projector**. (aka: Petrov-Galerkin projection.)
- P is the identity operator on \mathcal{V}, i.e., $Pv = v \ \forall v \in \mathcal{V}$.
A projector is a matrix $P \in \mathbb{R}^{n \times n}$ with $P^2 = P$.

Let $\mathcal{V} = \text{range}(P)$, then P is projector onto \mathcal{V}.

If $\{v_1, \ldots, v_r\}$ is a basis of \mathcal{V} and $V = [v_1, \ldots, v_r]$, then $P = V(V^T V)^{-1} V^T$ is a projector onto \mathcal{V}.

Properties:

- If $P = P^T$, then P is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector. (aka: Petrov-Galerkin projection.)
- P is the identity operator on \mathcal{V}, i.e., $Pv = v \quad \forall v \in \mathcal{V}$.
- $I - P$ is the complementary projector onto $\ker P$.

© Peter Benner, benner@mpi-magdeburg.mpg.de
A projector is a matrix \(P \in \mathbb{R}^{n \times n} \) with \(P^2 = P \).

Let \(\mathcal{V} = \text{range}(P) \), then \(P \) is projector onto \(\mathcal{V} \).

If \(\{v_1, \ldots, v_r\} \) is a basis of \(\mathcal{V} \) and \(V = [v_1, \ldots, v_r] \), then \(P = V(V^T V)^{-1} V^T \) is a projector onto \(\mathcal{V} \).

Properties:

- If \(P = P^T \), then \(P \) is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector. (aka: Petrov-Galerkin projection.)
- \(P \) is the identity operator on \(\mathcal{V} \), i.e., \(P v = v \ \forall v \in \mathcal{V} \).
- \(I - P \) is the complementary projector onto \(\ker P \).
- If \(\mathcal{V} \) is an \(A \)-invariant subspace corresponding to a subset of \(A \)'s spectrum, then we call \(P \) a spectral projector.
Projector

A projector is a matrix \(P \in \mathbb{R}^{n \times n} \) with \(P^2 = P \).

Let \(\mathcal{V} = \text{range}(P) \), then \(P \) is projector onto \(\mathcal{V} \).

If \(\{v_1, \ldots, v_r\} \) is a basis of \(\mathcal{V} \) and \(V = [v_1, \ldots, v_r] \), then \(P = V(V^TV)^{-1}V^T \) is a projector onto \(\mathcal{V} \).

Properties:

- If \(P = P^T \), then \(P \) is an orthogonal projector (aka: Galerkin projection), otherwise an oblique projector. (aka: Petrov-Galerkin projection.)
- \(P \) is the identity operator on \(\mathcal{V} \), i.e., \(Pv = v \ \forall v \in \mathcal{V} \).
- \(I - P \) is the complementary projector onto \(\ker P \).
- If \(\mathcal{V} \) is an \(A \)-invariant subspace corresponding to a subset of \(A \)'s spectrum, then we call \(P \) a spectral projector.
- Let \(\mathcal{W} \subset \mathbb{R}^n \), \(\dim \mathcal{W} = r \), with basis matrix \(W = [w_1, \ldots, w_r] \), then \(P = V(W^TV)^{-1}W^T \) is an oblique projector onto \(\mathcal{V} \) along \(\mathcal{W} \).
Methods:

1. Modal Truncation
2. Rational Interpolation (Padé-Approximation and (rational) Krylov Subspace Methods)
3. Balanced Truncation
4. many more...

Joint feature of these methods: computation of reduced-order model (ROM) by projection!
Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Assume trajectory \(x(t; u) \) is contained in low-dimensional subspace \(\mathcal{V} \). Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \(\mathcal{V} \) along complementary subspace \(\mathcal{W} \): \(x \approx \mathcal{V} \mathcal{W}^T x =: \hat{x} \), where

\[
\text{range}(\mathcal{V}) = \mathcal{V}, \quad \text{range}(\mathcal{W}) = \mathcal{W}, \quad \mathcal{W}^T \mathcal{V} = I_r.
\]

Then, with \(\hat{x} = \mathcal{W}^T x \), we obtain \(x \approx \mathcal{V} \hat{x} \) so that

\[
\|x - \hat{x}\| = \|x - \mathcal{V} \hat{x}\|,
\]

and the reduced-order model is

\[
\hat{A} := \mathcal{W}^T \mathcal{A} \mathcal{V}, \quad \hat{B} := \mathcal{W}^T \mathcal{B}, \quad \hat{C} := \mathcal{C} \mathcal{V}, \quad (\hat{D} := D).
\]
Joint feature of these methods: computation of reduced-order model (ROM) by projection!

Assume trajectory $x(t; u)$ is contained in low-dimensional subspace \mathcal{V}. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \mathcal{V} along complementary subspace \mathcal{W}: $x \approx VW^T x =: \tilde{x}$, and the reduced-order model is $\hat{x} = W^T x$

$\hat{A} := W^T AV, \quad \hat{B} := W^T B, \quad \hat{C} := CV, \quad (\hat{D} := D)$.

Important observation:

- The state equation residual satisfies $\dot{\tilde{x}} - A\tilde{x} - Bu \perp \mathcal{W}$, since

$$W^T (\dot{\tilde{x}} - A\tilde{x} - Bu) = W^T (VW^T \dot{x} - AVW^T x - Bu)$$
Joint feature of these methods: computation of reduced-order model (ROM) by projection!
Assume trajectory $x(t; u)$ is contained in low-dimensional subspace \mathcal{V}. Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \mathcal{V} along complementary subspace \mathcal{W}: $x \approx VW^T x =: \tilde{x}$, and the reduced-order model is

$$\dot{\hat{x}} = W^T x$$

$$\hat{A} := W^T AV, \quad \hat{B} := W^T B, \quad \hat{C} := CV, \quad (\hat{D} := D).$$

Important observation:

- The state equation residual satisfies $\dot{\hat{x}} - A\tilde{x} - Bu \perp \mathcal{W}$, since

$$W^T (\dot{\hat{x}} - A\tilde{x} - Bu) = W^T (VW^T \dot{x} - AVW^T x - Bu) = W^T \dot{x} - W^T AV \tilde{x} - W^T Bu = \hat{A}\tilde{x} - \hat{B}u.$$
Joint feature of these methods: computation of reduced-order model (ROM) by projection! Assume trajectory \(x(t; u) \) is contained in low-dimensional subspace \(\mathcal{V} \). Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto \(\mathcal{V} \) along complementary subspace \(\mathcal{W} \): \(x \approx VW^T x =: \tilde{x} \), and the reduced-order model is
\[\dot{\tilde{x}} = W^T x \]

\[\hat{A} := W^T AV, \quad \hat{B} := W^T B, \quad \hat{C} := CV, \quad (\hat{D} := D). \]

Important observation:

- The state equation residual satisfies \(\dot{x} - A\tilde{x} - Bu \perp \mathcal{W} \), since

\[
W^T (\dot{x} - A\tilde{x} - Bu) = W^T (VW^T \dot{x} - AVW^T x - Bu) = \left\{ \dot{\tilde{x}} = \hat{A} \right\} \left\{ \tilde{x} = \hat{\tilde{x}} \right\} \left\{ Bu = \hat{B} \right\} = \dot{\tilde{x}} - \hat{A}\tilde{x} - \hat{B}u = 0.
\]
Base enrichment

Static modes are defined by setting $\dot{x} = 0$ and assuming unit loads, i.e., $u(t) \equiv e_j$, $j = 1, \ldots, m$:

$$0 = Ax(t) + Be_j \implies x(t) \equiv -A^{-1}b_j.$$

Projection subspace \mathcal{V} is then augmented by $A^{-1}[b_1, \ldots, b_m] = A^{-1}B$.

Interpolation-projection framework $\implies G(0) = \hat{G}(0)$!

If two-sided projection is used, complimentary subspace can be augmented by $A^{-T}C^T \implies G'(0) = \hat{G}'(0)$!

Note: if $m \neq q$, add random vectors or delete some of the columns in $A^{-T}C^T$.

© Peter Benner, benner@mpi-magdeburg.mpg.de

SVD-based MOR
Guyan reduction (static condensation)

Partition states in masters \(x_1 \in \mathbb{R}^r \) and slaves \(x_2 \in \mathbb{R}^{n-r} \) (FEM terminology)

Assume stationarity, i.e., \(\dot{x} = 0 \) and solve for \(x_2 \) in

\[
\begin{bmatrix}
0 \\
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} +
\begin{bmatrix}
B_1 \\
B_2 \\
\end{bmatrix} u
\]

\[
\Rightarrow x_2 = -A^{-1}_{22}A_{21}x_1 - A^{-1}_{22}B_2 u.
\]

Inserting this into the first part of the dynamic system

\[
\dot{x}_1 = A_{11}x_1 + A_{12}x_2 + B_1 u,
\]

\[
y = C_1x_1 + C_2x_2
\]

then yields the reduced-order model

\[
\dot{x}_1 = (A_{11} - A_{12}A^{-1}_{22}A_{21})x_1 + (B_1 - A_{12}A^{-1}_{22}B_2) u
\]

\[
y = (C_1 - C_2A^{-1}_{22}A_{21})x_1 - C_2A^{-1}_{22}B_2 u.
\]
1. Introduction to SVD-based Model Order Reduction

2. Model Reduction by Projection

3. Balanced Truncation
 Balanced Realizations
 The basic method
 ADI Methods for Lyapunov Equations
 Balancing-Related Model Reduction

4. Final Remarks
Definition

A realization \((A, B, C, D)\) of a linear system \(\Sigma\) is balanced if its infinite controllability/observability Gramians \(P/Q\) satisfy

\[
P = Q = \text{diag}\{\sigma_1, \ldots, \sigma_n\} \quad (\text{w.l.o.g. } \sigma_j \geq \sigma_{j+1}, \ j = 1, \ldots, n-1).
\]
Definition

A realization \((A, B, C, D)\) of a linear system \(\Sigma\) is balanced if its infinite controllability/observability Gramians \(P/Q\) satisfy

\[
P = Q = \text{diag}\{\sigma_1, \ldots, \sigma_n\} \quad (\text{w.l.o.g. } \sigma_j \geq \sigma_{j+1}, \ j = 1, \ldots, n-1).
\]

When does a balanced realization exist?
Definition

A realization \((A, B, C, D)\) of a linear system \(\Sigma\) is balanced if its infinite controllability/observability Gramians \(P/Q\) satisfy

\[
P = Q = \text{diag} \{\sigma_1, \ldots, \sigma_n\} \quad \text{(w.l.o.g. } \sigma_j \geq \sigma_{j+1}, \ j = 1, \ldots, n-1\).
\]

When does a balanced realization exist?

Assume \(A\) to be Hurwitz, i.e. \(\Lambda(A) \subset \mathbb{C}^-\). Then:

Theorem

Given a stable minimal linear system \(\Sigma : (A, B, C, D)\), a balanced realization is obtained by the state-space transformation with

\[
T_b := \Sigma^{-\frac{1}{2}} V^T R,
\]

where \(P = S^T S, \ Q = R^T R\) (e.g., Cholesky decompositions) and \(SR^T = U\Sigma V^T\) is the SVD of \(SR^T\).
Definition

A realization \((A, B, C, D)\) of a stable linear system \(\Sigma\) is balanced if its infinite controllability/observability Gramians \(P/Q\) satisfy

\[
P = Q = \text{diag}\{\sigma_1, \ldots, \sigma_n\} \quad \text{(w.l.o.g. } \sigma_j \geq \sigma_{j+1}, \ j = 1, \ldots, n-1)\).
\]

\(\sigma_1, \ldots, \sigma_n\) are the **Hankel singular values** of \(\Sigma\).

Note: \(\sigma_1, \ldots, \sigma_n \geq 0\) as \(P, Q \geq 0\) by definition, and \(\sigma_1, \ldots, \sigma_n > 0\) in case of minimality!
Definition

A realization \((A, B, C, D)\) of a stable linear system \(\Sigma\) is balanced if its infinite controllability/observability Gramians \(P/Q\) satisfy

\[
P = Q = \text{diag} \{\sigma_1, \ldots, \sigma_n\} \quad (\text{w.l.o.g. } \sigma_j \geq \sigma_{j+1}, \; j = 1, \ldots, n-1).
\]

\(\sigma_1, \ldots, \sigma_n\) are the Hankel singular values of \(\Sigma\).

Note: \(\sigma_1, \ldots, \sigma_n \geq 0\) as \(P, Q \geq 0\) by definition, and \(\sigma_1, \ldots, \sigma_n > 0\) in case of minimality!

Theorem

The infinite controllability/observability Gramians \(P/Q\) satisfy the Lyapunov equations

\[
AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0.
\]
Definition

A realization \((A, B, C, D)\) of a stable linear system \(\Sigma\) is balanced if its infinite controllability/observability Gramians \(P/Q\) satisfy

\[
P = Q = \text{diag} \{\sigma_1, \ldots, \sigma_n\} \quad \text{(w.l.o.g. } \sigma_j \geq \sigma_{j+1}, \ j = 1, \ldots, n - 1)\).
\]

\(\sigma_1, \ldots, \sigma_n\) are the Hankel singular values of \(\Sigma\).

Note: \(\sigma_1, \ldots, \sigma_n \geq 0\) as \(P, Q \geq 0\) by definition, and \(\sigma_1, \ldots, \sigma_n > 0\) in case of minimality!

Theorem

The infinite controllability/observability Gramians \(P/Q\) satisfy the Lyapunov equations

\[
AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0.
\]

Proof. Exercise!
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A realization ((A, B, C, D)) of a stable linear system (\Sigma) is balanced if its infinite controllability/observability Gramians (P/Q) satisfy</td>
</tr>
<tr>
<td>[P = Q = \text{diag}{\sigma_1, \ldots, \sigma_n}] (w.l.o.g. (\sigma_j \geq \sigma_{j+1}, \ j = 1, \ldots, n-1)).</td>
</tr>
<tr>
<td>(\sigma_1, \ldots, \sigma_n) are the Hankel singular values of (\Sigma).</td>
</tr>
</tbody>
</table>

Note: \(\sigma_1, \ldots, \sigma_n \geq 0\) as \(P, Q \geq 0\) by definition, and \(\sigma_1, \ldots, \sigma_n > 0\) in case of minimality!

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hankel singular values (HSV) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!</td>
</tr>
</tbody>
</table>
Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are $\Lambda (PQ)^{1/2}$. Now let

$$(\hat{A}, \hat{B}, \hat{C}, D) = (TAT^{-1}, TB, CT^{-1}, D)$$

be any transformed realization with associated controllability Lyapunov equation

$$0 = \hat{A}\hat{P} + \hat{P}\hat{A}^T + \hat{B}\hat{B}^T = TAT^{-1}\hat{P} + \hat{P}T^{-T}A^TT^T + TBB^TT^T.$$
The Hankel singular values (HSV) of a stable minimal linear system are system invariants, i.e., they are unaltered by state-space transformations.

Proof. In balanced coordinates, the HSVs are $\Lambda (PQ)^{\frac{1}{2}}$. Now let

$$(\hat{A}, \hat{B}, \hat{C}, D) = (TAT^{-1}, TB, CT^{-1}, D)$$

be any transformed realization with associated controllability Lyapunov equation

$$0 = \hat{A}\hat{P} + \hat{P}\hat{A}^T + \hat{B}\hat{B}^T = TAT^{-1}\hat{P} + \hat{P}T^{-T}A^TT^T + TBB^TT^T.$$

This is equivalent to

$$0 = A(T^{-1}\hat{P}T^{-T}) + (T^{-1}\hat{P}T^{-T})A^T + BB^T.$$
Theorem

The Hankel singular values (HSVs) of a stable minimal linear system are system invariants, i.e. they are unaltered by state-space transformations!

Proof. In balanced coordinates, the HSVs are \(\Lambda (PQ)^{\frac{1}{2}} \). Now let

\[
(\hat{A}, \hat{B}, \hat{C}, D) = (TAT^{-1}, TB, CT^{-1}, D)
\]

be any transformed realization with associated controllability Lyapunov equation

\[
0 = \hat{A}\hat{P} + \hat{P}\hat{A}^T + \hat{B}\hat{B}^T = TAT^{-1}\hat{P} + \hat{P}T^{-T}A^TT^T + TBB^TT^T.
\]

This is equivalent to

\[
0 = A(T^{-1}\hat{P}T^{-T}) + (T^{-1}\hat{P}T^{-T})A^T + BB^T.
\]

The uniqueness of the solution of the Lyapunov equation implies that \(\hat{P} = TPT^T \) and, analogously, \(\hat{Q} = T^{-T}QT^{-1} \). Therefore,

\[
\hat{P}\hat{Q} = TPQT^{-1},
\]

showing that \(\Lambda (\hat{P}\hat{Q}) = \Lambda (PQ) = \{\sigma_1^2, \ldots, \sigma_n^2\} \).
Definition

A realization \((A, B, C, D)\) of a stable linear system \(\Sigma\) is balanced if its infinite controllability/observability Gramians \(P/Q\) satisfy

\[P = Q = \text{diag}\{\sigma_1, \ldots, \sigma_n\} \quad (\text{w.l.o.g. } \sigma_j \geq \sigma_{j+1}, \, j = 1, \ldots, n - 1). \]

\(\sigma_1, \ldots, \sigma_n\) are the Hankel singular values of \(\Sigma\).

Note: \(\sigma_1, \ldots, \sigma_n \geq 0\) as \(P, Q \geq 0\) by definition, and \(\sigma_1, \ldots, \sigma_n > 0\) in case of minimality!

Remark

For non-minimal systems, the Gramians can also be transformed into diagonal matrices with the leading \(\hat{n} \times \hat{n}\) submatrices equal to \(\text{diag}(\sigma_1, \ldots, \sigma_{\hat{n}})\), and

\[\hat{P} \hat{Q} = \text{diag}(\sigma_1^2, \ldots, \sigma_{\hat{n}}^2, 0, \ldots, 0). \]

see [Laub/Heath/Paige/Ward 1987, Tombs/Postlethwaite 1987].
Balanced Truncation

Basic principle:

An LTI system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations

\[
AP + PA^T + BB^T = 0, \quad A^TQ + QA + C^TC = 0,
\]

satisfy: $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n > 0$.
Balanced Truncation

Basic principle:

- An LTI system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the **Lyapunov equations**

 \[
 AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0,
 \]

 satisfy: $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n > 0$.

- $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$ are the **Hankel singular values (HSV)s** of Σ.
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \)
- \(\Lambda (PQ)^{\frac{1}{2}} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Recall Hankel operator

\[
y(t) = H u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau
\]
Balanced Truncation

Basic principle:

- Lyapunov eqns.: $AP + PA^T + BB^T = 0$, $A^T Q + QA + C^T C = 0$.
- $\Lambda (PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSV) of Σ.

Proof: Recall Hankel operator

$$y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)}Bu(\tau)\,d\tau =: Ce^{At} \int_{-\infty}^{0} e^{-A\tau}Bu(\tau)\,d\tau =: z$$
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \)

- \(\Lambda \left(PQ \right)^{\frac{1}{2}} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSVs) of \(\Sigma \).

Proof: Recall Hankel operator

\[
y(t) = \mathcal{H} u(t) = \int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) \, d\tau =: C e^{A t} \int_{-\infty}^{0} e^{-A \tau} B u(\tau) \, d\tau = C e^{A t} z.
\]

© Peter Benner, benner@mpi-magdeburg.mpg.de

SVD-based MOR
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \)
- \(\Lambda (PQ)^{\frac{1}{2}} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Recall Hankel operator

\[
y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At} z.
\]

Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^*\mathcal{H} \),

© Peter Benner, benner@mpi-magdeburg.mpg.de
Balanced Truncation

Basic principle:

- Lyapunov eqns.: $AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0$.
- $\Lambda(PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ.

Proof: Recall Hankel operator

$$y(t) = \mathcal{H} u(t) = \int_{-\infty}^{0} C e^{A(t-\tau)} B u(\tau) \, d\tau = C e^{At} z.$$

Hankel singular values = square roots of eigenvalues of $\mathcal{H}^* \mathcal{H}$,

$$\mathcal{H}^* y(t) = \int_{0}^{\infty} B^T e^{A^T(\tau-t)} C^T y(\tau) \, d\tau$$
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \)
- \(\Lambda (PQ)^{\frac{1}{2}} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Recall Hankel operator

\[
y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau = Ce^{At} z.
\]

Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^* \mathcal{H} \),

\[
\mathcal{H}^* y(t) = \int_{0}^{\infty} B^T e^{A^T(\tau-t)} C^T y(\tau) \, d\tau B^T e^{-A^T t} \int_{0}^{\infty} e^{A^T \tau} C^T y(\tau) \, d\tau.
\]
Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0 \), \(A^T Q + QA + C^T C = 0 \).
- \(\Lambda(PQ)^{1/2} = \{\sigma_1, \ldots, \sigma_n\} \) are the Hankel singular values (HSVs) of \(\Sigma \).

Proof:

Recall Hankel operator

\[
y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau = Ce^{At} z.
\]

Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^*\mathcal{H} \),

\[
\mathcal{H}^*y(t) = B^T e^{-A^T t} \int_{0}^{\infty} e^{A^T \tau} C^T y(\tau) \, d\tau.
\]

Hence,

\[
\mathcal{H}^*\mathcal{H}u(t) = B^T e^{-A^T t} \int_{0}^{\infty} e^{A^T \tau} C^T Ce^{A\tau} z \, d\tau
\]
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \)
- \(\Lambda (PQ)^{1/2} = \{\sigma_1, \ldots, \sigma_n\} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Recall Hankel operator

\[
y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau = Ce^{At} z.
\]

Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^*\mathcal{H} \),

\[
\mathcal{H}^* y(t) = B^T e^{-A^T t} \int_{0}^{\infty} e^{A^T \tau} C^T y(\tau) \, d\tau.
\]

Hence,

\[
\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} \int_{0}^{\infty} e^{A^T \tau} C^T Ce^{A^T} z \, d\tau
\]

\[
= B^T e^{-A^T t} \left[\int_{0}^{\infty} e^{A^T \tau} C^T Ce^{A^T} \, d\tau \right] z \\
\equiv Q
\]
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \[AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \]
- \(\Lambda (PQ)^{1/2} = \{\sigma_1, \ldots, \sigma_n\} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Recall Hankel operator

\[y(t) = \mathcal{H}u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) d\tau = Ce^{At} z. \]

Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^* \mathcal{H} \),

\[\mathcal{H}^* y(t) = B^T e^{-A^T t} \int_{0}^{\infty} e^{A^T \tau} C^T y(\tau) d\tau. \]

Hence,

\[\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} \int_{0}^{\infty} e^{A^T \tau} C^T Ce^{A\tau} z \ d\tau \]

\[= B^T e^{-A^T t} Qz \]
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \)
- \(\Lambda \left(PQ \right)^{1/2} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Recall Hankel operator

\[
y(t) = \mathcal{H} u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau = Ce^{At} z.
\]

Hence, Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^* \mathcal{H} \),

\[
\mathcal{H}^* y(t) = B^T e^{-A^T t} \int_0^\infty e^{A^T \tau} C^T y(\tau) \, d\tau.
\]

Hence,

\[
\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} Qz.
\]
Basic principle:

- Lyapunov eqns.: $AP + PA^T + BB^T = 0$, $A^T Q + QA + C^T C = 0$.
- $\Lambda (PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSV)s of Σ.

Proof: Recall Hankel operator

$$y(t) = \mathcal{H} u(t) = \int_{-\infty}^{0} Ce^{A(t-\tau)} Bu(\tau) \, d\tau = Ce^{At} z.$$

Hankel singular values = square roots of eigenvalues of $\mathcal{H}^* \mathcal{H}$,

$$\mathcal{H}^* y(t) = B^T e^{-At} \int_{0}^{\infty} e^{At} C^T y(\tau) \, d\tau.$$

Hence,

$$\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-At} Qz \cong \sigma^2 u(t).$$
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^TQ + QA + C^TC = 0. \)
- \(\Lambda(PQ)^{1/2} = \{\sigma_1, \ldots, \sigma_n\} \) are the Hankel singular values (HSVs) of \(\Sigma \).

Proof: Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^*\mathcal{H} \),

\[
\mathcal{H}^*\mathcal{H}u(t) = B^Te^{-A^Tt}Qz = \sigma^2 u(t).
\]

\[\implies u(t) = \frac{1}{\sigma^2} B^Te^{-A^Tt}Qz \]
Basic principle:

- Lyapunov eqns.: $AP + PA^T + BB^T = 0$, $A^T Q + QA + C^T C = 0$.
- $\Lambda (PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSV) of Σ.

Proof: Hankel singular values $= \sqrt{\text{eigenvalues of } H^* H}$,

\[
H^* H u(t) = B^T e^{-A^T t} Q z = \sigma^2 u(t).
\]

$\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Q z \implies (\text{recalling } z = \int_{-\infty}^{0} e^{-A\tau} B u(\tau) d\tau)$
Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \)
- \(\Lambda (PQ)^{1/2} = \{\sigma_1, \ldots, \sigma_n\} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^* \mathcal{H} \),

\[
\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} Qz = \sigma^2 u(t).
\]

\[\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_0^0 e^{-A^T \tau} B u(\tau) d\tau)\]

\[
z = \int_{-\infty}^0 e^{-A^T \tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau
\]
Basic principle:

- Lyapunov eqns.: $AP + PA^T + BB^T = 0$, $A^TQ + QA + C^TC = 0$.
- $\Lambda (PQ)^{\frac{1}{2}} = \{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSV) of Σ.

Proof: Hankel singular values = square roots of eigenvalues of $\mathcal{H}^*\mathcal{H}$,

$$
\mathcal{H}^*\mathcal{H} u(t) = B^T e^{-A^Tt} Qz \doteq \sigma^2 u(t).
$$

$$
\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^Tt} Qz
\implies (\text{recalling } z = \int_{-\infty}^{0} e^{-A\tau} Bu(\tau) d\tau)
$$

$$
z = \int_{-\infty}^{0} e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T\tau} Qz d\tau
$$

$$
= \frac{1}{\sigma^2} \int_{-\infty}^{0} e^{-A\tau} BB^T e^{-A^T\tau} d\tau Qz
$$
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0 \).
- \(\Lambda (PQ)^{1/2} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSVs) of \(\Sigma \).

Proof: Hankel singular values = square roots of eigenvalues of \(\mathcal{H}^* \mathcal{H} \),

\[
\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} Qz \equiv \sigma^2 u(t).
\]

\(\implies \) \(u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies \) (recalling \(z = \int_{-\infty}^{0} e^{-A \tau} B u(\tau) \, d\tau \))

\[
z = \int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz \, d\tau
\]

\[
= \frac{1}{\sigma^2} \int_{-\infty}^{0} e^{-A \tau} B B^T e^{-A^T \tau} \, d\tau \, Qz
\]

\[
= \frac{1}{\sigma^2} \int_{0}^{\infty} e^{A t} B B^T e^{A^T t} \, dt \, Qz
\]

\(\equiv P \)
Basic principle:

- **Lyapunov eqns.**:

 \[AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0. \]

- \(\Lambda (PQ)^{1/2} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSV) of \(\Sigma \).

Proof: Hankel singular values \(= \) square roots of eigenvalues of \(\mathcal{H}^* \mathcal{H} \),

\[
\mathcal{H}^* \mathcal{H} u(t) = B^T e^{-A^T t} Qz = \sigma^2 u(t).
\]

\(\implies u(t) = \frac{1}{\sigma^2} B^T e^{-A^T t} Qz \implies (\text{recalling } z = \int_{-\infty}^{0} e^{-A \tau} B u(\tau) d\tau) \)

\[
z = \int_{-\infty}^{0} e^{-A \tau} B \frac{1}{\sigma^2} B^T e^{-A^T \tau} Qz d\tau
\]

\[
= \frac{1}{\sigma^2} \int_{0}^{\infty} e^{At} BB^T e^{A^T t} dt \quad Qz \quad \equiv P
\]

\[= \frac{1}{\sigma^2} PQz \]
Balanced Truncation

Basic principle:

- Lyapunov eqns.: \(AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0 \).
- \(\Lambda (PQ)^{\frac{1}{2}} = \{ \sigma_1, \ldots, \sigma_n \} \) are the Hankel singular values (HSV)s of \(\Sigma \).

Proof: Hankel singular values = square roots of eigenvalues of \(H^*H \),

\[
H^*Hu(t) = B^T e^{-A^Tt}Qz = \sigma^2 u(t).
\]

\[u(t) = \frac{1}{\sigma^2} B^T e^{-A^Tt}Qz \implies (\text{recalling } z = \int_{-\infty}^{0} e^{-A\tau} B u(\tau) d\tau)\]

\[
z = \int_{-\infty}^{0} e^{-A\tau} B \frac{1}{\sigma^2} B^T e^{-A^T\tau}Qz d\tau
\]

\[
= \frac{1}{\sigma^2} \int_{0}^{\infty} e^{At} BB^T e^{A^Tt} dt \cdot Qz
\]

\[
= \frac{1}{\sigma^2} PQz \tag{\ref{eq:svd-based}}
\]

\[\iff PQz = \sigma^2 z. \square\]
Balanced Truncation

Basic principle:

- An LTI system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations
 \[
 AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0,
 \]
 satisfy: $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n > 0$.

- $\Lambda(PQ)^{1/2} = \{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSV) of Σ.

- Compute balanced realization of the system via state-space transformation

 \[
 \mathcal{T} : (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)
 \]

 \[
 = \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)
 \]
Balanced Truncation

Basic principle:
- An LTI system Σ, realized by (A, B, C, D), is called balanced, if the Gramians, i.e., solutions P, Q of the Lyapunov equations
 \[
 AP + PA^T + BB^T = 0, \quad A^TQ + QA + C^TC = 0,
 \]
satisfy: $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n > 0$.
- $\Lambda(PQ)^{1/2} = \{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSV$s)$ of Σ.
- Compute balanced realization of the system via state-space transformation
 \[
 \mathcal{T} : (A, B, C, D) \quad \mapsto \quad (TAT^{-1}, TB, CT^{-1}, D)
 \]
 \[
 = \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D \right)
 \]
- Truncation $\leadsto (\hat{A}, \hat{B}, \hat{C}, \hat{D}) := (A_{11}, B_1, C_1, D)$.
Motivation:

HSVs are system invariants: they are preserved under
\(\mathcal{T} : (A, B, C, D) \mapsto (\mathcal{T}A\mathcal{T}^{-1}, \mathcal{T}B, \mathcal{T}C\mathcal{T}^{-1}, D) \):

in transformed coordinates, the Gramians satisfy

\[
(TA\mathcal{T}^{-1})(\mathcal{T}P\mathcal{T}^T) + (\mathcal{T}P\mathcal{T}^T)(TA\mathcal{T}^{-1})^T + (TB)(TB)^T = 0,
\]
\[
(TA\mathcal{T}^{-1})^T(T^{-T}Q\mathcal{T}^{-1}) + (T^{-T}Q\mathcal{T}^{-1})(TA\mathcal{T}^{-1}) + (CT^{-1})^T(CT^{-1}) = 0
\]

\[
\Rightarrow (\mathcal{T}P\mathcal{T}^T)(T^{-T}Q\mathcal{T}^{-1}) = \mathcal{T}PQ\mathcal{T}^{-1},
\]

hence \(\Lambda(PQ) = \Lambda((\mathcal{T}P\mathcal{T}^T)(T^{-T}Q\mathcal{T}^{-1})) \).
Motivation:

HSV\textsc{s} are system invariants: they are preserved under
\(\mathcal{T} : (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D) \).

HSV\textsc{s} determine the energy transfer given by the Hankel map

\[\mathcal{H} : L_2(-\infty, 0) \mapsto L_2(0, \infty) : u_- \mapsto y_+ . \]

In balanced coordinates \ldots energy transfer from \(u_- \) to \(y_+ \):

\[E := \sup_{u \in L_2(-\infty, 0]} \frac{\int_0^\infty y(t)^T y(t) \, dt}{\int_{-\infty}^0 u(t)^T u(t) \, dt} = \frac{1}{\| x_0 \|_2} \sum_{j=1}^n \sigma_j^2 x_0^2, j \]
Motivation:

HSVIs are **system invariants**: they are preserved under
\[\mathcal{T} : (A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D). \]

HSVIs determine the energy transfer given by the Hankel map

\[\mathcal{H} : L_2(-\infty, 0) \mapsto L_2(0, \infty) : u_- \mapsto y_. \]

In balanced coordinates . . . energy transfer from \(u_- \) to \(y_+ \):

\[
E := \sup_{u \in L_2(-\infty, 0], x(0) = x_0} \int_{-\infty}^{\infty} y(t)^T y(t) \, dt \quad = \quad \frac{1}{\|x_0\|_2^2} \sum_{j=1}^{n} \sigma_j^2 x_0^2,
\]

\[\implies \text{Truncate states corresponding to “small” HSVIs} \]

\[\implies \text{complete analogy to best approximation via SVD!} \]
Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.
Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, \(P = S^T S, \ Q = R^T R \).

2. Compute SVD \(S R^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \).
Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.

2. Compute SVD $SR^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 & \quad \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$.

3. ROM is $(W^T A V, W^T B, C V, D)$, where

\[
W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \quad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.
\]
Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, \(P = S^T S, \ Q = R^T R \).

2. Compute SVD \(SR^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 & \ \ \\ \ & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \).

3. ROM is \((W^T A V, W^T B, C V, D) \), where

\[
W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \quad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.
\]

Note:

\[
V^T W = (\Sigma_1^{-\frac{1}{2}} U_1^T S)(R^T V_1 \Sigma_1^{-\frac{1}{2}})
\]
Balanced Truncation

Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, \(P = S^T S, \ Q = R^T R \).

2. Compute SVD \(SRT = [U_1, U_2] \begin{bmatrix} \Sigma_1 & \ \\ & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \).

3. ROM is \((W^T AV, W^T B, CV, D) \), where

\[
W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \quad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.
\]

Note:

\[
V^T W = (\Sigma_1^{-\frac{1}{2}} U_1^T S)(R^T V_1 \Sigma_1^{-\frac{1}{2}}) = \Sigma_1^{-\frac{1}{2}} U_1^T U \Sigma V^T V_1 \Sigma_1^{-\frac{1}{2}}
\]
Balanced Truncation

Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, \(P = S^T S, \ Q = R^T R \).

2. Compute SVD \(SR^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 & \ \\ \ & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix} \).

3. ROM is \((W^T A V, W^T B, C V, D)\), where

\[
W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \quad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.
\]

Note:

\[
V^T W = (\Sigma_1^{-\frac{1}{2}} U_1^T S)(R^T V_1 \Sigma_1^{-\frac{1}{2}}) = \Sigma_1^{-\frac{1}{2}} U_1^T U \Sigma V^T V_1 \Sigma_1^{-\frac{1}{2}}
\]

\[
= \Sigma_1^{-\frac{1}{2}} [I_r, 0] \begin{bmatrix} \Sigma_1 & \ \\ \ & \Sigma_2 \end{bmatrix} \begin{bmatrix} I_r \\ 0 \end{bmatrix} \Sigma_1^{-\frac{1}{2}}
\]
Implementation: SR Method

1. Compute (Cholesky) factors of the Gramians, $P = S^T S$, $Q = R^T R$.

2. Compute SVD $SR^T = [U_1, U_2] \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$.

3. ROM is $(W^T A V, W^T B, C V, D)$, where

 $$W = R^T V_1 \Sigma_1^{-\frac{1}{2}}, \quad V = S^T U_1 \Sigma_1^{-\frac{1}{2}}.$$

Note:

$$V^T W = (\Sigma_1^{-\frac{1}{2}} U_1^T S) (R^T V_1 \Sigma_1^{-\frac{1}{2}}) = \Sigma_1^{-\frac{1}{2}} U_1^T U \Sigma V^T V_1 \Sigma_1^{-\frac{1}{2}}$$

$$= \Sigma_1^{-\frac{1}{2}} [I_r, 0] \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \begin{bmatrix} I_r \\ 0 \end{bmatrix} \Sigma_1^{-\frac{1}{2}} = \Sigma_1^{-\frac{1}{2}} \Sigma_1 \Sigma_1^{-\frac{1}{2}} = I_r$$

$\implies V W^T$ is an oblique projector, hence balanced truncation is a Petrov-Galerkin projection method.
Balanced Truncation

Properties:

- Reduced-order model is minimal (controllable and observable) and stable with HSVs $\sigma_1, \ldots, \sigma_r$.
Properties:

- Reduced-order model is minimal (controllable and observable) and stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- **Adaptive choice of r** via computable error bound:

$$
\| y - \hat{y} \|_2 \leq \left(2 \sum_{k=r+1}^{n} \sigma_k \right) \| u \|_2.
$$
Properties:

General misconception: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).
Properties:

General misconception: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:
Balanced Truncation

Properties:

General misconception: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:

- Instead of Gramians P, Q compute $S, R \in \mathbb{R}^{n \times k}, k \ll n$, such that
 \[P \approx SS^T, \quad Q \approx RR^T. \]

- Compute S, R with problem-specific Lyapunov solvers of “low” complexity directly.

Eigenvalues of Gramian in decreasing order

© Peter Benner, benner@mpi-magdeburg.mpg.de

SVD-based MOR
Balanced Truncation

Properties:

General misconception: complexity $O(n^3)$ – true for several implementations! (e.g., MATLAB, SLICOT).

Use low-rank techniques ideas from numerical linear algebra:

Sparse Balanced Truncation:

- Implementation using sparse Lyapunov solver (\rightarrow ADI+sparse LU).
- Complexity $O(n(k^2 + r^2))$.
- Software:
 + MATLAB toolbox LyaPack (Penzl 1999),
 + Software library M.E.S.S.a in C/MATLAB [B./SaaK/Köhler/uvm.],
 + pyMOR.

aMatrix Equation Sparse Solvers
Recall Peaceman-Rachford ADI:
Consider $Au = s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^n$.

ADI iteration idea: decompose $A = H + V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

\[
(H + pl)v = r \\
(V + pl)w = t
\]

can be solved easily/efficiently.
Recall Peaceman-Rachford ADI:

Consider $Au = s$ where $A \in \mathbb{R}^{n \times n}$ spd, $s \in \mathbb{R}^n$.

ADI iteration idea: decompose $A = H + V$ with $H, V \in \mathbb{R}^{n \times n}$ such that

$$(H + pl)v = r$$

$$(V + pl)w = t$$

can be solved easily/efficiently.

ADI Iteration

If H, V spd $\Rightarrow \exists p_k, k = 1, 2, \ldots$, such that

$$u_0 = 0$$

$$(H + p_k l)u_{k-\frac{1}{2}} = (p_k l - V)u_{k-1} + s$$

$$(V + p_k l)u_k = (p_k l - H)u_{k-\frac{1}{2}} + s$$

converges to $u \in \mathbb{R}^n$ solving $Au = s$.
The (linear) Lyapunov operator

\[\mathcal{L} : \ X \mapsto AX + XA^T \]

can be decomposed into the linear operators

\[\mathcal{L}_H : X \mapsto AX, \quad \mathcal{L}_V : X \mapsto XA^T. \]

In analogy to the standard ADI method we find the

ADI iteration for the Lyapunov equation

\[
\begin{align*}
X_0 &= 0, \\
(A + p_k I)X_{k-\frac{1}{2}} &= -W - X_{k-1}(A^T - p_k I), \\
(A + p_k I)X_k^T &= -W - X_{k-\frac{1}{2}}^T(A^T - p_k I).
\end{align*}
\]

[Wachspress 1988]
Consider \(AX + XA^T = -BB^T \) for stable \(A, B \in \mathbb{R}^{n \times m} \) with \(m \ll n \).

ADI iteration for the Lyapunov equation

For \(k = 1, \ldots, k_{\text{max}} \):

\[
\begin{align*}
X_0 & = 0 \\
(A + p_k I)X_{k-\frac{1}{2}} & = -BB^T - X_{k-1}(A^T - p_k I) \\
(A + p_k I)X_k^T & = -BB^T - X_{k-\frac{1}{2}}^T(A^T - p_k I)
\end{align*}
\]

[Wachspress 1988]
Consider $AX + XA^T = -BB^T$ for stable A, $B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation [Wachspress 1988]

For $k = 1, \ldots, k_{\text{max}}$

\[
\begin{align*}
X_0 &= 0 \\
(A + p_k I)X_{k-\frac{1}{2}} &= -BB^T - X_{k-1}(A^T - p_k I) \\
(A + p_k I)X_k^T &= -BB^T - X_{k-\frac{1}{2}}^T (A^T - p_k I)
\end{align*}
\]

Rewrite as one step iteration and factorize $X_k = Z_kZ_k^T$, $k = 0, \ldots, k_{\text{max}}$

\[
\begin{align*}
Z_0Z_0^T &= 0 \\
Z_kZ_k^T &= -2p_k(A + p_k I)^{-1}BB^T(A + p_k I)^{-T} \\
&\quad + (A + p_k I)^{-1}(A - p_k I)Z_{k-1}Z_{k-1}^T(A - p_k I)^T(A + p_k I)^{-T}
\end{align*}
\]
Consider $AX + XA^T = -BB^T$ for stable $A, B \in \mathbb{R}^{n \times m}$ with $m \ll n$.

ADI iteration for the Lyapunov equation [Wachspress 1988]

For $k = 1, \ldots, k_{\text{max}}$

\[
\begin{align*}
X_0 &= 0 \\
(A + p_k I)X_{k-\frac{1}{2}} &= -BB^T - X_{k-1}(A^T - p_k I) \\
(A + p_k I)X_k^T &= -BB^T - X_k^T - p_k I
\end{align*}
\]

Rewrite as one step iteration and factorize $X_k = Z_k Z_k^T$, $k = 0, \ldots, k_{\text{max}}$

\[
\begin{align*}
Z_0 Z_0^T &= 0 \\
Z_k Z_k^T &= -2p_k (A + p_k I)^{-1}BB^T (A + p_k I)^{-T} \\
&\quad + (A + p_k I)^{-1} (A - p_k I) Z_{k-1} Z_{k-1}^T (A - p_k I)^T (A + p_k I)^{-T}
\end{align*}
\]

\[\cdots \rightsquigarrow \text{low-rank Cholesky factor ADI} \quad [\text{Penzl 1997/2000, Li/White 1999/2002, B./Li/Penzl 1999/2008, Gugercin/Sorensen/Antoulas 2003}]\]
\[Z_k = \left[\sqrt{-2p_k}(A + p_k I)^{-1}B, (A + p_k I)^{-1}(A - p_k I)Z_{k-1} \right] \quad \text{[Penzl 2000]} \]
\[Z_k = \left[\sqrt{-2p_k} (A + p_k I)^{-1} B, (A + p_k I)^{-1} (A - p_k I) Z_{k-1} \right] \]

[Penzl 2000]

Observing that \((A - p_i I), (A + p_k I)^{-1}\) commute, we rewrite \(Z_{k_{\text{max}}}\) as

\[Z_{k_{\text{max}}} = [z_{k_{\text{max}}}, P_{k_{\text{max}}-1} z_{k_{\text{max}}}, P_{k_{\text{max}}-2} (P_{k_{\text{max}}-1} z_{k_{\text{max}}}), \ldots, P_1 (P_2 \cdots P_{k_{\text{max}}-1} z_{k_{\text{max}}})], \]

where

\[z_{k_{\text{max}}} = \sqrt{-2p_{k_{\text{max}}}} (A + p_{k_{\text{max}}} I)^{-1} B \]

and

\[P_i := \frac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} \left[I - (p_i + p_{i+1})(A + p_i I)^{-1} \right]. \]

[Li/White 2002]
\[Z_k = [\sqrt{-2p_k} (A + p_k I)^{-1} B, (A + p_k I)^{-1}(A - p_k I)Z_{k-1}] \]

[Penzl 2000]

Observing that \((A - p_i I), (A + p_k I)^{-1}\) commute, we rewrite \(Z_{k_{\text{max}}}\) as

\[Z_{k_{\text{max}}} = [z_{k_{\text{max}}}, P_{k_{\text{max}} - 1}z_{k_{\text{max}}}, P_{k_{\text{max}} - 2}(P_{k_{\text{max}} - 1}z_{k_{\text{max}}}), \ldots, P_1(P_2 \cdots P_{k_{\text{max}} - 1}z_{k_{\text{max}}})], \]

where

\[z_{k_{\text{max}}} = \sqrt{-2p_{k_{\text{max}}}} (A + p_{k_{\text{max}}} I)^{-1} B \]

and

\[P_i := \frac{\sqrt{-2p_i}}{\sqrt{-2p_{i+1}}} [I - (p_i + p_{i+1})(A + p_i I)^{-1}] . \]

[Li/White 2002]

\[\Rightarrow \text{Need to solve only one (sparse) linear system with } m \text{ right-hand sides per iteration!} \]
ADl Methods for Lyapunov Equations
Lyapunov equation $0 = AX + XA^T + BB^T$.

\[
V_1 \leftarrow \sqrt{-2 \text{re} p_1 (A + p_1 I)^{-1} B}, \quad Z_1 \leftarrow V_1 \\
\text{FOR } k = 2, 3, \ldots \\
V_k \leftarrow \sqrt{\frac{\text{re} p_k}{\text{re} p_{k-1}}} \left(V_{k-1} - (p_k + \overline{p_{k-1}})(A + p_k I)^{-1} V_{k-1} \right) \\
Z_k \leftarrow \begin{bmatrix} Z_{k-1} & V_k \end{bmatrix} \\
Z_k \leftarrow \text{rrlq}(Z_k, \tau) \quad \% \text{ column compression, optional}
\]
ADI Methods for Lyapunov Equations

Lyapunov equation $0 = AX + XA^T + BB^T$.

\[
V_1 \leftarrow \sqrt{-2 \text{re} p_1 (A + p_1 I)^{-1} B}, \quad Z_1 \leftarrow V_1 \\
\text{FOR } k = 2, 3, \ldots \\
V_k \leftarrow \sqrt{\frac{\text{re} p_k}{\text{re} p_{k-1}}} \left(V_{k-1} - (p_k + \overline{p_{k-1}}) (A + p_k I)^{-1} V_{k-1} \right) \\
Z_k \leftarrow \begin{bmatrix} Z_{k-1} & V_k \end{bmatrix} \\
Z_k \leftarrow \text{rrlq}(Z_k, \tau) \quad \% \text{column compression, optional}
\]

At convergence, $Z_{k_{\text{max}}} Z_{k_{\text{max}}}^T \approx X$, where (without column compression)

\[
Z_{k_{\text{max}}} = \begin{bmatrix} V_1 & \ldots & V_{k_{\text{max}}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \end{bmatrix} \in \mathbb{C}^{n \times m}.
\]
Lyapunov equation \(0 = AX + XA^T + BB^T \).

\[
V_1 \leftarrow \sqrt{-2 \text{re} p_1 (A + p_1 I)^{-1} B}, \quad Z_1 \leftarrow V_1
\]

FOR \(k = 2, 3, \ldots \)

\[
V_k \leftarrow \sqrt{\frac{\text{re} p_k}{\text{re} p_{k-1}}} \left(V_{k-1} - (p_k + \overline{p_{k-1}})(A + p_k I)^{-1} V_{k-1} \right)
\]

\[
Z_k \leftarrow \begin{bmatrix} Z_{k-1} & V_k \end{bmatrix}
\]

\[
Z_k \leftarrow \text{rrlq}(Z_k, \tau) \quad \% \text{ column compression, optional}
\]

At convergence, \(Z_{k_{\text{max}}} Z_{k_{\text{max}}}^T \approx X \), where (without column compression)

\[
Z_{k_{\text{max}}} = \begin{bmatrix} V_1 & \ldots & V_{k_{\text{max}}} \end{bmatrix}, \quad V_k = \begin{bmatrix} \end{bmatrix} \in \mathbb{C}^{n \times m}.
\]

Note: Implementation in real arithmetic is possible: combine two steps [B./Li/Penzl 1999/2008] or employ the relations of consecutive complex factors [B./Kürschner/Saak 2011].

Current implementations (pyMOR, M.E.S.S.) employ low-rank property of residual, update residual in each step, and compute new shifts on the fly!
Numerical Results for ADI
Optimal Cooling of Steel Profiles

- Mathematical model: boundary control for linearized 2D heat equation.

\[
c \cdot \rho \frac{\partial x}{\partial t} = \lambda \Delta x, \quad \xi \in \Omega
\]

\[
\lambda \frac{\partial x}{\partial n} = \kappa(u_k - x), \quad \xi \in \Gamma_k, \ 1 \leq k \leq 7,
\]

\[
\frac{\partial x}{\partial n} = 0, \quad \xi \in \Gamma_7.
\]

\[\implies m = 7, p = 6.\]

- FEM Discretization, different models for initial mesh \(n = 371\),
 1, 2, 3, 4 steps of mesh refinement \(\Rightarrow\)
 \(n = 1357, 5177, 20209, 79841.\)

Source: Physical model: courtesy of Mannesmann/Demag.
Numerical Results for ADI
Optimal Cooling of Steel Profiles

- Solve dual Lyapunov equations needed for balanced truncation, i.e.,

\[APMT + MPAT + BB^T = 0, \quad A^TQM + MTAQ + CTC = 0, \]

for \(n = 79, 841 \).

- 25 shifts chosen by Penzl heuristic from 50/25 Ritz values of \(A \) of largest/smallest magnitude, no column compression performed.

- M.E.S.S. requires no factorization of mass matrix.

![Graph showing normalized residual norm vs. number of iterations for two systems](image-url)
Projection-based methods for Lyapunov equations with $A + A^T < 0$:

1. Compute orthonormal basis $\text{range}(Z)$, $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, $\dim Z = r$.
2. Set $\hat{A} := Z^T AZ$, $\hat{B} := Z^T B$.
3. Solve small-size Lyapunov equation $\hat{A}\hat{X} + \hat{X}\hat{A}^T + \hat{B}\hat{B}^T = 0$.
4. Use $X \approx Z\hat{X}Z^T$.

Examples:

- Krylov subspace methods, i.e., for $m = 1$:

$$Z = \mathcal{K}(A, B, r) = \text{span}\{B, AB, A^2B, \ldots, A^{r-1}B\}$$

Projection-based methods for Lyapunov equations with $A + A^T < 0$:

1. Compute orthonormal basis $\text{range}(Z) = Z \in \mathbb{R}^{n \times r}$, for subspace $\mathcal{Z} \subset \mathbb{R}^n$, $\dim \mathcal{Z} = r$.
2. Set $\hat{A} := Z^T AZ$, $\hat{B} := Z^T B$.
3. Solve small-size Lyapunov equation $\hat{A} \hat{X} + \hat{X} \hat{A}^T + \hat{B} \hat{B}^T = 0$.
4. Use $X \approx Z \hat{X} Z^T$.

Examples:

- Krylov subspace methods, i.e., for $m = 1$:
 \[
 \mathcal{Z} = \mathcal{K}(A, B, r) = \text{span}\{B, AB, A^2 B, \ldots, A^{r-1} B\}
 \]

- Extended (and rational) Krylov method (EKSM, RKSM) [Simoncini 2007, Druskin/Knizhnerman/Simoncini 2011],
 \[
 \mathcal{Z} = \mathcal{K}(A, B, r) \cup \mathcal{K}(A^{-1}, B, r).
 \]
Projection-based methods for Lyapunov equations with $A + A^T < 0$:

1. Compute orthonormal basis $\text{range}(Z)$, $Z \in \mathbb{R}^{n \times r}$, for subspace $Z \subset \mathbb{R}^n$, $\dim Z = r$.
2. Set $\hat{A} := Z^T AZ$, $\hat{B} := Z^T B$.
3. Solve small-size Lyapunov equation $\hat{A} \hat{X} + \hat{X} \hat{A}^T + \hat{B} \hat{B}^T = 0$.
4. Use $X \approx Z \hat{X} Z^T$.

Examples:

- ADI subspace [B./R.-C. Li/Truhar 2008]:

 $$Z = \text{colspan} \left[V_1, \ldots, V_r \right].$$

Note:

1. ADI subspace is rational Krylov subspace [J.-R. Li/White 2002].
Balanced Truncation
Numerical example for BT: Optimal Cooling of Steel Profiles

\(n = 1357, \text{ Absolute Error} \)

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.
Balanced Truncation
Numerical example for BT: Optimal Cooling of Steel Profiles

\(n = 1357, \text{ Absolute Error} \)

- BT model computed with sign function method,
- MT w/o static condensation, same order as BT model.

\(n = 79841, \text{ Absolute Error} \)

- BT model computed using M-M.E.S.S. in MATLAB,
By applying AC voltage to electrodes, wings are forced to vibrate in anti-phase in wafer plane.

Coriolis forces induce motion of wings out of wafer plane yielding sensor data.

- Vibrating micro-mechanical gyroscope for inertial navigation.
- Rotational position sensor.

Source: http://modelreduction.org/index.php/Modified_Gyroscope
FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
\[n = 34,722, \ m = 1, \ p = 12. \]

Reduced model computed using ADI-based balanced truncation, \(r = 30 \).
- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
 \(\sim n = 34,722, m = 1, p = 12 \).
- Reduced model computed using ADI-based balanced truncation, \(r = 30 \).

Bode Diagram

- Frequency Response Analysis

© Peter Benner, benner@mpi-magdeburg.mpg.de

SVD-based MOR 32/37
Balanced Truncation
Numerical example for BT: Microgyroscope (Butterfly Gyro)

- FEM discretization of structure dynamical model using quadratic tetrahedral elements (ANSYS-SOLID187)
 \(n = 34,722, \ m = 1, \ p = 12. \)

- Reduced model computed using ADI-based balanced truncation, \(r = 30. \)

Frequency Repsonse Analysis

Hankel Singular Values

© Peter Benner, benner@mpi-magdeburg.mpg.de
Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.
Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices \(P = S^T S \), \(Q = R^T R \), compute balancing state-space transformation so that

\[
P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,
\]

and truncate corresponding realization at size \(r \) with \(\sigma_r > \sigma_{r+1} \).

Classical Balanced Truncation (BT) [Mullis/Roberts 1976, Moore 1981]

- \(P = \) controllability Gramian of system given by \((A, B, C, D)\).
- \(Q = \) observability Gramian of system given by \((A, B, C, D)\).
- \(P, Q \) solve dual Lyapunov equations

\[
AP + PA^T + BB^T = 0, \quad A^T Q + QA + C^T C = 0.
\]
Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

LQG Balanced Truncation (LQGBT)

- $P/Q = \text{controllability/observability Gramian of closed-loop system based on LQG compensator}$.
- P, Q solve dual algebraic Riccati equations (AREs)

$$0 = AP + PA^T - PC^T CP + B^T B,$$

$$0 = A^T Q + QA - QBB^T Q + C^T C.$$
Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Balanced Stochastic Truncation (BST) \cite{Desai/Pal 1984, Green 1988}

- $P = \text{controllability Gramian of system given by } (A, B, C, D)$, i.e., solution of Lyapunov equation $AP + PA^T + BB^T = 0$.
- $Q = \text{observability Gramian of right spectral factor of power spectrum of system given by } (A, B, C, D)$, i.e., solution of ARE

$$\hat{A}^T Q + Q \hat{A} + QB_W (DD^T)^{-1} B_W^T Q + C^T (DD^T)^{-1} C = 0,$$

where $\hat{A} := A - B_W (DD^T)^{-1} C$, $B_W := BD^T + PC^T$.

© Peter Benner, benner@mpi-magdeburg.mpg.de
Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices \(P = S^T S \), \(Q = R^T R \), compute balancing state-space transformation so that

\[
P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,
\]
and truncate corresponding realization at size \(r \) with \(\sigma_r > \sigma_{r+1} \).

Positive-Real Balanced Truncation (PRBT)

- Based on positive-real equations, related to positive real (Kalman-Yakubovich-Popov-Anderson) lemma.
- \(P, Q \) solve dual AREs

\[
0 = \tilde{A} P + P \tilde{A}^T + P C^T \tilde{R}^{-1} C P + B \tilde{R}^{-1} B^T,
\]
\[
0 = \tilde{A}^T Q + Q \tilde{A} + Q B \tilde{R}^{-1} B^T Q + C^T \tilde{R}^{-1} C,
\]

where \(\tilde{R} = D + D^T \), \(\tilde{A} = A - B \tilde{R}^{-1} C \).
Balancing-Related Model Reduction

Basic Principle

Given positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n) = \Sigma, \quad \sigma_1 \geq \ldots \geq \sigma_n \geq 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Other Balancing-Based Methods

- Bounded-real balanced truncation (BRBT) – based on bounded real lemma [Opdenacker/Jonckheere 1988];
- H_∞ balanced truncation (HinfBT) – closed-loop balancing based on H_∞ compensator [Mustafa/Glover 1991].

Both approaches require solution of dual AREs.
- Frequency-weighted versions of the above approaches.
Guaranteed preservation of physical properties like

- stability (all),
- passivity (PRBT),
- minimum phase (BST).

Computable error bounds, e.g.,

\[
\|G - G_r\|_{\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_{BT_j}, \\
\|G - G_r\|_{\infty} \leq 2 \sum_{j=r+1}^{n} \sigma_{LQG_j} \sqrt{1 + (\sigma_{LQG_j})^2}, \\
\|G - G_r\|_{\infty} \leq \left(\prod_{j=r+1}^{n} 1 + \sigma_{BST_j} \right) \|G\|_{\infty},
\]

Can be combined with singular perturbation approximation (= Guyan reduction applied to balanced realization!) for improved steady-state performance.

Computations can be modularized ⇝ software packages M-M.E.S.S., MORLAB, see http://www.mpi-magdeburg.mpg.de/823508/software.
Guaranteed preservation of physical properties like
 – stability (all),
Guaranteed preservation of physical properties like
 – stability (all),
 – passivity (PRBT),
Balancing-Related Model Reduction

Properties

- Guaranteed preservation of physical properties like
 - stability (all),
 - passivity (PRBT),
 - minimum phase (BST).

\[\| G - G_r \|_\infty \leq 2n \sum_{j=r+1}^{n} \sigma_{BT} \]

\[\| G - G_r \|_\infty \leq 2n \sum_{j=r+1}^{n} \sigma_{LQG} \sqrt{1 + (\sigma_{LQG})^2} \]

\[\| G - G_r \|_\infty \leq \left(n \prod_{j=r+1}^{n} \frac{1 + \sigma_{BST}}{1 - \sigma_{BST}} \right) \| G \|_\infty \]

Can be combined with singular perturbation approximation (= Guyan reduction applied to balanced realization!) for improved steady-state performance.

Computations can be modularized ⇝ software packages M-M.E.S.S., MORLAB, see http://www.mpi-magdeburg.mpg.de/823508/software.
Balancing-Related Model Reduction

Properties

- Guaranteed preservation of physical properties like
 - stability (all),
 - passivity (PRBT),
 - minimum phase (BST).
- Computable error bounds, e.g.,

 \[
 \text{BT: } \| G - G_r \|_\infty \leq 2 \sum_{j=r+1}^{n} \sigma_j^{BT},
 \]
 \[
 \text{LQGBT: } \| G - G_r \|_\infty \leq 2 \sum_{j=r+1}^{n} \frac{\sigma_j^{LQG}}{\sqrt{1+(\sigma_j^{LQG})^2}}
 \]
 \[
 \text{BST: } \| G - G_r \|_\infty \leq \left(\prod_{j=r+1}^{n} \frac{1+\sigma_j^{BST}}{1-\sigma_j^{BST}} - 1 \right) \| G \|_\infty,
 \]

Can be combined with singular perturbation approximation (= Guyan reduction applied to balanced realization!) for improved steady-state performance.

Computations can be modularized \(\rightarrow\) software packages M-M.E.S.S., MORLAB, see http://www.mpi-magdeburg.mpg.de/823508/software.
Balancing-Related Model Reduction

Properties

- Guaranteed preservation of physical properties like
 - stability (all),
 - passivity (PRBT),
 - minimum phase (BST).

- Computable error bounds, e.g.,

 \[\| G - G_r \|_\infty \leq 2 \sum_{j=r+1}^{n} \sigma_j^{BT}, \]

 \[\| G - G_r \|_\infty \leq 2 \sum_{j=r+1}^{n} \frac{\sigma_j^{LQG}}{\sqrt{1+(\sigma_j^{LQG})^2}} \]

 \[\| G - G_r \|_\infty \leq \left(\prod_{j=r+1}^{n} \frac{1+\sigma_j^{BST}}{1-\sigma_j^{BST}} - 1 \right) \| G \|_\infty, \]

- Can be combined with singular perturbation approximation (= Guyan reduction applied to balanced realization!) for improved steady-state performance.
Balancing-Related Model Reduction

Properties

- Guaranteed preservation of physical properties like
 - stability (all),
 - passivity (PRBT),
 - minimum phase (BST).

- Computable error bounds, e.g.,

 \[
 \text{BT: } \| G - G_r \|_\infty \leq 2 \sum_{j=r+1}^{n} \sigma_j^{BT},
 \]

 \[
 \text{LQGBT: } \| G - G_r \|_\infty \leq 2 \sum_{j=r+1}^{n} \frac{\sigma_j^{LQG}}{\sqrt{1+(\sigma_j^{LQG})^2}}
 \]

 \[
 \text{BST: } \| G - G_r \|_\infty \leq \left(\prod_{j=r+1}^{n} \frac{1+\sigma_j^{BST}}{1-\sigma_j^{BST}} - 1 \right) \| G \|_\infty,
 \]

- Can be combined with singular perturbation approximation (= Guyan reduction applied to balanced realization!) for improved steady-state performance.

- Computations can be modularized \(\leadsto \) software packages M-M.E.S.S., MORLAB, see http://www.mpi-magdeburg.mpg.de/823508/software.
1. Introduction to SVD-based Model Order Reduction

2. Model Reduction by Projection

3. Balanced Truncation

4. Final Remarks
Current Research Topics

- Special methods for second-order (mechanical), switched and delay systems.
- Time- and frequency-limited variants.
- Empirical variants using snapshots and integral representation of Gramians.
- Extensions to bilinear, quadratic-bilinear, polynomial, and stochastic systems.
- MOR methods for discrete-time systems.
- Extensions to descriptor systems $E\dot{x} = Ax + Bu$, E singular.
- Parametric model reduction:
 \[
 \dot{x} = A(p)x + B(p)u, \quad y = C(p)x,
 \]
 where $p \in \mathbb{R}^d$ is a free parameter vector; parameters should be preserved in the reduced-order model.
References

 Model Reduction for Control System Design.

- P. Benner, E.S. Quintana-Ortí, and G. Quintana-Ortí.
 State-space truncation methods for parallel model reduction of large-scale systems.

- P. Benner, V. Mehrmann, and D. Sorensen (editors).
 Dimension Reduction of Large-Scale Systems.

- A.C. Antoulas.
 Approximation of Large-Scale Dynamical Systems.

- P. Benner.
 Numerical linear algebra for model reduction in control and simulation.

- W.H.A. Schilders, H.A. van der Vorst, and J. Rommes (editors).
 Model Order Reduction: Theory, Research Aspects and Applications.

- P. Benner, J. ter Maten, and M. Hinze (editors).
 Model Reduction for Circuit Simulation.

 Model order reduction for linear and nonlinear systems: a system-theoretic perspective.

 Model Reduction and Approximation: Theory and Algorithms.