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A Process Chain in Computational Sciences and Engineering (CSE)

Numerical Simulation
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A Process Chain in Computational Sciences and Engineering (CSE)
Optimization, Control, and Uncertainty Quantification
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A Process Chain in Computational Sciences and Engineering (CSE)
Model Order Reduction (MOR)
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A Process Chain in Computational Sciences and Engineering (CSE)
Data-Driven Sciences
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@ A Process Chain in Computational Sciences and Engineering (CSE)
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Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.
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@ A Process Chain in Computational Sciences and Engineering (CSE)

Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.

~~ Data-enhanced model reduction methods.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction
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Outline

1. Model Order Reduction of Dynamical Systems
Model Order Reduction of Linear Systems
MOR Methods Based on Projection

—

(©) benner@m gdeburg.mpg.de formed Learning fol imensional Dynamical Systems


mailto:benner@mpi-magdeburg.mpg.de

@ Model Order Reduction of Dynamical Systems

Original System

JE) = f(ta(0),ud)),
2:{ 0 2 sy

o states z(t) € R",

o inputs u(t) € R™,

@ outputs y(t) € RP.

U
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@ Model Order Reduction of Dynamical Systems

Original System

5. {0 2 st
y(t) g(t, x(t), u(t)),

o states z(t) € R",

o inputs u(t) € R™,

@ outputs y(t) € RP.

U

Reduced-Order Model (ROM)

~

oF { (1)
y(t) g(t, 2(t), u(t)),
o states #(t) € R", r < n,
o inputs u(t) € R™,
o outputs §(t) € RP.

U
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@ Model Order Reduction of Dynamical Systems

Original System Reduced-Order Model (ROM)

5. {50 = fesoue) 5.{ 80 = Jus.u)
y(t) = g(t’x(t)au(t))a ﬁ(t) = g(tai(t))u(t))a
o states z(t) € R", o states #(t) € R", r < n,
o inputs u(t) € R™, o inputs u(t) € R™,
@ outputs y(t) € RP. o outputs §(t) € RP.

U

|ly — 9|| < tolerance - ||u|| for all admissible input signals.

(© benner@mpi-magdeburg.mpg.de Physics-Informed Learning for Low-Dimensional Dynamical Systems


mailto:benner@mpi-magdeburg.mpg.de

@ Model Order Reduction of Dynamical Systems

Original System Reduced-Order Model (ROM)

oy { i(t) = f(tat),u), oF { (1) = f(t(0),u)),
y(t) = g(t’x(t)au(t))a y(t) = g(tai(t))u(t))a
o states z(t) € R", o states #(t) € R", r < n,
o inputs u(t) € R™, o inputs u(t) € R™,
@ outputs y(t) € RP. o outputs §(t) € RP.

U

|ly — 9|| < tolerance - ||u|| for all admissible input signals.

Secondary goal: reconstruct approximation of = from Z.
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Model Order Reduction of Linear Systems

Linear Time-Invariant (LTI) Systems

Original System Reduced-Order Model (ROM)

5. {i(t) = Axz(t) + Bu(t), s . | #(t) = As(t) + Bu(y),
§(t) = C2(t) + Duf(t).

y(t) = Cx(t) + Du(t). 8

o states z(t) € R", o states #(t) e R", r < n
o inputs u(t) € R™, o inputs u(t) € R™,
o outputs y(t) € RP. o outputs g(t) € RP.
U Y U Y

|ly — §]| < tolerance - ||ul|| for all admissible input signals.
Secondary goal: reconstruct approximation of = from Z.
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Model Reduction Schematically

@ Model Order Reduction of Linear Systems

o B, AcR™"
B Rnxm
e ECEN 4+ EOFN:E0 °be
o C e RPX™
o D e RP*™

vo)= [ =0+ B0

E,AecR™"
B c RTX™
C e RP*"
D e RPX*™
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MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".

—
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@ MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V) (trial space)
along complementary subspace W (test space), where

range (V) =V, range(W)=W, W'V =1I,.
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@ MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V) (trial space)
along complementary subspace W (test space), where

range (V) =V, range(W)=W, W'V =1I,.
Then, with £ = W7z, we obtain z ~ Vi = VW' z =: 7 so that

|z — &[] = [|l= — V||,
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@ MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V) (trial space)
along complementary subspace W (test space), where

range (V) =V, range(W)=W, W'V =1I.
Then, with & = Wz, we obtain z ~ Vi = VIWTx =: % so that
[lz —Z[| = [lz — V&[]

For linear systems, the reduced-order model is
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@ MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V) (trial space)
along complementary subspace W (test space), where

range (V) = V, range(W) =W, W'V =1I,.

For linear systems, the reduced-order model is

Important observation:

o The state equation residual satisfies & — A% — Bu L W, since

W' (- Az -Bu) = W (VWi - AVW s - Bu)
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@ MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V) (trial space)
along complementary subspace W (test space), where

range (V) = V, range(W) =W, W'V =1I,.

For linear systems, the reduced-order model is

Important observation:

o The state equation residual satisfies & — A% — Bu L W, since
W' (3 A3 - Bu) = W (VWi AVW s - Bu)

= Wli—wTAvWwWTz—-wTBu
S S N N~
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@ MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V) (trial space)
along complementary subspace W (test space), where

range (V) = V, range(W) =W, W'V =1I,.

For linear systems, the reduced-order model is

Important observation:

o The state equation residual satisfies & — A% — Bu L W, since

W' (- Az -Bu) = W (VWi - AVW s - Bu)
= Wli—wTAvWwWTz—-wTBu
T = =T =B
= #— A2 — Bu=0.
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@ MOR Methods Based on Projection

Assumption: trajectory x(¢;u) is contained in low-dimensional subspace V C R".
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V) (trial space)
along complementary subspace W (test space), where

range (V) = V, range(W) =W, W'V =1I,.

For linear systems, the reduced-order model is

Extends to nonlinear systems with some effort:

z W f(t, Vi, u),
g = g, Vz,u).

Needs hyperreduction if the cost for evaluation of the functions W f, g is not reduced!
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@ MOR Methods Based on Projection

Classes of Projection-based MOR Methods
@® Modal Truncation

® Rational Interpolation / Moment Matching
(Padé-Approximation and (rational) Krylov Subspace Methods)

©® Balanced Truncation

© Proper Orthogonal Decomposition (POD) / Principal Component Analysis (PCA)
© Reduced Basis Method

0 ...

(© benner@mpi-magdeburg.mpg.de Physics-Informed Learning for Low-Dimensional Dynamical Systems


mailto:benner@mpi-magdeburg.mpg.de

MOR Methods Based on Projection

Example: Thermal model of experimental machine tool MAX

50 subassemblies CAD model FE-Model: 1.2M DOFs

FEM
>

<
TECHNISCHE UNIVERSITAT
CHEMNITZ
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Results by Julia Vettermann (MilT/TU Chemnitz)

@ MAX: Results considering an inhomogeneous initial condition 7j # 0

FE-coupled output-coupled

method | red. order tol 1073 | t,.cq method | red. order tol 1073 | t,.cq
196 6.5h 2phase 3005 2h
4.5h BTX0 2515 1.8h

(© benner@mpi-magdeburg.mpg.de Physics-Informed Learning for Low-Dimensional Dynamical Systems


mailto:benner@mpi-magdeburg.mpg.de

MAX: Results considering an inhomogeneous initial condition 7 # 0

Results by Julia Vettermann (MilT/TU Chemnitz)

FE-coupled output-coupled
method | red. order tol 1073 | t,.q method | red. order tol 1073 | t,cq
2phase 196 6.5h 2phase 3005 2h
BTXO0 4.5h BTXO0 2515 1.8h

— Required storage for reduced matrices just IMB!
— Simulation speed-up factors range from ~ 8-2,000.

temperature change in output (16, 0)

0.25 4 —==- fun
=>&. 2Phase,1.0e-2
0.20 { - 2Phase,1.0e-3
—=&- 2Phase,1.0e-4
0.15 4 —W=: 2Phase.l1.0e-5
>
= o0.10- A
= -
F oos{ ¥
=  o0.00
—0.05 A
—0.10 A
—0.15 A

a
t[hl

N
Vettermann, J., Sauerzapf, S., Naumann, A., Beitelschmidt, M., Herzog, R., Benner, P., Saak, J. (2021): Model order
reduction methods for coupled machine tool models. MM Science Journal, pp. 4652-4659.
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Assumption: trajectory x(t;u) is contained in low-dimensional subspace V C R™.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range (V) =V, range(W)=W, WTV =1I,.

The reduced-order model is

g=wTz, A=wTAv, B:=wTB, C:=cV, (D:=D).
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Assumption: trajectory x(t;u) is contained in low-dimensional subspace V C R™.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range (V) =V, range(W)=W, WTV =1I,.

The reduced-order model is
g=wTz, A=wTAv, B:=wTB, C:=cV, (D:=D).

We need the matrices A, B, C, D to compute the reduced-order model!
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Assumption: trajectory z(t;u) is contained in low-dimensional subspace V C R™.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range (V) =V, range(W)=W, WTV =1I,.

The reduced-order model is
g=WTz, A:=wTAv, B:=wTB, C:=cV, (D:=D).

We need the matrices A, B, C, D to compute the reduced-order model!
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Assumption: trajectory z(t;u) is contained in low-dimensional subspace V C R™.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range (V) =V, range(W)=W, WTV =1I,.

The reduced-order model is
g=WTz, A:=wTAv, B:=wTB, C:=cV, (D:=D).

We need the matrices A, B, C, D to compute the reduced-order model!
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Outline

2. Data-driven/-enhanced Model Reduction
A few Remarks on System Identification and DNNs
DMD in a Nutshell
Operator Inference
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

—

(© benner@m gdeburg.mpg.de rning for Low-Dimensional Dynamical Systems


mailto:benner@mpi-magdeburg.mpg.de

Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

Black box X: the only information we can get is either
@ time domain data / times series: uj &~ u(ty) and xp ~ z(tx) or yi =~ y(tx), or
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

Black box X: the only information we can get is either
@ time domain data / times series: uj &~ u(ty) and xp ~ z(tx) or yi =~ y(tx), or
o frequency domain data / measurements: Uy ~ U(jwy) and X = X (jwy) or Y = Y (Jwy).
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

Black box X: the only information we can get is either

@ time domain data / times series: uj &~ u(ty) and xp ~ z(tx) or yi =~ y(tx), or

o frequency domain data / measurements: Uy ~ U(jwy) and X = X (jwy) or Y = Y (Jwy).
Some methods:

o System identification (incl. ERA, N4SID, MOESP): frequency and time domain

[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

Black box X: the only information we can get is either

@ time domain data / times series: uj &~ u(ty) and xp ~ z(tx) or yi =~ y(tx), or

o frequency domain data / measurements: Uy ~ U(jwy) and X = X (jwy) or Y = Y (Jwy).
Some methods:

o System identification (incl. ERA, N4SID, MOESP): frequency and time domain

[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]

@ Neural networks: time domain [NARENDRA /PARTHASARATHY 1990; LEE/CARLBERG 2019; ...]
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

Black box X: the only information we can get is either
@ time domain data / times series: uj &~ u(ty) and xp ~ z(tx) or yi =~ y(tx), or
o frequency domain data / measurements: Uy ~ U(jwy) and X = X (jwy) or Y = Y (Jwy).
Some methods:
o System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/KALMAN 1966; LIUNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA, ... ]

@ Neural networks: time domain [NARENDRA /PARTHASARATHY 1990; LEE/CARLBERG 2019; ...]

@ Loewner interpolation: frequency and time domain
[ANTOULAS/ANDERSON 1986; MAYO/ANTOULAS 2007; GOSEA, GUGERCIN, IONITA, LEFTERIU, PEHERSTORFER, .. .]
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

Black box X: the only information we can get is either

@ time domain data / times series: uj &~ u(ty) and xp ~ z(tx) or yi =~ y(tx), or

o frequency domain data / measurements: Uy ~ U(jwy) and X = X (jwy) or Y = Y (Jwy).
Some methods:

o System identification (incl. ERA, N4SID, MOESP): frequency and time domain

[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]
@ Neural networks: time domain [NARENDRA /PARTHASARATHY 1990; LEE/CARLBERG 2019; ...]

@ Loewner interpolation: frequency and time domain
[ANTOULAS/ANDERSON 1986; MAYO/ANTOULAS 2007; GOSEA, GUGERCIN, IONITA, LEFTERIU, PEHERSTORFER, .. .]
@ Koopman/Dynamic Mode Decomposition (DMD): time domain

[MEZIC 2005; ScHMID 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOE, NUSKE, ScHiTTE, PEITZ, ...],
for control systems [Kaiser/KuTz/BRUNTON 2017, B./HivpE/MITCHELL 2018]
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Data-driven/-enhanced Model Reduction

Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate X, given wu(t) or U(s):

U Y

Black box X: the only information we can get is either

@ time domain data / times series: uj &~ u(ty) and xp ~ z(tx) or yi =~ y(tx), or

o frequency domain data / measurements: Uy ~ U(jwy) and X = X (jwy) or Y = Y (Jwy).
Some methods:

o System identification (incl. ERA, N4SID, MOESP): frequency and time domain

[Ho/KALMAN 1966; LiuNG 1987/1999; VAN OVERSCHEE/DE MOOR 1994; VERHAEGEN 1994; DE WILDE, EYKHOFF, MOONEN, SIMA4, . ..]
@ Neural networks: time domain [NARENDRA /PARTHASARATHY 1990; LEE/CARLBERG 2019; ...]

@ Loewner interpolation: frequency and time domain
[ANTOULAS/ANDERSON 1986; MAYO/ANTOULAS 2007; GOSEA, GUGERCIN, IONITA, LEFTERIU, PEHERSTORFER, .. .]

@ Koopman/Dynamic Mode Decomposition (DMD): time domain
[MEZIC 2005; ScHMID 2008; BRUNTON, KEVREKIDIS, KUTZ, ROWLEY, NOE, NUSKE, ScHiTTE, PEITZ, ...],
for control systems [Kaiser/KuTz/BRUNTON 2017, B./HivpE/MITCHELL 2018]

(] Operator inference (Oplnf) time domain [PEHERSTORFER/WILLCOX 2016; KRAMER, QIAN, B., GOYAL,...]
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@ A few Remarks on System ldentification and DNNs

o System identification tries to infer discrete linear time-invariant (LTI) systems

Trr1 = Az + Buy + Kwg,
yr = Cxp + Dug + vy,

from input-output data, given as time series (uo, o), (u1,%1), ..., (uK,yx), where
v, wy, are uncorrelated Gaussian white noise processes.
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@ A few Remarks on System ldentification and DNNs

o System identification tries to infer discrete linear time-invariant (LTI) systems

Trr1 = Az + Buy + Kwg,
yr = Cxp + Dug + vy,
from input-output data, given as time series (uo, o), (u1,%1), ..., (uK,yx), where
v, wy, are uncorrelated Gaussian white noise processes.
o Early survey already 1971: Astrom/Eykhoff, AuTOMATICA 7(2):123-162.
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@ A few Remarks on System ldentification and DNNs

o System identification tries to infer discrete linear time-invariant (LTI) systems

Trr1 = Az + Buy + Kwg,
yr = Cxp + Dug + vy,

from input-output data, given as time series (uo, o), (u1,%1), ..., (uK,yx), where
v, wy, are uncorrelated Gaussian white noise processes.

o Early survey already 1971: Astrom/Eykhoff, AuTOMATICA 7(2):123-162.
o Popular methods are

@® MOESP — Multivariable Output Error State-SPace [VERHAEGEN/DEWILDE 1992],
® N4SID — Numerical algorithm for Subspace State Space System IDentification
[VAN OvERsCHEE/DE MOOR 1994].
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@ A few Remarks on System ldentification and DNNs

o System identification tries to infer discrete linear time-invariant (LTI) systems

Trr1 = Az + Buy + Kwg,
yr = Cxp + Dug + vy,

from input-output data, given as time series (uo, o), (u1,%1), ..., (uK,yx), where
v, wy, are uncorrelated Gaussian white noise processes.

o Early survey already 1971: Astrom/Eykhoff, AuTOMATICA 7(2):123-162.

o Popular methods are
@® MOESP — Multivariable Output Error State-SPace [VERHAEGEN/DEWILDE 1992],
® N4SID — Numerical algorithm for Subspace State Space System IDentification
[VAN OVERSCHEE/DE MOOR 1994].
o Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.
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@ A few Remarks on System ldentification and DNNs

o System identification tries to infer discrete linear time-invariant (LTI) systems

Trr1 = Az + Buy + Kwg,
yr = Cxp + Dug + vy,

from input-output data, given as time series (uo, o), (u1,%1), ..., (uK,yx), where
v, wy, are uncorrelated Gaussian white noise processes.

o Early survey already 1971: Astrom/Eykhoff, AuTOMATICA 7(2):123-162.

o Popular methods are
@® MOESP — Multivariable Output Error State-SPace [VERHAEGEN/DEWILDE 1992],
® N4SID — Numerical algorithm for Subspace State Space System IDentification
[VAN OVERSCHEE/DE MOOR 1994].
o Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

@ Continuous-time system can be identified, e.g., by "inverse” Euler method.
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@ A few Remarks on System ldentification and DNNs

o System identification tries to infer discrete linear time-invariant (LTI) systems

Trr1 = Az + Buy + Kwg,
yr = Cxp + Dug + vy,

from input-output data, given as time series (uo, o), (u1,%1), ..., (uK,yx), where
v, wy, are uncorrelated Gaussian white noise processes.
o Early survey already 1971: Astrom/Eykhoff, AuTOMATICA 7(2):123-162.
o Popular methods are
@® MOESP — Multivariable Output Error State-SPace [VERHAEGEN/DEWILDE 1992],
® N4SID — Numerical algorithm for Subspace State Space System IDentification
[VAN OVERSCHEE/DE MOOR 1994].
o Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

@ Continuous-time system can be identified, e.g., by "inverse” Euler method.

o Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks. . .
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4 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 1. NO. I. MARCH 1990

Identification and Control of Dynamical Systems
Using Neural Networks

KUMPATI S. NARENDRA FELLOW, 1EEE, AND KANNAN PARTHASARATHY

Abstract—The paper demonstrates that neural networks can be used
effectively for the identification and control of nonlinear dynamicat
systems. The emphasis of the paper is on models for both identification
and control. Static and dynamic back-propagation methods for the ad-
Jjustment of parameters are discussed. In the models that are intro-
duced, multilayer and recurrent networks are interconnected in novel
configurations and hence there is a real need to study them in a unified
fashion. Simulation results reveal that the identification and adaptive
<control schemes suggested are practically feasible. Basic concepts and
definitions are introduced throughout the paper, and theoretical ques-
tions which have to be addressed are also described.
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are well known for such systems [1]. In this paper our
interest is in the identification and control of nonlinear
dynamic plants using neural networks. Since very few re-
sults exist in nonlinear systems theory which can be di-
rectly applied, i care has to be ised in the
statement of the problems, the choice of the identifier and
controller structures, as well as the generation of adaptive
laws for the adjustment of the parameters.

Two classes of neural networks which have received
considerable attention in the area of artificial neural net-

N
Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. |EEE
Transactions on Neural Networks 1(1):4-27.
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Fig. 2. A three layer neural network.

Fig. 3. A block diagram representation of a three layer network.

N
Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. |EEE
Transactions on Neural Networks 1(1):4-27.
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ﬁ Suykens, J.AK., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.
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DMD in a Nutshell

Basic Framework

Given a smooth dynamical system

z(t) = f(z(t)), x(0)==x9 € R".
Take snapshots zy := x(tx) on grid ty := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!), and find " best

possible” A, such that
Tht1 ~ A*zk.
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DMD in a Nutshell

Basic Framework

Given a smooth dynamical system
z(t) = f(z(t)), x(0)==x9 € R".

Take snapshots zy := x(tx) on grid ty := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!), and find " best
possible” A, such that

Tht1 ~ A*zk.
Motivation: Koopman theory

@ 3 a linear, infinite-dimensional operator describing the evolution of f(z(-)) in an
appropriate function space setting.

@ Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.
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DMD in a Nutshell

Basic Framework

Given a smooth dynamical system
z(t) = f(z(t)), x(0)==x9 € R".

Take snapshots zy := x(tx) on grid ty := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!), and find " best
possible” A, such that

Tht1 ~ A*zk.
Motivation: Koopman theory

@ 3 a linear, infinite-dimensional operator describing the evolution of f(z(-)) in an
appropriate function space setting.

@ Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.

Basic DMD Algorithm

Set X :=[z0,21,--.,2x_1 ] ER?*K  X; :=[x1,%2,...,2x | € R?*K and note that
X1 = AXj is desired ~ over-/underdetermined linear system, solved by linear least-squares
problem (regression):

Ax := argmin 4 cgnxn [| X1 — AXol|p 48[ Ally
with a potential regularization term choosing 5 > 0, ¢ =0, 1, 2.
Computation usually via singular value decomposition (SVD), many variants.
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' DMD in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system
#(t) = f(z(t),u(t)), =(0) ==z0 €R", y(t) = g(=(t), u(t)),
with control u(t) € R™ and output y(t) € RP.
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' DMD in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system
@(t) = f(z(t),u(t)), x(0)=wzo €R", y(t) = g(a(t), u(t)),
with control u(t) € R™ and output y(t) € RP.
Take state, control, and output snapshots
Tp = I(tk), U 1= u(tk)7 Yk = y(tk)z k:()vl?""K

(using simulation software, or measurements from real life experiment ~~ nonintrusive!), and find
"best possible” discrete-time LTI system such that

Trt1 = Aszy + Baug, yp ~ Cixp + Diug.
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DMD in a Nutshell

DMD with Inputs and Outputs

Given a smooth control system
@(t) = f(z(t),u(t)), x(0)=wzo €R", y(t) = g(a(t), u(t)),
with control u(t) € R™ and output y(t) € RP.
Take state, control, and output snapshots
Tp = l‘(tk), U 1= u(tk)r Yk = y(tk)z k:0717"'7K

(using simulation software, or measurements from real life experiment ~~ nonintrusive!), and find
"best possible” discrete-time LTI system such that

Trt1 = Aszy + Baug, yp ~ Cixp + Diug.

Basic ioDMD Algorithm (= N4SID)

Let S := R"X"™ x RMX™ x RPXT™ x RPX™_ Set X, X1 as before and
Uo :=[uo,u1,. .. ,ug_1 | € RM¥E Yo = [v0,u1,...,yx—1 ] € RPXE,

Solve the linear least-squares problem (regression):

bal-le 3] [

Yo C D| |Uy

with a potential regularization term choosing 5 > 0, ¢ = 0,1, 2.

(Ax, B«,Cx, Dy) := arg min(A,B,C,D)eS

\ +81[ABCD]l,
F
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¥ DMD in a Nutshell
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Operator Inference

Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system
@(t) = f(z(t), =(0) =m0 €R"

Take snapshots xj, := x(tx) on grid t; := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!).
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: Operator Inference
; Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

&(t) = f(x(t)), «(0) =z € R™

Take snapshots xj, := x(tx) on grid t; := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!).

By construction, DMD vyields a linear system of order n — this may be too large!
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Operator Inference
; Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system
@(t) = f(z(t), =(0) =m0 €R"

Take snapshots xj, := x(tx) on grid t; := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!).

By construction, DMD vyields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

© Let X :=[z0,21,...,7x 1,2k ] € R"*ETL  he the matrix of all snapshots.

(© benner@mpi-magdeburg.mpg.de formed Learning for Low-Dimensional Dynamical Systems


mailto:benner@mpi-magdeburg.mpg.de

Operator Inference
; Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system
@(t) = f(z(t), =(0) =m0 €R"

Take snapshots xj, := x(tx) on grid t; := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!).

By construction, DMD vyields a linear system of order n — this may be too large!
Idea: compress trajectories using POD / PCA:

© Let X :=[z0,21,...,7x 1,2k ] € R"*ETL  he the matrix of all snapshots.

® Compute principal / dominant singular vectors via SVD X = USVT and set
W :=U(:,1:r) such that Zf:tlﬁ_l or < € (potentially, use centered data).
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Operator Inference
; Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system
@(t) = f(z(t), =(0) =m0 €R"

Take snapshots xj, := x(tx) on grid t; := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!).

By construction, DMD vyields a linear system of order n — this may be too large!
Idea: compress trajectories using POD / PCA:

© Let X :=[z0,21,...,7x 1,2k ] € R"*ETL  he the matrix of all snapshots.

® Compute principal / dominant singular vectors via SVD X = USVT and set
W :=U(:,1:r) such that Zf:tlﬁ_l or < € (potentially, use centered data).

® Compute compressed snapshot matrix X .=wTX.
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Operator Inference
; Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system
@(t) = f(z(t), =(0) =m0 €R"

Take snapshots xj, := x(tx) on grid t; := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!).

By construction, DMD vyields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:
© Let X :=[z0,21,...,7x 1,2k ] € R"*ETL  he the matrix of all snapshots.
® Compute principal / dominant singular vectors via SVD X = USVT and set
W :=U(:,1:r) such that Zf:tlﬁ_l or < € (potentially, use centered data).
® Compute compressed snapshot matrix X .=wTX.
© Apply DMD using Xo,Xl and compute reduced-order A via

A= argminéewxr”f(l - AXOHF"‘ﬁHAHq
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: Operator Inference
; Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system
@(t) = f(z(t), =(0) =m0 €R"

Take snapshots xj, := x(tx) on grid t; := kh for k =0,1,..., K and fixed h > 0 (using
simulation software, or measurements from real life experiment ~~ nonintrusive!).
By construction, DMD vyields a linear system of order n — this may be too large!
Idea: compress trajectories using POD / PCA:
© Let X :=[z0,21,...,7x 1,2k ] € R"*ETL  he the matrix of all snapshots.

® Compute principal / dominant singular vectors via SVD X = USVT and set
W :=U(:,1:r) such that 25:7«14.1 or < € (potentially, use centered data).

® Compute compressed snapshot matrix X .=wTX.
© Apply DMD using Xo,Xl and compute reduced-order A via

A* = argminéewxr”f(l - AXOHF"‘ﬁHAHq

Can be combined with ioDMD to obtain reduced-order LTI system.
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Operator Inference

Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,
&(t) = fz(t),u(t)), «(0)=wzo €R",

and impose a nonlinear structure.

—
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' Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

&(t) = f(z(t),u(t)), «(0)==z0 €R",

and impose a nonlinear structure.

Here: try to infer quadratic system
i(t) = Az(t) + H (2(t) @ 2(t)) + Bu(t),
where P® Q = [pijQ]ij denotes the Kronecker (tensor) product, from data

X = [20,21,...,2x | € RP*EFD .= [ug,u1, ..., ug | € RPXEFD,

Informed Learning for Low-Dimensional Dynamical Systems
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: Operator Inference
; Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

&(t) = f(z(t),u(t)), «(0)==z0 €R",

and impose a nonlinear structure.

Here: try to infer quadratic system
i(t) = Az(t) + H (2(t) @ 2(t)) + Bu(t),
where P® Q = [pijQ]ij denotes the Kronecker (tensor) product, from data
X = [20,21,...,2x | € RP*EFD .= [ug,u1, ..., ug | € RPXEFD,

@ Use compressed trajectories (via POD / PCA) ~ X.
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: Operator Inference
; Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,
&(t) = fz(t),u(t)), «(0)=wzo €R",

and impose a nonlinear structure.

Here: try to infer quadratic system
i(t) = Az(t) + H (2(t) @ 2(t)) + Bu(t),
where P® Q = [pijQ]ij denotes the Kronecker (tensor) product, from data
X = [20,21,...,2x | € RP*EFD .= [ug,u1, ..., ug | € RPXEFD,
@ Use compressed trajectories (via POD / PCA) ~ X.

@ Compress snapshot matrix of time derivatives: if residuals f(¢;,u;) are available

X = [£(0),&(t1), ..., d(tx) ] ~ [ f(z0,u0), f(x1,u1), ..., flzx,uk) ] € RM D,

otherwise, approximate time-derivatives by finite differences ~~ X.
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Operator Inference
; Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,
&(t) = fz(t),u(t)), «(0)=wzo €R",

and impose a nonlinear structure.

Here: try to infer quadratic system
i(t) = Az(t) + H (2(t) @ 2(t)) + Bu(t),
where P® Q = [pijQ]ij denotes the Kronecker (tensor) product, from data
X = [20,21,...,2x | € RP*EFD .= [ug,u1, ..., ug | € RPXEFD,

@ Use compressed trajectories (via POD / PCA) ~ X.

@ Compress snapshot matrix of time derivatives: if residuals f(¢;,u;) are available

X = [£(0),&(t1), ..., d(tx) ] ~ [ f(z0,u0), f(x1,u1), ..., flzx,uk) ] € RM D,

otherwise, approximate time-derivatives by finite differences ~~ X.

@ Solve the linear least-squares problem (regression):
~ A A~ P X A A~
(Ax, Hy, By) = argmin(é,ﬁyé)”X -4 a7 B]|x2||p+Al [AHB] lq
U

with potential regularization as before and X2 := [z0 ® x0,...,Tx Q Tk].
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Operator Inference
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@ Conclusions — Part |

o DMD and operator inference (Oplnf) are regression-based powerful methods to infer
linear and certain nonlinear dynamical systems from data.

o Both look simple, but the devil is in the details.
@ Choice of good observables? (Learning to learn?)

o Statistical aspects are not too well understood: impact of noise in the data on
inferred models?

@ Recent work combines Oplnf with neural networks to solve nonlinear identification
problems (~~ Part Il).

@ Error bounds for non-intrusive MOR not well developed yet, but theoretic results
indicate that the OplInf model asymptotically (when increasing the number of
snapshots) yields the POD model. Then, intrusive MOR error bounds can be
applied.
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