
A Deep Learning Approach to Operator Inference
Physics-Informed Learning for Nonlinear Dynamical Systems

Peter Benner

Joint work with Pawan Goyal

13th International Conference on
”Large-Scale Scientific Computations”

June 7 – 11, 2021, Sozopol, Bulgaria

Supported by:



Motivation
Dynamic processes

Dynamic models are important

to analyze transient behavior under operating
conditions;

for controller design;

design studies w.r.t. (material/geometry)
parameter variations;

long-time horizon reliability prediction.

©Peter Benner, benner@mpi-magdeburg.mpg.de A Deep Learning Approach to Operator Inference 2/20

mailto:benner@mpi-magdeburg.mpg.de


Our Objective

Problem set-up

Construct a mathematical model

ẋ(t) = f(x(t))

describing the dynamics of the process.

Neural network-based approaches: e.g., recurrent neural networks and long short
time memory networks.

Leverage all prior information about the process for efficient learning.

Key sources of information

Physical laws

Domain knowledge

Collected data
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Learning Complex Engineering Process Models

Engineering processes are supported by domain knowledge and first principles

 a PDE model can be obtained that adequately explains the dynamics

PDE discretize
high-fidelity

model

model (low
dimensional)

Data

Data collection: obtained using a legacy code, or commercial software, or
experiments.

Ideal goal: obtain the same reduced-order model (ROM) as obtained by intrusive
model order reduction using data, so that error bounds and convergence analysis for
ROMs can be directly employed!
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Learning Complex Engineering Process Models
Non-intrusive approach

Operator inference framework [Peherstorfer/Willcox ’16]

Operator inference leverages the known physical structure at the PDE level.

Assume a quadratic high-fidelity model resulting from an underlying PDE form
∂x
∂t

= A(x) +H(x) with linear and quadratic terms:

ẋ(t) = Ax(t) + H(x(t)⊗ x(t))

Data preparation (in reduced dimension)

1 Build temporal snapshot matrix X :=

 x0 x1 · · · xk

.

2 Compute projection matrix V using dominant POD basis vectors.
3 Reduced state vectors

X̂ := V TX =

 x̂0 x̂1 · · · x̂k

 , X̂⊗ :=

 x̂⊗0 x̂⊗1 · · · x̂⊗k

 .

4 Approximate time-derivative data
˙̂
X :=

 ˙̂x0
˙̂x1 · · · ˙̂xk

.
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ẋ(t) = Ax(t) + H(x(t)⊗ x(t))

Data preparation (in reduced dimension)

1 Build temporal snapshot matrix X :=

 x0 x1 · · · xk

.

2 Compute projection matrix V using dominant POD basis vectors.
3 Reduced state vectors

X̂ := V TX =

 x̂0 x̂1 · · · x̂k

 , X̂⊗ :=

 x̂⊗0 x̂⊗1 · · · x̂⊗k

 .

with x̂i = V>xi and x̂⊗i = x̂i ⊗ x̂i

4 Approximate time-derivative data
˙̂
X :=

 ˙̂x0
˙̂x1 · · · ˙̂xk

.

©Peter Benner, benner@mpi-magdeburg.mpg.de A Deep Learning Approach to Operator Inference 5/20

mailto:benner@mpi-magdeburg.mpg.de


Learning Complex Engineering Process Models
Non-intrusive approach

Operator inference framework [Peherstorfer/Willcox ’16]

Operator inference leverages the known physical structure at the PDE level.

Assume a quadratic high-fidelity model resulting from an underlying PDE form
∂x
∂t

= A(x) +H(x) with linear and quadratic terms:
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Learning Complex Engineering Process Models
Learning operators

Operator inference framework [Peherstorfer/Willcox ’16]

A ROM of the form
˙̂x(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t))

can be obtained using projected data by solving the optimization problem

min
Â,Ĥ

∥∥∥ ˙̂
X− ÂX̂− ĤX̂⊗

∥∥∥ .

+R(Â, Ĥ).

Remarks:

Notice that we do not require at any step the full-order discretized model.

Operator inference recovers intrusive POD reduced model if data are Markovian.
[Peherstorfer ’20]

Typically, the least-squares problem is ill-conditioned, hence need regularization.
[McQuarrie et al. ’21, B./Goyal/Heiland/Pontes ’21]
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Operator Inference for General Nonlinear Systems

Nonlinear systems [B./Goyal/Kramer/Peherstorfer/Willcox ’20]

Consider a nonlinear system of the form

∂s

∂t
= A(s) +H(s) + F(t, s),

where the analytic form of F(t, s) is known.

We can learn a ROM of the form

˙̂s(t) = Âŝ + Ĥ (ŝ⊗ ŝ) + f̂(t, ŝ)

directly from data!

Simulation of reduced nonlinear system can be further accelerated using
hyper-reduction.
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Batch Chromatography: A Chemical Separation Process

The dynamics of a batch chromatography column can be described by the coupled
PDE system of advection-diffusion type:

∂ci
∂t

+
1− ε
ε

∂qi
∂t

+
∂ci
∂x
− 1

Pe

∂2ci
∂x2

= 0,

∂qi
∂t

= κi

(
qEq
i − qi

)
.

It is a coupled PDE; thus, the coupling structure is desired to be preserved in
learned ROM

This is achieved by block diagonal projection, thereby not mixing separate physical
quantities.
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Batch Chromatography: A Chemical Separation Process
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Figure: Batch chromatography example: A comparison of the POD intrusive model with the
learned model of order r = 4× 22, where n = 1600 and Pe = 2000.
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Other Extensions of Operator Inference

Learning low-dimensional parametric models with application to shallow water
equations. [Yıldız et al. ’20]
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(a) True solution (in testing)

−4 −2 0 2 4

−4

−2

0

2

4

1

1.05

1.1

(b) Learned model using OpInf (in testing)

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition. [B./Goyal/Heiland/Pontes ’21]
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Combining Operator Inference with Deep Learning
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Operator Inference for General Nonlinear Systems

Problem formulation

v̇(t) = f(v(t)) + r(v(t))

f(v(t)): known from physical laws or expert knowledge;
e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.
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e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.

Observation

Often, governing equations are quadratic, i.e.,

f(v) := Av(t) + H (v ⊗ v).

If no additional information is given,
we assume f to be quadratic.

Moreover, possible to find artificial variables in
which dynamics are quadratic.

Philosophy: Lift & learn [Qian et al. ’20]

Navier-Stokes equations

Fisher’s equation
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Operator Inference for General Nonlinear Systems

For simplicity, consider the form:

v̇(t) = f(v(t)) = Av(t) + H (v(t)⊗ v(t)) + r(v(t)),

where

r(v(t)) can be interpreted as a residual that cannot be resolved by the
quadratic-form or prior knowledge.
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Residual networks [He/Ren/Sun ’16]

Have shown their power in
computer vision applications.

There is an established connection
to dynamical systems.

Residual type connections hint to
adaptive refinement of solution or
features.
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Operator Inference for General Nonlinear Systems
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v̇(t) = f(v(t)) = Av(t) + H (v(t)⊗ v(t)) + r(v(t)),
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Linear-Quadratic Residual Networks (LQResNet) [Goyal/B. ’21]

...

v

...
...

v A(v)

...
...

v⊗

H(v)

...
...

...
...

Residual-
type

Architecture

v R(v)

+
...

f(v)

Linear term Av

Quadratic term H (v ⊗ v)

Residual R(v)
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Advantages of the Architecture

Linear-Quadratic Residual Networks (LQResNet) [Goyal/B. ’21]
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type

Architecture

v R(v)

+
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Linear term Av

Quadratic term H (v ⊗ v)

Residual R(v)

Remarks

Due to skip connections, loss landscape becomes less bumpy. [Li et al. ’18]

Layers can be added without restarting whole optimization as deep residual layers
tend to refine the mapping.
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Numerical Experiments

Glycolytic Oscillator [Daniels/Daniels ’15]

Set-up

Represents complex wide-range dynamical behavior in yeast
glycolysis.

There are 7 involved species.

Data for 30 different initial conditions.

Utilized interaction topology in learning.

Check the predictive capabilities under new condition.
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Figure: Interaction
topology for 7 species.
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Tubular Reactor Model

One dimensional model with a single reaction, describing dynamics of the species
concentration ψ(x, t) and temperature θ(x, t) via

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
− ∂ψ

∂x
−DF(ψ, θ; γ),

∂θ

∂t
=

1

Pe

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θref) + BDF(ψ, θ; γ),

with spatial variable x ∈ (0, 1), time t > 0 and Arrhenius reaction term

F(ψ, θ; γ) = ψ exp
(
γ − γ

θ

)
.

The quantity of interest is the temperature oscillation at the reactor exit:

y(t) = θ(x = 1, t).
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Tubular Reactor Model
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Figure: Decay of singular values of the snapshots.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Figure: A comparison of the temperature oscillations at exit.
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The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Figure: A comparison of the temperature oscillations at exit.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Figure: A comparison of the temperature oscillations in the whole domain.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Outlook

Contribution

We have studied an approach to learn a mathematical model to describe nonlinear
dynamics.

Basis: operator inference and its extensions, utilizing prior PDE knowledge.

New: model residual identified using architecture LQResNet, inspired by residual
network.

The design allows us to incorporate prior hypotheses about the process.

On-going work

Very often, we can build a dictionary of good candidate basis functions, but probably
do not want all of them in the dictionary. Therefore, we seek a parsimonious model

to pick few entries from the dictionary and learn residual by deep learning.

Appropriate treatment of noise . . . [Rudy/Kutz/Brunton ’19]

Missing/corrupted data in time series.

Working with several applications in material science and chemical engineering.

Thank you for your attention!!
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Commercial

Out now — a Trilogy on Model Order Reduction
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