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Introduction
Dynamical Processes

Dynamical models are important
to analyze transient behavior under operating
conditions,

for controller design and synthesis,

parameter optimization,

prediction of future behavior, e.g., for digital twins.
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Introduction

Problem set-up

Construct a mathematical model

ẋ(t) = f(x(t)),

describing dynamics of the process from data.

Neural network-based approaches: Recurrent neural networks and long short time
memory networks

3 require no prior knowledge;
7 by nature, they are not parsimonious;
7 interpretability (no explicit governing equations);
7 generalizability.

So, can we pose a reasonable hypothesis to obtain interpretable and generalizable
dynamical process models?
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Discovering Governing Equations

Hypothesis

In a dynamical model,
ẋ(t) = f(x(t)),

the function f(x(t)), defining the vector field, can be given by sparse selection of
features of a dictionary of ”observables” of x(t).

Precisely, we assume f(x(t)) = Φ(x(t)) · ξ, where
Φ(x) is a feature dictionary, i.e.,

Φ(x) =
[
1,x, xP2 , xP3 , . . . , e−x, e−2x, . . . , sin(x), cos(x), . . .

]
,

in which the xPi , i ∈ {2, 3, . . .}, denote polynomials, e.g., xP2 contains all possible
degree-2 polynomials of elements of x:

xP2 =
[
x2
1,x1x2, . . . ,x2

2,x2x3, . . . ,x2
n

]
.

ξ is a sparse vector selecting the right features from the dictionary.

Under this hypothesis, there is a large body of available literature, e.g.,
[. . . , Bongard/Lipson 07, Schmidt/Lipson ’09, Wang et al ’11,
Daniels/Nemenman ’15, Mangan at al ’16, Yang et al ’16, Schaeffer ’17,

Raissi et al ’19, . . . ], in particular SINDy [Brunton/Proctor/Kutz ’16].
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ẋ(t) = f(x(t)),

the function f(x(t)), defining the vector field, can be given by sparse selection of
features of a dictionary of ”observables” of x(t).

Precisely, we assume f(x(t)) = Φ(x(t)) · ξ, where
Φ(x) is a feature dictionary, i.e.,

Φ(x) =
[
1,x, xP2 , xP3 , . . . , e−x, e−2x, . . . , sin(x), cos(x), . . .

]
,

in which the xPi , i ∈ {2, 3, . . .}, denote polynomials, e.g., xP2 contains all possible
degree-2 polynomials of elements of x:

xP2 =
[
x2
1,x1x2, . . . ,x2

2,x2x3, . . . ,x2
n

]
.

ξ is a sparse vector selecting the right features from the dictionary.

Under this hypothesis, there is a large body of available literature, e.g.,
[. . . , Bongard/Lipson 07, Schmidt/Lipson ’09, Wang et al ’11,
Daniels/Nemenman ’15, Mangan at al ’16, Yang et al ’16, Schaeffer ’17,

Raissi et al ’19, . . . ], in particular SINDy [Brunton/Proctor/Kutz ’16].

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 5/28

mailto:benner@mpi-magdeburg.mpg.de


Discovering Governing Equations

Main challenges of the approach:

Requires derivative information to identify ξ via

min
ξ
‖ẋ(t)− Φ(x(t)) · ξ‖.

If data are sparsely sampled, or are noisy, it is quite challenging to obtain good
derivative data.

Remedy: incorporate Runge-Kutta scheme to avoid the need for derivative data.

Construction of a rich enough feature dictionary that at the same time allows
efficient computation.

Potential remedy: employ additional information to construct the feature dictionary:

Underlying physical laws

Domain knowledge
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Runge-Kutta Scheme to Integrate Differential Equations

Recall: 4th-order Runge-Kutta Scheme

Let us consider a differential equation

ẋ(t) = f(x(t)).

Assume our goal is to predict x(ti+1), given x(ti) and the function f(·).

From the large variety of methods, we focus on the 4th order Runge-Kutta scheme.

Predicts x(ti+1) using a weighted sum of the vector field f at specific locations.

Precisely, we have

x(ti+1) ≈ xi+1 := x(ti) +
h

6
(k1 + 2k2 + 2k3 + k4) , with h := ti+1 − ti,

where

k1 = f (x(ti)) , k2 = f

(
x(ti) + h

k1

2

)
, k3 = f

(
x(ti) + h

k2

2

)
, k4 = f (x(ti) + hk3) .

The local truncation error is in O(h5), while the total accumulated error is in O(h4).
We use the notation xk+1 ≈ FRK4 (f ,x(tk), h).
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ẋ(t) = f(x(t)).

Assume our goal is to predict x(ti+1), given x(ti) and the function f(·).

From the large variety of methods, we focus on the 4th order Runge-Kutta scheme.
Predicts x(ti+1) using a weighted sum of the vector field f at specific locations.

Precisely, we have

x(ti+1) ≈ xi+1 := x(ti) +
h

6
(k1 + 2k2 + 2k3 + k4) , with h := ti+1 − ti,

where

k1 = f (x(ti)) , k2 = f

(
x(ti) + h

k1

2

)
, k3 = f

(
x(ti) + h

k2

2

)
, k4 = f (x(ti) + hk3) .

The local truncation error is in O(h5), while the total accumulated error is in O(h4).
We use the notation xk+1 ≈ FRK4 (f ,x(tk), h).

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 7/28

mailto:benner@mpi-magdeburg.mpg.de


Runge-Kutta Scheme to Integrate Differential Equations

Recall: 4th-order Runge-Kutta Scheme

Let us consider a differential equation
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f .

But the vector field f(·) is not known — this is what we want to find!

Based on the sparsity hypothesis:

f(x) := Φ(x)ξ,

Thus, we have
ẋ(t) = f(x(t)) = Φ(x(t))ξ,

or for each component of x(t):

[ẋ1(t), . . . , ẋn(t)] = [Φ(x(t))ξ1, · · · ,Φ(x(t))ξn]

If derivative information is known, one can apply the standard Sparse Identification
of Nonlinear Dynamics (Std-SINDy) approach [Brunton at al. ’16].

Here: leverage RK4 scheme to avoid derivative information!

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 8/28

mailto:benner@mpi-magdeburg.mpg.de


Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f .

But the vector field f(·) is not known — this is what we want to find!

Based on the sparsity hypothesis:

f(x) := Φ(x)ξ,

Thus, we have
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[ẋ1(t), . . . , ẋn(t)] = [Φ(x(t))ξ1, · · · ,Φ(x(t))ξn]

If derivative information is known, one can apply the standard Sparse Identification
of Nonlinear Dynamics (Std-SINDy) approach [Brunton at al. ’16].

Here: leverage RK4 scheme to avoid derivative information!

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 8/28

mailto:benner@mpi-magdeburg.mpg.de


Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

We have seen how to fuse the RK4 scheme to predict variables at the next time
step given the vector field f .

But the vector field f(·) is not known — this is what we want to find!

Based on the sparsity hypothesis:

f(x) := Φ(x)ξ,

where Φ(x) is a feature dictionary, and ξ selects right features from the dictionary.

Thus, we have
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)

For simplicity, let us consider two samples of x at time ti and ti+1.

With the help of RK4, we have:

[x1(ti+1), . . . ,xn(ti+1)] ≈ [x1(ti), . . . ,xn(ti)] + FRK4

(
(Φ, ξi)︸ ︷︷ ︸
≡f

,x(ti), h
)
,

where

FRK4 ((Φ, ξi),x(ti), h) =
h

6
(k1 + 2k2 + 2k3 + k4) ,
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Optimization problem

Optimization Problem Statement

Determine the sparsest ξi’s, minimizing∥∥ [x1(ti+1), . . . ,xn(ti+1)]︸ ︷︷ ︸
x(ti+1)

− [x1(ti), . . . ,xn(ti)]︸ ︷︷ ︸
x(ti)

−FRK4 ((Φ, ξi),x(ti), h)
∥∥.

The above problem is NP hard  not possible to solve in polynomial time.

Remedy: `1-norm relaxation (”LASSO”), i.e.,∥∥x(ti+1)− x(ti)−FRK4 (Φ, ξi,x(ti), h)
∥∥+ γ ·

∑
i

‖ξi‖1.

Under a certain condition (related to the restricted isometry property), the relaxed
optimization problem may yield the sparsest solution.

But often, in practice, this condition is not full-filled. Therefore, we look at a
sequential thresholding type algorithm (similar to [Brunton et al. ’16]).

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 10/28

mailto:benner@mpi-magdeburg.mpg.de


Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Optimization problem

Optimization Problem Statement

Determine the sparsest ξi’s, minimizing∥∥ [x1(ti+1), . . . ,xn(ti+1)]︸ ︷︷ ︸
x(ti+1)

− [x1(ti), . . . ,xn(ti)]︸ ︷︷ ︸
x(ti)

−FRK4 ((Φ, ξi),x(ti), h)
∥∥.

The above problem is NP hard  not possible to solve in polynomial time.

Remedy: `1-norm relaxation (”LASSO”), i.e.,∥∥x(ti+1)− x(ti)−FRK4 (Φ, ξi,x(ti), h)
∥∥+ γ ·

∑
i

‖ξi‖1.

Under a certain condition (related to the restricted isometry property), the relaxed
optimization problem may yield the sparsest solution.

But often, in practice, this condition is not full-filled. Therefore, we look at a
sequential thresholding type algorithm (similar to [Brunton et al. ’16]).

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 10/28

mailto:benner@mpi-magdeburg.mpg.de


Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Optimization problem

Optimization Problem Statement

Determine the sparsest ξi’s, minimizing∥∥ [x1(ti+1), . . . ,xn(ti+1)]︸ ︷︷ ︸
x(ti+1)

− [x1(ti), . . . ,xn(ti)]︸ ︷︷ ︸
x(ti)

−FRK4 ((Φ, ξi),x(ti), h)
∥∥.

The above problem is NP hard  not possible to solve in polynomial time.

Remedy: `1-norm relaxation (”LASSO”), i.e.,∥∥x(ti+1)− x(ti)−FRK4 (Φ, ξi,x(ti), h)
∥∥+ γ ·

∑
i

‖ξi‖1.

Under a certain condition (related to the restricted isometry property), the relaxed
optimization problem may yield the sparsest solution.

But often, in practice, this condition is not full-filled. Therefore, we look at a
sequential thresholding type algorithm (similar to [Brunton et al. ’16]).

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 10/28

mailto:benner@mpi-magdeburg.mpg.de


Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Optimization problem

Optimization Problem Statement

Determine the sparsest ξi’s, minimizing∥∥ [x1(ti+1), . . . ,xn(ti+1)]︸ ︷︷ ︸
x(ti+1)

− [x1(ti), . . . ,xn(ti)]︸ ︷︷ ︸
x(ti)

−FRK4 ((Φ, ξi),x(ti), h)
∥∥.

The above problem is NP hard  not possible to solve in polynomial time.

Remedy: `1-norm relaxation (”LASSO”), i.e.,∥∥x(ti+1)− x(ti)−FRK4 (Φ, ξi,x(ti), h)
∥∥+ γ ·

∑
i

‖ξi‖1.

Under a certain condition (related to the restricted isometry property), the relaxed
optimization problem may yield the sparsest solution.

But often, in practice, this condition is not full-filled. Therefore, we look at a
sequential thresholding type algorithm (similar to [Brunton et al. ’16]).

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 10/28

mailto:benner@mpi-magdeburg.mpg.de


Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Optimization problem

Optimization Problem Statement

Determine the sparsest ξi’s, minimizing∥∥ [x1(ti+1), . . . ,xn(ti+1)]︸ ︷︷ ︸
x(ti+1)

− [x1(ti), . . . ,xn(ti)]︸ ︷︷ ︸
x(ti)

−FRK4 ((Φ, ξi),x(ti), h)
∥∥.

The above problem is NP hard  not possible to solve in polynomial time.

Remedy: `1-norm relaxation (”LASSO”), i.e.,∥∥x(ti+1)− x(ti)−FRK4 (Φ, ξi,x(ti), h)
∥∥+ γ ·

∑
i

‖ξi‖1.

Under a certain condition (related to the restricted isometry property), the relaxed
optimization problem may yield the sparsest solution.

But often, in practice, this condition is not full-filled. Therefore, we look at a
sequential thresholding type algorithm (similar to [Brunton et al. ’16]).

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 10/28

mailto:benner@mpi-magdeburg.mpg.de


Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Sequential Thresholding Approach [Goyal/B. ’21]

In essence, the idea is to set small coefficients to zero and solve the optimization for
the rest of the non-zero coefficients.

Algorithm 1 Sequential Thresholding Procedure (Fix Thresholding)

Input: Measurement data {x(t0),x(t1), . . . ,x(tN )} and the cutoff parameter λ.

1: Solve the following optimization problem to get Θ := {ξ1, . . . , ξn}:∑
i

‖x(ti+1)− x(ti)−FRK4 (Φ, ξi,x(ti), h)‖+ γ · ‖Θ‖1. (1)

2: small idx = (|Θ| < λ) . Determine indices at which coefficients are < λ
3: Err = ‖Θ (small idx) ‖
4: while Err 6= 0 do
5: Update Θ by solving (1) with the constraint Θ (small idx) = 0
6: small idx = (|Θ| < λ) . Determine indices at which coefficients are < λ
7: Err = ‖Θ (small idx) ‖
8: end while

Output: The sparse Θ that picks right features from the dictionary.
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Blending Runge-Kutta with Sparse Regression (RK4-SINDy)
Sequential Thresholding Approach

Additional Remarks

The optimization problem∑
i

‖x(ti+1)− x(ti)−FRK4 (Φ, ξi,x(ti), h)‖+ γ · ‖Θ‖l1 .

is nonlinear and non-convex, and there is in general no analytical and no unique
solution

Here, we use gradient based optimization, e.g., ADAM [Kingma/Ba ’15].

For gradient computation, we utilize the computational graph based library PyTorch.

Furthermore, the optimization problem involves the thresholding parameter λ, which
can be found by cross-validation.

Alternatively, we propose an iterative thresholding algorithm in which we truncate
the smallest non-zero element in each iteration to find the sparsest solution.
[Goyal/B. ’21]
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Numerical Examples
Cubic Oscillator

Cubic Oscillator

Consider a cubic damped oscillator, governed by

ẋ(t) = −0.1x(t)3 + 2.0y(t)3,

ẏ(t) = −2.0x(t)3 − 0.1y(t)3.

We construct a feature dictionary, containing polynomials features up to degree 5.

We compare the proposed method RK4-SINDy with Std-SINDy.
( [Brunton et al. ’16])
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Numerical Examples
Cubic Oscillator
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(d) Time step dt = 1 · 10−1.

Figure: Cubic 2D model: A comparison of the transient responses of discovered models using
data at different regular time-steps.
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Numerical Examples
Cubic Oscillator

Time step RK4-SINDy Std-SINDy

5 · 10−3
ẋ(t) = −0.099x(t)3 + 1.996y(t)3

ẏ(t) = −1.997x(t)3 − 0.100y(t)3
ẋ(t) = −0.099x(t)3 + 1.995y(t)3

ẏ(t) = −1.996x(t)3 − 0.099y(t)3

1 · 10−2
ẋ(t) = −0.099x(t)3 + 1.995y(t)3

ẏ(t) = −1.997x(t)3 − 0.100y(t)3
ẋ(t) = −0.100x(t)3 + 1.994y(t)3

ẏ(t) = −1.996x(t)3 − 0.099y(t)3

5 · 10−2
ẋ(t) = −0.100x(t)3 + 1.995y(t)3

ẏ(t) = −1.997x(t)3 − 0.100y(t)3

ẋ(t) = −0.092x(t)
3
+ 2.002y(t)

3

+ 0.076x
4
y − 0.107x

2
y
3

ẏ(t) = −1.981x(t)
3 − 0.092y(t)

3

+ 0.078x
3
y
2 − 0.068xy

4

1 · 10−1
ẋ(t) = −0.103x(t)3 + 2.000y(t)3

ẏ(t) = −2.001x(t)3 − 0.098y(t)3

ẋ(t) = 0.090x(t)− 0.097x(t)
2 − 0.463x(t)

3

+ · · · + 0.381x(t)
3
y(t)

2 − 0.258x(t)y(t)
4

ẏ(t) = 0.100x(t) + 0.104x(t)
2
+ 0.051x(t)y(t)

+ · · · + 0.381x(t)
3
y(t)

2 − 0.258x(t)y(t)
4

Table: Cubic 2D model: The table reports the discovered governing equations by employing
RK4-SINDy and Std-SINDy.
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Numerical Examples
Fitz-Hugh Nagumo Model

Fitz-Hugh Nagumo Model

Next, we consider the Fitz-Hugh Nagumo system, a basic model for neuron spiking:

v(t) = v(t)−w(t)− 1

3
v(t)3 + 0.5,

w(t) = 0.040v(t)− 0.028w(t) + 0.032.
(2)

We construct a feature dictionary, containing polynomials up to degree 5.

We compare the proposed method RK4-SINDy with Std-SINDy.
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Numerical Examples
Fitz-Hugh Nagumo Model
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(d) Time step dt = 7.5 · 10−1.

Figure: FHN model: A comparison of the transient responses of the discovered differential
equations using data collected at different regular time-steps.
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Numerical Examples
Fitz-Hugh Nagumo Model

dt RK4-SINDy Std-SINDy

1.0 · 10−1 v̇(t) = 0.499 + 0.998v − 0.998w − 0.333v
3

ẇ(t) = 0.032 + 0.040v − 0.028w

v̇(t) = 0.498 + 0.996v − 0.996w − 0.332v
3

ẇ(t) = 0.032 + 0.040v − 0.028w

2.5 · 10−1 v̇(t) = 0.499 + 0.998v − 0.998w − 0.333v
3

ẇ(t) = 0.032 + 0.040v − 0.028w

v̇(t) = 0.494 + 0.985v − 0.989w − 0.328v
3

ẇ(t) = 0.032 + 0.040v − 0.028w

5.0 · 10−1 v̇(t) = 0.501 + 1.001v − 1.001w − 0.334v
3

ẇ(t) = 0.032 + 0.040v − 0.028w

v̇(t) = 0.482 + 0.943v − 0.959w

− 0.034vw − 0.311v
3

+ 0.024vw
2

ẇ(t) = 0.032 + 0.040v − 0.028w

7.5 · 10−1 v̇(t) = 0.502 + 1.001v − 1.003w − 0.334v
3

ẇ(t) = 0.032 + 0.040v − 0.027w

v̇(t) = 0.459 + 0.816v − 0.982w

− 0.013v
2

+ · · · + 0.131vw
2 − 0.021w

3

ẇ(t) = 0.032 + 0.040v − 0.028w

Table: FHN model: Discovered models using data at various time-step using RK4-SINDy and
Std-SINDy.

Observe that for data collected large steps, the standard SINDy fails, potentially due
to large error in derivative estimates.

On the other hand, RK4-SINDy accurately discovers dynamical models as it does
not require derivative information explicitly.
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Extensions – Parametric Systems

The approach readily applies to parametric systems.

Consider a parametric system (where parameters do not vary with time!)

ẋ(t;µ) = f(x(t;µ)).

Reformulation with state vector augmented by parameters as xµ(t) =
[
x(t), µ

]
.

Consequently, we have
ẋµ(t) =

[
f(xµ(t)), 0

]
.

Hence, we can readily apply RK4-SINDy by creating a dictionary involving the
parameters µ.
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Numerical Examples
Hopf normal form

Hopf normal form

Dynamics of parametric Hopf normal form is given by

ẋ(t) = µx(t)− y(t)− x(t)
(
x(t)2 + y(t)2

)
,

ẏ(t) = x(t) + µy(t)− y(t)
(
x(t)2 + y(t)2

)
.

We collect measurements for various initial conditions and parameters with time
step 0.2 which are corrupted by adding 1% Gaussian noise.

We construct a dictionary, containing polynomials up to degree 3, including the
parameter.
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Numerical Examples
Hopf normal form
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Figure: Simulations for parameters from a test set different from the training parameters.

Method Discovered model

RK4-SINDy
ẋ(t) = 1.001µx(t)− 1.001y(t)− 0.996x(t)

(
x(t)2 + y(t)2

)
ẏ(t) = 1.001x(t) + 1.010µy(t)− 1.006x(t)2y(t)− 1.004y(t)3

Std-SINDy

ẋ(t) =− 0.961y(t) + 0.719µx(t) + 0.822µy(t)− 0.735x(t)
3

− 1.044x(t)
2
y − 0.686x(t)y(t)

2 − 0.846y(t)
3

ẏ(t) =0.986x(t) + 0.899µy(t)− 0.882x(t)
2
y(t)− 0.904y(t)

3
.
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Extension of RK4-SINDy to Rational Non-linearity

Challenge in rational functions:

Several dynamical models are given by rational functions, specially in chemical and
biological modeling.

E.g., if we were to discover the model: ẋ(t) = − x(t)

1 + 0.3x(t)
, then, in a classical

dictionary based learning, we precisely need to have a feature containing
1

1 + 0.3x(t)
.

This puts severe restrictions; many times not even feasible to guess such features.

Remedy

We hypothesize that the right-hand side function f(x(t)) defining the dynamical
systems can be given by a ratio of two functions in which each function is defined
by selecting features from an appropriate dictionary, i.e.,

f(x(t)) =
gN(x(t))

1 + gD(x(t))
=

Φ(x)ξN

1 + Φ(x)ξD
, where Φ(x) is a dictionary, and ξN,D are

sparse vectors.
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1 + 0.3x(t)
, then, in a classical

dictionary based learning, we precisely need to have a feature containing
1

1 + 0.3x(t)
.

This puts severe restrictions; many times not even feasible to guess such features.

Remedy

We hypothesize that the right-hand side function f(x(t)) defining the dynamical
systems can be given by a ratio of two functions in which each function is defined
by selecting features from an appropriate dictionary, i.e.,

f(x(t)) =
gN(x(t))

1 + gD(x(t))
=

Φ(x)ξN

1 + Φ(x)ξD
, where Φ(x) is a dictionary, and ξN,D are

sparse vectors.

©Peter Benner, benner@mpi-magdeburg.mpg.de Identification of Nonlinear Dynamical Systems from Noisy Measurements 18/28

mailto:benner@mpi-magdeburg.mpg.de


Extension of RK4-SINDy to Rational Non-linearity

Challenge in rational functions:

Several dynamical models are given by rational functions, specially in chemical and
biological modeling.

E.g., if we were to discover the model: ẋ(t) = − x(t)
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Extension of RK4-SINDy to Rational Non-linearity
An Example

Michaelis-Menten kinetics

Michaelis-Menten kinetics describes an Enzyme dynamics and is governed by

ṡ(t) = 0.6− 1.5s(t)

0.3 + s(t)
.

We collect data using 4 trajectories.

We construct a dictionary of polynomial features of degree 3.

Learn a parsimonious model using RK4-SINDy for rational nonlinear systems.
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Neural Networks-Based Learning from Highly Noisy Measurements

So far

We have presented the discovery of dynamical models using sparse regression
combined with an RK4 scheme

 no derivative estimate required!

Bottleneck:
Success depends on quality of dictionary.
Although RK4-SINDy appears to be robust for noise up to 5%, for higher level noise,
it may fail.

Remedy

We investigate a black-box modeling approach based on neural networks.

The goal is twofold:
Denoising the measurement data (for noise > 10%).
Also, a black-box model, describing dynamics
 no prior knowledge is needed (e.g., of dictionary).
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Implicit Neural Networks

Learn implicit representation of measurement, i.e., for given time t as input to the
network, the output is x(t).

Since measurements are noisy, we need to regularize the network which otherwise
would overfit-

We regularize using a Runge-Kutta scheme:
The output of the implicit network should be such that it follows a RK4 scheme.
To leverage RK4, we require a function, defining the vector field f(x(t)).

So, let us assume, the vector field is defined by a neural network NDyn
Φ (x), i.e.,

ẋ(t) = NDyn
Φ (x).

Implicit respresentation of data

t x(t)

R
unge-K

utta
C
onstraint

x(ti)

NDyn
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NDyn
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NDyn
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Implicit Neural Networks with Runge-Kutta Constraints

Combination all these components:

Noisy data

Time (t)
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Loss :=
‖ydata(t)− x(t)‖︸ ︷︷ ︸

Implicit loss

+ λRK

∥∥∥x(ti+1)−N Dyn
φ (x(ti))

∥∥∥
︸ ︷︷ ︸

RK mismatch loss

+ λGrad

∥∥∥∥
d

dt
x−N Dyn

φ (x)

∥∥∥∥
︸ ︷︷ ︸

Gradient loss

Implicit respresentation of denoised data
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and
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dt
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Note that this provides an implicit network N I
θ generating denoised data, and a

network NDyn
Φ defining the dynamics.
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Numerical Experiments
Fitz-Hugh Nagumo Models

Consider again the Fitz-Hugh Nagumo model, describing neuron spiking:

v(t) = v(t)−w(t)− 1

3
v(t)3 + 0.5,

w(t) = 0.040v(t)− 0.028w(t) + 0.032.
(2)

We collect data for the initial condition [2, 0] and corrupt it by adding Gaussian
white noise of different levels.
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Numerical Experiments
Fitz-Hugh Nagumo Models
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Numerical Experiments
Fitz-Hugh Nagumo Models
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An Extension to PDE Data

Keys points in extending the methodolgy to PDEs

The black-box methodology to learn dynamical models can be extended to PDE
data.

In this case, an implicit network takes spatial coordinates as inputs, too.

The neural network defining the vector field consists of convolutional neural
networks to make use of spatial information.
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An Extension to PDE data
Burgers’ equation
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Outlook

Summary

We have blended a Runge-Kutta scheme with sparse regression to discover
governing equations  no derivative estimate required.

Models are interpretable, parsimonious, and generalizable outside training regime.

Discussed extensions to discover parametric and rational nonlinear models.

Proposed neural networks-based approach to denoise measurements, and
simultaneously learn dynamical models:

We utilized implicit networks blended with a Runge-Kutta scheme.
One can use the obtained de-noised measurements in other applications, e.g., in
RK4-SINDy for dictionary based discover of analytic equations.

Next steps

Neural networks-based approach is purely black-box  hard to interpret and
generalize.

Investigating how to fuse physics or prior to improve the performance as well as to
obtain interpretable and generalizable models

It is known that high-dimensional dynamical models (PDE solutions) often evolve in
a low-dimensional manifold.

How to make use of this information in learning low-dimensional models from noisy
PDEs data?

Thank you for your attention!!
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