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Introduction
Dynamical Processes

=} 7™

Dynamical models are important
@ to analyze transient behavior under operating
conditions,

o for controller design and synthesis,
© parameter optimization,

o prediction of future behavior, e.g., for digital twins.
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Introduction

oblem set-up

@ Construct a mathematical model

x(t) = £(x(1)),

describing dynamics of the process from data.
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Introduction

oblem set-up

@ Construct a mathematical model

x(t) = £(x(2)),
describing dynamics of the process from data.

@ Neural network-based approaches: Recurrent neural networks and long short time
memory networks
v/ require no prior knowledge;
X by nature, they are not parsimonious;
X interpretability (no explicit governing equations);
X generalizability.
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@ Introduction

Problem set-up

@ Construct a mathematical model

x(t) = £(x(2)),
describing dynamics of the process from data.

@ Neural network-based approaches: Recurrent neural networks and long short time
memory networks
v/ require no prior knowledge;
X by nature, they are not parsimonious;
X interpretability (no explicit governing equations);
X generalizability.

@ So, can we pose a reasonable hypothesis to obtain interpretable and generalizable
dynamical process models?
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@ Discovering Governing Equations

Hypothesis
@ In a dynamical model,
x(t) = £(x(?)),
the function f(x(t)), defining the vector field, can be given by sparse selection of
features of a dictionary of "observables” of x(t).
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Hypothesis

@ In a dynamical model,
x(t) = £(x(t)),
the function f(x(t)), defining the vector field, can be given by sparse selection of
features of a dictionary of "observables” of x(t).

o Precisely, we assume f(x(t)) = ®(x(t)) - &, where
o ®(x) is a feature dictionary, i.e.,

®(x) = [1,x, x?2 xP3 .. e ¥ e X ... sin(x),cos(x),.. 71,
in which the xZi,i € {2,3,...}, denote polynomials, e.g., xZ2 contains all possible
degree-2 polynomials of elements of x:

&7
R = [x%,xlxz,...,x%,XQX3,...,x%]A

o & is a sparse vector selecting the right features from the dictionary.
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@ Discovering Governing Equations

Hypothesis

@ In a dynamical model,
x(t) = £(x(?)),
the function f(x(t)), defining the vector field, can be given by sparse selection of
features of a dictionary of "observables” of x(t).

o Precisely, we assume f(x(t)) = ®(x(t)) - &, where
o ®(x) is a feature dictionary, i.e.,

®(x) = [1,x, x?2 xP3 .. e ¥ e X ... sin(x),cos(x),.. 71,
in which the xZi,i € {2,3,...}, denote polynomials, e.g., xZ2 contains all possible
degree-2 polynomials of elements of x:

&7
R = [x%,xlxz,...,x%,XQX3,...,x%]A

o & is a sparse vector selecting the right features from the dictionary.
o Under this hypothesis, there is a large body of available literature, e.g.,

[..., BONGARD/LIPSON 07, SCHMIDT/LIPSON 09, WANG ET AL 11,
DANIELS/NEMENMAN ’15, MANGAN AT AL 16, YANG ET AL ‘16, SCHAEFFER '17,

RAISSI ET AL ’19, ...], in particular SINDy [BRUNTON/PROCTOR/KUTZ '16].

Dynamical Systems from Noisy Measurements
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:@ Discovering Governing Equations

allenges of the approach:

@ Requires derivative information to identify & via

min [|%(¢) — 2(x(?)) - £]l-

o If data are sparsely sampled, or are noisy, it is quite challenging to obtain good
derivative data.
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:@ Discovering Governing Equations

allenges of the approach:

@ Requires derivative information to identify & via

min [|%(¢) — 2(x(?)) - £]l-

o If data are sparsely sampled, or are noisy, it is quite challenging to obtain good
derivative data.

o Construction of a rich enough feature dictionary that at the same time allows
efficient computation.
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:@ Discovering Governing Equations

Main challenges of the approach:

@ Requires derivative information to identify & via
i [ac() = P Ge(E) ) ]

o If data are sparsely sampled, or are noisy, it is quite challenging to obtain good
derivative data.

o Construction of a rich enough feature dictionary that at the same time allows
efficient computation.
o Potential remedy: employ additional information to construct the feature dictionary:

AN i X
 SAQQ
ez ,

(Y | A
derlying physical laws
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:@ Discovering Governing Equations

Main challenges of the approach:

@ Requires derivative information to identify & via

mgin [I%(t) — @(x(2)) - &]|-

o If data are sparsely sampled, or are noisy, it is quite challenging to obtain good
derivative data.
o Remedy: incorporate Runge-Kutta scheme to avoid the need for derivative data.

o Construction of a rich enough feature dictionary that at the same time allows
efficient computation.
o Potential remedy: employ additional information to construct the feature dictionary:

AN i X
 SAQQ
ez ,

(Y | A
derlying physical laws
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:@ Runge-Kutta Scheme to Integrate Differential Equations

order Runge-Kutta Scheme

o Let us consider a differential equation

x(t) = £(x(t)).
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@ Runge-Kutta Scheme to Integrate Differential Equations

Recall: -order Runge-Kutta Scheme

o Let us consider a differential equation
x(t) = £(x(t)).

o Assume our goal is to predict x(¢;+1), given x(t;) and the function f(-).
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@ Runge-Kutta Scheme to Integrate Differential Equations

Recall: -order Runge-Kutta Scheme

o Let us consider a differential equation
x(t) = £(x(t)).
o Assume our goal is to predict x(¢;+1), given x(t;) and the function f(-).

o From the large variety of methods, we focus on the 4" order Runge-Kutta scheme.
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@ Runge-Kutta Scheme to Integrate Differential Equations

Recall: -order Runge-Kutta Scheme

@ Let us consider a differential equation
x(t) = £(x(t)).
@ Assume our goal is to predict x(¢;4+1), given x(t;) and the function f(-).

o From the large variety of methods, we focus on the 4% order Runge-Kutta scheme.
o Predicts x(t;41) using a weighted sum of the vector field f at specific locations.
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@ Runge-Kutta Scheme to Integrate Differential Equations

Recall: 4t-order Runge-Kutta Scheme

@ Let us consider a differential equation
x(t) = £(x(t)).
@ Assume our goal is to predict x(¢;4+1), given x(t;) and the function f(-).

o From the large variety of methods, we focus on the 4% order Runge-Kutta scheme.
o Predicts x(t;41) using a weighted sum of the vector field f at specific locations.

o Precisely, we have
h .
x(ti+l) R Xit1 = X(ti) 9F E (kl + 2ko + 2k3 + k4) , with h:=t;41 —t;,
where

k1 = f(x(t,-)), ko =f (X(ti) + h%) , k="~ (x(t,') + h%) , ka= f(x(ti) —+ hkg) .
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@ Runge-Kutta Scheme to Integrate Differential Equations

Recall: 4t-order Runge-Kutta Scheme

@ Let us consider a differential equation
x(t) = £(x(t)).
@ Assume our goal is to predict x(¢;4+1), given x(t;) and the function f(-).

o From the large variety of methods, we focus on the 4% order Runge-Kutta scheme.
o Predicts x(t;41) using a weighted sum of the vector field f at specific locations.

o Precisely, we have
h .
x(ti+1) R Xit1 = X(ti) 9F g (kl + 2ko + 2k3 + k4) , with h:=t;41 —t;,
where
k1 = f(x(ti)) , ke =f (X(ti) + h%) , k="~ (x(t,') + h%) , ka= f(x(ti) —+ hkg) .

o The local truncation error is in @(h®), while the total accumulated error is in O(h?).
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@ Runge-Kutta Scheme to Integrate Differential Equations

Recall: 4t-order Runge-Kutta Scheme

@ Let us consider a differential equation
x(t) = £(x(t)).
@ Assume our goal is to predict x(¢;4+1), given x(t;) and the function f(-).

o From the large variety of methods, we focus on the 4% order Runge-Kutta scheme.
o Predicts x(t;41) using a weighted sum of the vector field f at specific locations.

o Precisely, we have
h .
x(ti+1) R Xit1 = X(ti) 9F g (kl + 2ko + 2k3 + k4) , with h:=t;41 —t;,
where
k1 = f(x(ti)) , ke =f (X(ti) + h%) , k="~ (x(t,') + h%) , ka= f(x(ti) —+ hkg) .

o The local truncation error is in @(h®), while the total accumulated error is in O(h?).

o We use the notation xy41 ~ Frka (f, x(tx), h).
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

@ We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f.
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

@ We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f.

o But the vector field f(-) is not known — this is what we want to find!

(©Peter Benner, benner@mpi-magdeburg.mpg.de ification of Nonlinear Dynamical Systems from Noisy Measurements


mailto:benner@mpi-magdeburg.mpg.de

@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

@ We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f.

@ But the vector field f(:) is not known — this is what we want to find!

o Based on the sparsity hypothesis:

f(x) == 2(x)¢,

where ®(x) is a feature dictionary, and & selects right features from the dictionary.
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

@ We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f.

@ But the vector field f(:) is not known — this is what we want to find!
o Based on the sparsity hypothesis:
f(x) == 2(x)¢,

where ®(x) is a feature dictionary, and & selects right features from the dictionary.

@ Thus, we have
x(t) = £(x(t)) = 2(x(1))¢,

or for each component of x(¢):

[Bei(®), - %n(8)] = [Rx(8)&1, -+, P(x(F))én]
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

@ We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f.

@ But the vector field f(:) is not known — this is what we want to find!

o Based on the sparsity hypothesis:
f(x) == 2(x)¢,

where ®(x) is a feature dictionary, and & selects right features from the dictionary.
o Thus, we have
x(t) = £(x(t)) = ®(x(1))§,
or for each component of x(¢):

[Bei(®), - %n(8)] = [Rx(8)&1, -+, P(x(F))én]

o If derivative information is known, one can apply the standard Sparse Identification
of Nonlinear Dynamics (Std-SINDy) approach [BRUNTON AT AL. '16].
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

@ We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f.

@ But the vector field f(:) is not known — this is what we want to find!

o Based on the sparsity hypothesis:
f(x) == 2(x)¢,

where ®(x) is a feature dictionary, and & selects right features from the dictionary.
o Thus, we have
x(t) = £(x(t)) = ®(x(1))§,
or for each component of x(¢):

[Bei(®), - %n(8)] = [Rx(8)&1, -+, P(x(F))én]

o If derivative information is known, one can apply the standard Sparse Identification
of Nonlinear Dynamics (Std-SINDy) approach [BRUNTON AT AL. '16].

o Here: leverage RK4 scheme to avoid derivative information!
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

o For simplicity, let us consider two samples of x at time ¢; and #;+1.
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

o For simplicity, let us consider two samples of x at time ¢; and ;4.
o With the help of RK4, we have:

[X1(ti+1), - Xn(tipn)] = [xa(t), - - X (8)] + Frea (@, &), x(t:), h),
=f
where .
Fria (P, €)% (t:), h) = & (b + 2ka + 2k + ka)

with

k= [®(x(t))¢1, - -, B(x(2))én],

ky = [®(X1(t)é1 ..., (X1 (t)&n] with X1 =x+ 2 -k

ks = [®(X2(1))E2, ..., B(X2(t))én] with Ko =x+ 2 ks,

lbn = [‘i’(f(g t))§3, e, @()23(75))5”] with X1 =x+ h - k3.

P
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

o For simplicity, let us consider two samples of x at time ¢; and ;4.
o With the help of RK4, we have:

[Xl (ti+1), e, Xn(ti+1)] ~ [Xl (ti), A ,Xn(ti)] + ]:RK4( (‘I’,&'),X(ti), h),

=f
where .
Frra (2, 8:), x(t:), h) = & (k1 + 2ka + 2ks + ka),
hy hi hy
®° % L
: N 6 N N
=) @+ @@ |xaltis1): s xnltis)
' : :
Symobolic dictionary of functions
[ Sparse coefficients to describe dynamics ] G (i) = |1LX.XP2 X", "Si‘_‘(i)’m(i)’ - ’}
Exie ooy Exa) -

benner@mpi-magdeburg.mpg.de
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Optimization problem

A@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

Optimization Problem Statement

o Determine the sparsest &;'s, minimizing

(| Be1(tir), - o X (Bi42)] = [x1(82), - - X (83)] —Freas (@, &), %(8:), h) ||-

x(ti41) x(t;)

(©Peter Benner, benner@mpi-magdeburg.mpg.de il ion of Nonlinear Dynamical Systems from Noisy Measurements
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

Optimization problem

Optimization Problem Statement

o Determine the sparsest &;'s, minimizing

(| Be1(tir), - o X (Bi42)] = [x1(82), - - X (83)] —Freas (@, &), %(8:), h) ||-

x(ti41) x(t;)

@ The above problem is NP hard ~~ not possible to solve in polynomial time.
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A@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Optimization problem

Optimization Problem Statement

o Determine the sparsest &;'s, minimizing

(| Be1(tir), - o X (Bi42)] = [x1(82), - - X (83)] —Freas (@, &), %(8:), h) ||-

x(ti41) x(t;)

@ The above problem is NP hard ~~ not possible to solve in polynomial time.
o Remedy: ¢i-norm relaxation ("LASSQO"), i.e.,

[|%(ti+1) — x(t:) — Frea (8, &, x(t:),h) || +7- Z €l
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¢@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

Optimization problem

Optimization Problem Statement

o Determine the sparsest &;'s, minimizing

|| %1 (tig1)s oy X (Fi1)] = (K1 (E), - -, X ()] —Frca (), %(:), h) ||.

x(ti41) x(t;)

@ The above problem is NP hard ~~ not possible to solve in polynomial time.
o Remedy: ¢i-norm relaxation ("LASSQO"), i.e.,

[|%(ti+1) — x(t:) — Frea (8, &, x(t:),h) || +7- Z €l

o Under a certain condition (related to the restricted isometry property), the relaxed
optimization problem may yield the sparsest solution.
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

Optimization problem

Optimization Problem Statement

o Determine the sparsest &;'s, minimizing

| 1 (Eig1)s - - -y Xn (1)) = [x2(Ee), - - -, X ()] —Frea (2, &), %(t:), h) |-

x(ti41) x(t;)

@ The above problem is NP hard ~~ not possible to solve in polynomial time.
o Remedy: ¢;-norm relaxation ("LASSO"), i.e.,

[|%(ti+1) — x(t:) — Frea (8, &, x(t:),h) || +7- Z €l

o Under a certain condition (related to the restricted isometry property), the relaxed
optimization problem may yield the sparsest solution.

o But often, in practice, this condition is not full-filled. Therefore, we look at a
sequential thresholding type algorithm (similar to [BrRUNTON ET AL. '16]).
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

Sequential Thresholding Approach [GovaL/B. "21]

@ In essence, the idea is to set small coefficients to zero and solve the optimization for
the rest of the non-zero coefficients.
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[GoyaL/B. "21]

@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
: Sequential Thresholding Approach

@ In essence, the idea is to set small coefficients to zero and solve the optimization for
the rest of the non-zero coefficients.

Algorithm 2 Sequential Thresholding Procedure (Fix Thresholding)

Input: Measurement data {x(t0),x(t1),...,x(tx)} and the cutoff parameter \.
1: Solve the following optimization problem to get © := {&1,..., &0 }:
Do I(tirn) = x(ti) — Frea (B, &, x(t:), 1) | +7 - O] (1)

2: small_idx = (|@] < \) > Determine indices at which coefficients are < A
3: Err = ||© (small_idx) ||

4: while Err # 0 do

5: Update © by solving (1) with the constraint © (small_idx) = 0

6 small_idx = (|®] < \) > Determine indices at which coefficients are < A
7 Err = ||® (small_idx) ||

8: end while

Output: The sparse © that picks right features from the dictionary.

(©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements
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@ Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

Sequential Thresholding Approach

Additional Remarks

@ The optimization problem

D I (tir1) — x(t:) — Frua (8, &, x(8:), B + - €], -

is nonlinear and non-convex, and there is in general no analytical and no unique
solution

o Here, we use gradient based optimization, e.g., ADAM [Kinama/Ba ’15].
o For gradient computation, we utilize the computational graph based library PyTorch.

o Furthermore, the optimization problem involves the thresholding parameter A\, which
can be found by cross-validation.

o Alternatively, we propose an iterative thresholding algorithm in which we truncate
the smallest non-zero element in each iteration to find the sparsest solution.
[GoyaL/B. 21]
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Numerical Examples
Cubic Oscillator

Cubic Oscillator

o Consider a cubic damped oscillator, governed by
x(t) = —0.1x(t)* + 2.0y (t)?,
y(t) = —2.0x(t)* — 0.1y (¢)>.

o We construct a feature dictionary, containing polynomials features up to degree 5.

o We compare the proposed method RK4-SINDy with Std-SINDy.
( [BRUNTON ET AL. ’16])
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Numerical Examples

Cubic Oscillat

2
+ oua - oua
15 | — ncasinoy 15 — RKa-sinDy
10 .. Sta-sinDy 10 -+ Sta-sindy
0s 0s
. x
. oo . 00
10 10
T ods T ods
-15 —— Rk4-Sindy -15 —— Rk4-Sindy
2o +Std-Sindy 20 +Std-Sindy
-2 -1 ] 1 2 -2 -1 o 1 2 y o
. -3 . —2
(a) Time step dt =5-107°. (b) Time stepdt =1-10""~.
2 20
+ oa ’ + oa
15 — RKa-SinDy 15 — RKa-SinDy
10 = stsinoy 10 = stsinoy
05 x 05 x
~ 00 ~ 00
-0.5 -0.5
-1.0 =10
T odts , "~ odo
-15 = Rk4-Sindy —— RKk4-Sindy
20 -+ stdSindy - stSindy
2 a1 0 T 3 ¥ ° 2 a0 T 7
x x
- —2 - —1
(c) Time step dt =510~ ~. (d) Timestepdt =1-10"".

Figure: Cubic 2D model: A comparison of the transient responses of discovered models using
data at different regular time-steps.

ical Systems from N Measurements
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Numerical Examples
: Cubic Oscillator

[ Time step | RK4-SINDy [ Std-SINDy |
%x(t) = —0.099x(t)® + 1.996y (t)?
y(t) = —1.997x(t)% — 0.100y (¢)*

x(t) = —0.100x(t) + 1.994y (t)
y(t) = —1.996x(t)> — 0.099y (¢)3

%x(t) = —0.100x(t)> + 1.995y (t)*
y(t) = —1.997x(t)% — 0.100y (¢)*

%(t) = 0.090x(t) — 0.097x(£)2 — 0.463x(t)

+ 4 0.381x(8) 3y (1)% — 0.258x(t)y (1)
¥(t) = 0.100x(t) + 0.104x(t)% + 0.051x(t)y (t)
+ 4 0.381x(8) 3y (1)2 — 0.258x(t)y (1)

Table: Cubic 2D model: The table reports the discovered governing equations by employing
RK4-SINDy and Std-SINDy.
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Numerical Examples
Fitz-Hugh Nagumo Model

Fitz-Hugh Nagumo Model

o Next, we consider the Fitz-Hugh Nagumo system, a basic model for neuron spiking:

1 .\3
v(t) =v(t) —w(t) — -v(t)” + 0.5,
(t) = v(t) —w(t) - 5v(t) @)
w(t) = 0.040v(t) — 0.028w(t) + 0.032.
o We construct a feature dictionary, containing polynomials up to degree 5.
o We compare the proposed method RK4-SINDy with Std-SINDy.
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Numerical Examples

Fitz-Hugh Nagumo Model

- Data
= 0 — Rka-Sindy.
- Std-Sindy

- Data
— RKa-SinDy
- Std-SinDy

(a) Time step

- Data
BX — Rkd-Sindy
- Std-Sindy

dt=1.0-10"1.

+ Data
— RK4-SinDy
+Std-SinDy

(c) Time step

dt =5.0-10"1.

- Data
— Rka-Sindy
- Std-Sindy

- Data
— RKd-SinDy
< Std-SinDy

(b) Time step

+ Data
— Rkd-Sindy
- Std-Sindy

dt=2.5-10""1.

-+ Data
— RK4-SinDy
- Std-SinDy

(d) Time step

dt=7.5-10"1.

Figure: FHN model: A comparison of the transient responses of the discovered differential
equations using data collected at different regular time-steps.
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Numerical Examples

Fitz-Hugh Nagumo Model

[« ] RK4-SINDy Std-SINDy

V(t) = 0.499 + 0.998v — 0.998w — 0.333v°
W(t) = 0.032 + 0.040v — 0.028w

v(t) = 0.494 + 0.985v — 0.989w — 0.328v

W(t) = 0.032 4+ 0.040v — 0.028w
v(t) = 0.482 1 0.943v — 0.959w

v(t) = 0.501 + 1.001v — 1.001w — 0.334v"
W(t) = 0.032 4 0.040v — 0.028w

— 0.034vw — 0.311v° + 0.024vw?

w(t) = 0.032 4+ 0.040v — 0.028w
v(t) = 0.459 + 0.816v — 0.982w

V(t) = 0.502 + 1.001v — 1.003w — 0.334v"

Ww(t) = 0.032 + 0.040v — 0.027w

2 3

— 0.013v> + -4+ 0.131vw” — 0.021w

W(t) = 0.032 + 0.040v — 0.028w

Table: FHN model: Discovered models using data at various time-step using RK4-SINDy and
Std-SINDy.

@ Observe that for data collected large steps, the standard SINDy fails, potentially due
to large error in derivative estimates.

@ On the other hand, RK4-SINDy accurately discovers dynamical models as it does
not require derivative information explicitly.
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@ Extensions — Parametric Systems

@ The approach readily applies to parametric systems.

o Consider a parametric system (where parameters do not vary with time!)
x(t; ) = £(x(t; 1))

o Reformulation with state vector augmented by parameters as x,,(t) = [x(t), p].

o Consequently, we have
(1) = [F(xu(1)), 0] -

o Hence, we can readily apply RK4-SINDy by creating a dictionary involving the
parameters .
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Numerical Examples
Hopf normal form

Hopf normal form

@ Dynamics of parametric Hopf normal form is given by

X(t) = px(t) — y(t) — x(t) (x(t)* + y(t
¥(t) = x(t) + py(t) — y(t) (x(t)* + y(t

~— —
N
e

2).
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Numerical Examples
Hopf normal form

Hopf normal form

@ Dynamics of parametric Hopf normal form is given by
x(8) = px(t) —y(t) —x(t) (x(t)* +y()*) ,
Y(t) = x(t) + uy(t) — y(&) (x()* +y()°) .

o We collect measurements for various initial conditions and parameters with time
step 0.2 which are corrupted by adding 1% Gaussian noise.

Measurement data
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Numerical Examples
Hopf normal form

Hopf normal form

@ Dynamics of parametric Hopf normal form is given by

x(t) = px(t) —y(t) — x(t) (x()* +y()*),
y(t) = x(t) + py(t) — y(t) (x(t)* +y(t)?) .

o We collect measurements for various initial conditions and parameters with time
step 0.2 which are corrupted by adding 1% Gaussian noise.

o We construct a dictionary, containing polynomials up to degree 3, including the
parameter.

Measurement data
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Numerical Examples

Hopf normal form

Truth Simulation RK-SINDy

Figure: Simulations for parameters from a test set different from the training parameters.

[ Method | Discovered model |
RKA-SINDy x(t) = 1.001px(t) — 1.001y (t) — 0.996x(t) (x()* + y(t)?)
y(t) = 1.001x(t) + 1.010uy (t) — 1.006x(t)y () — 1.004y(t)>
%(t) = — 0.961y(t) + 0.719ux(t) + 0.822uy () — 0.735x(t)°
Std-SINDy — 1.044x(t)%y — 0.686x(t)y(t)? — 0.846y(t)>
y(t) =0.986x(t) + 0.899uy(t) — 0.882x(t)2y(t) — 0.904y(t)>.
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o Several dynamical models are given by rational functions, specially in chemical and
biological modeling.
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@ Extension of RK4-SINDy to Rational Non-linearity

Challenge in rational functions:

o Several dynamical models are given by rational functions, specially in chemical and
biological modeling.

o E.g., if we were to discover the model: x(t) = —%, then, in a classical

dictionary based learning, we precisely need to have a feature containing

1+ 0.3x(¢)

mical Systems from Noisy Measurements
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:@ Extension of RK4-SINDy to Rational Non-linearity

Challenge in rational functions:

o Several dynamical models are given by rational functions, specially in chemical and
biological modeling.
x(t)
~1+0.3x(t)
dictionary based learning, we precisely need to have a feature containing

o E.g., if we were to discover the model: x(t) = , then, in a classical

1+ 0.3x(¢)
o This puts severe restrictions; many times not even feasible to guess such features.

ication of Nonlinear Dynamical Systems from Noisy Measurements


mailto:benner@mpi-magdeburg.mpg.de

@ Extension of RK4-SINDy to Rational Non-linearity

Challenge in rational functions:

o Several dynamical models are given by rational functions, specially in chemical and
biological modeling.
x(t)
~1+0.3x(t)
dictionary based learning, we precisely need to have a feature containing

o E.g., if we were to discover the model: %(t) = , then, in a classical

1+ 0.3x(¢)
@ This puts severe restrictions; many times not even feasible to guess such features.

Remedy
o We hypothesize that the right-hand side function f(x(¢)) defining the dynamical
systems can be given by a ratio of two functions in which each function is defined
by selecting features from an appropriate dictionary, i.e.,
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@ Extension of RK4-SINDy to Rational Non-linearity

Challenge in rational functions:

o Several dynamical models are given by rational functions, specially in chemical and
biological modeling.
x(t)
~1+0.3x(t)
dictioilary based learning, we precisely need to have a feature containing

o E.g., if we were to discover the model: %(t) = , then, in a classical

1+ 0.3x(¢)
@ This puts severe restrictions; many times not even feasible to guess such features.

Remedy

o We hypothesize that the right-hand side function f(x(¢)) defining the dynamical
systems can be given by a ratio of two functions in which each function is defined

by selecting features from an appropriate dictionary, i.e.,
g (x(t)) P (x)én N
o f(x(t)) = = , Where ®(x) is a dictionary, and are
) = T o x(®) ~ 1+ 2006 & AR
sparse vectors.
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Extension of RK4-SINDy to Rational Non-linearity
An Example

Michaelis-Menten kinetics

@ Michaelis-Menten kinetics describes an Enzyme dynamics and is governed by

(©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonli Dynamical Systems from Noisy Measurements


mailto:benner@mpi-magdeburg.mpg.de

Extension of RK4-SINDy to Rational Non-linearity
An Example

Michaelis-Menten kinetics

@ Michaelis-Menten kinetics describes an Enzyme dynamics and is governed by

o We collect data using 4 trajectories.
o We construct a dictionary of polynomial features of degree 3.

o Learn a parsimonious model using RK4-SINDy for rational nonlinear systems.

Training trajectories]

4 —— Ground-truth model

\ e RK4-Sindy
\— Ground-truth model

* . RK4-Sindy(Outside training)

3
Learned model (normalized) R
56) —0.666 — 1.3355(t) 2
s = 7
1.000 + 0.5125(¢) 1
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Neural Networks-Based Learning from Highly Noisy Measurements

@ We have presented the discovery of dynamical models using sparse regression
combined with an RK4 scheme

~~ no derivative estimate required!
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@ Neural Networks-Based Learning from Highly Noisy Measurements

So far

@ We have presented the discovery of dynamical models using sparse regression
combined with an RK4 scheme

~~ no derivative estimate required!

o Bottleneck:
o Success depends on quality of dictionary.
o Although RK4-SINDy appears to be robust for noise up to 5%, for higher level noise,
it may fail.

Remedy

o We investigate a black-box modeling approach based on neural networks.

@ The goal is twofold:
o Denoising the measurement data (for noise > 10%).
o Also, a black-box model, describing dynamics
~~ no prior knowledge is needed (e.g., of dictionary).
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Implicit Neural Networks

o Learn implicit representation of measurement, i.e., for given time t as input to the
network, the output is x(¢).

Implicit respresentation of data
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Implicit Neural Networks

o Learn implicit representation of measurement, i.e., for given time t as input to the
network, the output is x(¢).

o Since measurements are noisy, we need to regularize the network which otherwise
would overfit-

Implicit respresentation of data
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Implicit Neural Networks

o Learn implicit representation of measurement, i.e., for given time t as input to the
network, the output is x(¢).

o Since measurements are noisy, we need to regularize the network which otherwise
would overfit-
o We regularize using a Runge-Kutta scheme:

o The output of the implicit network should be such that it follows a RK4 scheme.
o To leverage RK4, we require a function, defining the vector field f(x(t)).

o So, let us assume, the vector field is defined by a neural network N'2'"(x), i.e.,

x(t) = N (x).

Implicit respresentation of data

Julensuoy exiny-a8uny
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Implicit Neural Networks with Runge-Kutta Constraints

o Combination all these components:

@ Noisy data [b)  Find implicit respresentation of data

Z
5
?
=
E
O
o
2
Loss := d 3
x(t) = Nj(t), ES
[¥aata(t) — x(t)]] B
@ dnd Implicit loss
GO NP a(t) + A i) = N2 x|

RK mismatch loss

o]

+ Acrad

itz

wo Gradient loss

o Note that this provides an implicit network N} generating denoised data, and a
network V2" defining the dynamics.
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: Numerical Experiments
; Fitz-Hugh Nagumo Models

o Consider again the Fitz-Hugh Nagumo model, describing neuron spiking:

1 3
v(t) =v(t) —w(t) — gv(t) + 0.5, 2)
w(t) = 0.040v(¢) — 0.028w(t) + 0.032.

o We collect data for the initial condition [2,0] and corrupt it by adding Gaussian
white noise of different levels.
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Numerical Experiments

Fitz-Hugh Nagumo Models

2oy measrements kN K ressaynerts
Denoised
1 pidoriy

70 % 100 130 200 230 30 30 400 o xo o h o B

+ oisy measurements
—— Dencised aata
. clean dara

o, winy

Noisy measurements
— Dencised data

24— Noisy measurements

0 5 100 150 200 250 300 30 400
Time (0
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Numerical Experiments

Fitz-Hugh Nagumo Models

+ oisy measurements
—— Dencised aata
. clean data

Noisy measurements.
2 — Denoised data
++ Clean data

o, winy

Noise 20%

025

-_ 050
0 5 100 150 200 250 300 30 400
Time (6

- oisy measurements
— Dencised aata
- clean data

o, wi)

Noise 40%

- Clean data

0 5 100 150 200 250 300 30 400
Time (1
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:® An Extension to PDE Data

Keys points in extending the methodolgy to PDEs

@ The black-box methodology to learn dynamical models can be extended to PDE
data.
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:® An Extension to PDE Data

Keys points in extending the methodolgy to PDEs

@ The black-box methodology to learn dynamical models can be extended to PDE
data.

@ In this case, an implicit network takes spatial coordinates as inputs, too.
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:® An Extension to PDE Data

Keys points in extending the methodolgy to PDEs

@ The black-box methodology to learn dynamical models can be extended to PDE
data.

@ In this case, an implicit network takes spatial coordinates as inputs, too.

@ The neural network defining the vector field consists of convolutional neural
networks to make use of spatial information.
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An Extension to PDE data

Burgers' equation

Ground truth 075
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An Extension to PDE data

Burgers' equation
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Outlook

Summary

o We have blended a Runge-Kutta scheme with sparse regression to discover
governing equations ~» no derivative estimate required.

o Models are interpretable, parsimonious, and generalizable outside training regime.

o Discussed extensions to discover parametric and rational nonlinear models.

@ Proposed neural networks-based approach to denoise measurements, and
simultaneously learn dynamical models:
o We utilized implicit networks blended with a Runge-Kutta scheme.
o One can use the obtained de-noised measurements in other applications, e.g., in
RK4-SINDy for dictionary based discover of analytic equations.
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Outlook

Summary

@ We have blended a Runge-Kutta scheme with sparse regression to discover
governing equations ~~ no derivative estimate required.

o Models are interpretable, parsimonious, and generalizable outside training regime.
o Discussed extensions to discover parametric and rational nonlinear models.

o Proposed neural networks-based approach to denoise measurements, and
simultaneously learn dynamical models:

o We utilized implicit networks blended with a Runge-Kutta scheme.
o One can use the obtained de-noised measurements in other applications, e.g., in
RK4-SINDy for dictionary based discover of analytic equations.

Next steps

o Neural networks-based approach is purely black-box ~~ hard to interpret and
generalize.

o Investigating how to fuse physics or prior to improve the performance as well as to
obtain interpretable and generalizable models

o It is known that high-dimensional dynamical models (PDE solutions) often evolve in
a low-dimensional manifold.

o How to make use of this information in learning low-dimensional models from noisy
PDEs data?
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Outlook

Summary

@ We have blended a Runge-Kutta scheme with sparse regression to discover
governing equations ~~ no derivative estimate required.

o Models are interpretable, parsimonious, and generalizable outside training regime.
o Discussed extensions to discover parametric and rational nonlinear models.

o Proposed neural networks-based approach to denoise measurements, and
simultaneously learn dynamical models:

o We utilized implicit networks blended with a Runge-Kutta scheme.
o One can use the obtained de-noised measurements in other applications, e.g., in
RK4-SINDy for dictionary based discover of analytic equations.

Next steps

o Neural networks-based approach is purely black-box ~~ hard to interpret and
generalize.

o Investigating how to fuse physics or prior to improve the performance as well as to
obtain interpretable and generalizable models
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