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Motivation
Dynamic processes

Dynamic models are important

to analyze transient behavior under operating
conditions;

for controller design;

design studies w.r.t. (material/geometry)
parameter variations;

long-time horizon reliability prediction.
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Our Objective

Problem set-up

Construct a mathematical model

ẋ(t) = f(x(t))

describing the dynamics of the process.

Neural network-based approaches: e.g., recurrent neural networks and long short
time memory networks.

Leverage all prior information about the process for efficient learning.

Key sources of information

Physical laws

Domain knowledge

Collected data
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Learning Complex Engineering Process Models

Engineering processes are supported by domain knowledge and first principles

 a PDE model can be obtained that adequately explains the dynamics

PDE discretize
high-fidelity

model

model (low
dimensional)

Data

Data collection: obtained using a legacy code, or commercial software, or
experiments.

Ideal goal: obtain the same reduced-order model (ROM) as obtained by intrusive
model order reduction using data, so that error bounds and convergence analysis for
ROMs can be directly employed!
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Learning Complex Engineering Process Models
Non-intrusive approach

Operator inference framework [Peherstorfer/Willcox ’16]

Operator inference leverages the known physical structure at the PDE level.

Assume a quadratic high-fidelity model resulting from an underlying PDE form
∂x
∂t

= A(x) +H(x) with linear and quadratic terms:

ẋ(t) = Ax(t) + H(x(t)⊗ x(t))

Data preparation (in reduced dimension)

1 Build temporal snapshot matrix X :=

 x0 x1 · · · xk

.

2 Compute projection matrix V using dominant POD basis vectors.
3 Reduced state vectors

X̂ := V TX =

 x̂0 x̂1 · · · x̂k

 , X̂⊗ :=

 x̂⊗0 x̂⊗1 · · · x̂⊗k

 .

4 Approximate time-derivative data
˙̂
X :=

 ˙̂x0
˙̂x1 · · · ˙̂xk

.
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Learning Complex Engineering Process Models
Learning operators

Operator inference framework [Peherstorfer/Willcox ’16]

A ROM of the form
˙̂x(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t))

can be obtained using projected data by solving the optimization problem

min
Â,Ĥ

∥∥∥ ˙̂
X− ÂX̂− ĤX̂⊗

∥∥∥ .

+R(Â, Ĥ).

Remarks:

Notice that we do not require at any step the full-order discretized model.

Operator inference recovers intrusive POD reduced model if data are Markovian.
[Peherstorfer ’20]

Typically, the least-squares problem is ill-conditioned, hence need regularization.
[McQuarrie et al. ’21, B./Goyal/Heiland/Pontes ’21]
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Operator Inference for General Nonlinear Systems

Nonlinear systems [B./Goyal/Kramer/Peherstorfer/Willcox ’20]

Consider a nonlinear system of the form

∂s

∂t
= A(s) +H(s) + F(t, s),

where the analytic form of F(t, s) is known.

We can learn a ROM of the form

˙̂s(t) = Âŝ + Ĥ (ŝ⊗ ŝ) + f̂(t, ŝ)

directly from data!

Simulation of reduced nonlinear system can be further accelerated using
hyper-reduction.
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Batch Chromatography: A Chemical Separation Process

The dynamics of a batch chromatography column can be described by the coupled
PDE system of advection-diffusion type:

∂ci
∂t

+
1− ε
ε

∂qi
∂t

+
∂ci
∂x
− 1

Pe

∂2ci
∂x2

= 0,

∂qi
∂t

= κi

(
qEq
i − qi

)
.

It is a coupled PDE; thus, the coupling structure is desired to be preserved in
learned ROM

This is achieved by block diagonal projection, thereby not mixing separate physical
quantities.
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Batch Chromatography: A Chemical Separation Process
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Figure: Batch chromatography example: A comparison of the POD intrusive model with the
learned model of order r = 4× 22, where n = 1600 and Pe = 2000.
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Other Extensions of Operator Inference

Learning low-dimensional parametric models with application to shallow water
equations. [Yıldız et al. ’20]
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(b) Learned model using OpInf (in testing)

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition. [B./Goyal/Heiland/Pontes ’21]
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Combining Operator Inference with Deep Learning
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Operator Inference for General Nonlinear Systems

Problem formulation

v̇(t) = f(v(t)) + r(v(t))

f(v(t)): known from physical laws or expert knowledge;
e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.
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e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.

Observation

Often, governing equations are quadratic, i.e.,

f(v) := Av(t) + H (v ⊗ v).

If no additional information is given,
we assume f to be quadratic.

Moreover, possible to find artificial variables in
which dynamics are quadratic.

Philosophy: Lift & learn [Qian et al. ’20]

Navier-Stokes equations

Fisher’s equation
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Operator Inference for General Nonlinear Systems

For simplicity, consider the form:

v̇(t) = f(v(t)) = Av(t) + H (v(t)⊗ v(t)) + r(v(t)),

where

r(v(t)) can be interpreted as a residual that cannot be resolved by the
quadratic-form or prior knowledge.
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Residual networks [He/Ren/Sun ’16]

Have shown their power in
computer vision applications.

There is an established connection
to dynamical systems.

Residual type connections hint to
adaptive refinement of solution or
features.
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Operator Inference for General Nonlinear Systems

For simplicity, consider the form:
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where
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Linear-Quadratic Residual Networks (LQResNet) [Goyal/B. ’21]

...

v

...
...

v A(v)

...
...

v⊗

H(v)

...
...

...
...

Residual-
type

Architecture

v R(v)

+
...

f(v)

Linear term Av

Quadratic term H (v ⊗ v)

Residual R(v)
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Advantages of the Architecture

Linear-Quadratic Residual Networks (LQResNet) [Goyal/B. ’21]
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v

...
...

v A(v)

...
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...

...
...

Residual-
type

Architecture

v R(v)

+
...

f(v)

Linear term Av

Quadratic term H (v ⊗ v)

Residual R(v)

Remarks

Due to skip connections, loss landscape becomes less bumpy. [Li et al. ’18]

Layers can be added without restarting whole optimization as deep residual layers
tend to refine the mapping.
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Numerical Experiments

Glycolytic Oscillator [Daniels/Daniels ’15]

Set-up

Represents complex wide-range dynamical behavior in yeast
glycolysis.

There are 7 involved species.

Data for 30 different initial conditions.

Utilized interaction topology in learning.

Check the predictive capabilities under new condition.

S1

S2

S3

S4
S5

S6

S7

Figure: Interaction
topology for 7 species.
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Tubular Reactor Model

One dimensional model with a single reaction, describing dynamics of the species
concentration ψ(x, t) and temperature θ(x, t) via

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
− ∂ψ

∂x
−DF(ψ, θ; γ),

∂θ

∂t
=

1

Pe

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θref) + BDF(ψ, θ; γ),

with spatial variable x ∈ (0, 1), time t > 0 and Arrhenius reaction term

F(ψ, θ; γ) = ψ exp
(
γ − γ

θ

)
.

The quantity of interest is the temperature oscillation at the reactor exit:

y(t) = θ(x = 1, t).
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Tubular Reactor Model
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Figure: Decay of singular values of the snapshots.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Outlook

Contribution

We have studied an approach to learn a mathematical model to describe nonlinear
dynamics.

Basis: operator inference and its extensions, utilizing prior PDE knowledge.

New: model residual identified using architecture LQResNet, inspired by residual
network.

The design allows us to incorporate prior hypotheses about the process.

On-going work

Very often, we can build a dictionary of good candidate basis functions, but probably
do not want all of them in the dictionary. Therefore, we seek a parsimonious model

to pick few entries from the dictionary and learn residual by deep learning.

Appropriate treatment of noise . . . [Rudy/Kutz/Brunton ’19]

Missing/corrupted data in time series.

Working with several applications in material science and chemical engineering.

Thank you for your attention!!
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Commercial

Out now — a Trilogy on Model Order Reduction
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