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Introduction
Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.
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‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Balanced Truncation for Linear and Nonlinear Systems on Industrial Scale 3/30

mailto:benner@mpi-magdeburg.mpg.de


Introduction
Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
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Industrial Application Areas
Computer-aided Control System Design (CACSD)

Feedback Control

A feedback controller (dynamic compensator)
is a linear system of order N , where

input = output of plant,

output = input of plant.

Modern (LQG-/H2-/H∞-) control design:
N ≥ n.

Practical controllers require small N
(N ∼ 10, say) due to

– real-time constraints,

– increasing fragility for larger N .

=⇒ reduce order of plant (n)
=⇒ and/or controller (N).

Sources: MPI Magdeburg (pendulum),

https://tinyurl.com/9n75h5dd under CC BY 2.0 license (drone).
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Industrial Application Areas
Nanoelectronics/Electromagnetics

Progressive miniaturization: Moore’s Law states that the number of on-chip transistors
doubles each 12 (now: 18) months.

Verification of VLSI/ULSI chip design requires high number of simulations for different
input signals.

Increase in packing density requires modeling of interconnect to ensure that
thermic/electro-magnetic effects do not disturb signal transmission.

Linear systems in nanoelectronics occur through
– modified nodal analysis (MNA) for RLC networks, e.g., when decoupling large linear

subcircuits,
– modeling transmission lines (interconnect, powergrid), parasitic effects,
– modeling circuit elements described by Maxwell’s equation using partial element

equivalent circuits (PEEC), e.g., microwave devices like splitters and diplexers,
electromagnetic devices like antennas.

Combline Diplexer:
n = 270, 446, [Zhao/Wu, ieee-mtt 2014]

Substrate Integrated Waveguide Antenna:
n = 390, 302, [Dong/Itoh, ieee-tap 2010]
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Industrial Application Areas
Structural Mechanics / Finite Element Modeling

 

Resolving complex 3D geometries ⇒ millions of degrees of freedom.

Analysis of elastic deformations requires many simulation runs for varying external
forces.

Additional goal: Preserve second-order structure in reduced-order model, i.e.,

Mẍ(t) +Dẋ(t) +K(x(t)) = Bu(t)

for seamless integration into commercial EMBD simulation software.
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System Classes

Control-Affine (Autonomous) Systems

ẋ(t) = f(t, x, u) = A(x(t)) + B(x(t))u(t), A : Rn → Rn, B : Rn → Rn×m,
y(t) = g(t, x, u) = C(x(t)) +D(x(t))u(t), C : Rn → Rq , D : Rn → Rq×m.
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Polynomial Systems

ẋ(t) = f(t, x, u) = Ax(t) +

np∑
j=2

Hj
(
⊗jx(t)

)
+

np∑
j=2

m∑
k=1

Akj
(
⊗jx(t)

)
uk(t) +Bu(t),

Hj , A
k
j of ”appropriate size”,

y(t) = g(t, x, u) = Cx(t) +Du(t), C ∈ Rq×n, D ∈ Rq×m.

Polynomial-bilinear systems can be obtained from smooth nonlinear systems by lifting without
approximation error! [Gu 2011].
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C(x) := Cx, D(x) := D.
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Here, we focus on linear and polynomial systems.
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Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Reduction in Frequency Domain
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),
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Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),

=⇒ I/O-relation in frequency domain:

Y (s) =
(
C(sIn −A)−1B +D︸ ︷︷ ︸

=:G(s)

)
U(s).

G(s) is the transfer function of Σ.
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Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),

=⇒ I/O-relation in frequency domain:

Y (s) =
(
C(sIn −A)−1B +D︸ ︷︷ ︸

=:G(s)

)
U(s).

G(s) is the transfer function of Σ.

Model reduction in frequency domain: Fast evaluation of mapping U → Y .
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Model Reduction in Frequency Domain
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the time domain dynamical system

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m,

by reduced-order system

˙̂x = Âx̂+ B̂u, Â ∈ Rr×r, B̂ ∈ Rr×m,
ŷ = Ĉx̂+ D̂u, Ĉ ∈ Rp×r, D̂ ∈ Rp×m

of order r � n, such that

‖y − ŷ‖ '
∥∥∥Y − Ŷ ∥∥∥ =

∥∥∥GU − ĜU∥∥∥
≤
∥∥∥G− Ĝ∥∥∥ · ‖U‖ ' ∥∥∥G− Ĝ∥∥∥ · ‖u‖

≤ tolerance · ‖u‖ .
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Balanced Truncation for Linear Systems

Basic concept

System Σ :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization (needs P,Q!) of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1, TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

])
.

Truncation  (Â, B̂, Ĉ) = (A11, B1, C1).
Note: in efficient algorithms, truncation is achieved via projection:

(Â, B̂, Ĉ) = (WTAV,WTB,CV ), where WTV = Ir.
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Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr.

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤ ‖G− Ĝ‖H∞ ‖u‖2 ≤
(
2
∑n

k=r+1
σk

)
‖u‖2 ,

where ‖G‖H∞ := supu∈L2\{0}
‖Gu‖2
‖u‖2

= supω∈R σmax(G(ω)).
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Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr.

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤ ‖G− Ĝ‖H∞ ‖u‖2 ≤
(
2
∑n

k=r+1
σk

)
‖u‖2 ,

where ‖G‖H∞ := supu∈L2\{0}
‖Gu‖2
‖u‖2

= supω∈R σmax(G(ω)).

Practical implementation

Rather than solving Lyapunov equations for P,Q (n2 unknowns!), find S,R ∈ Rn×s with
s� n such that P ≈ SST , Q ≈ RRT .

Reduced-order model directly obtained via small-scale (s× s) SVD of RTS!

Two software packages:

MORLABa (Model Order Reduction LABoratory), based on spectral projection
methods ( small to medium size problems, up to n ∼ 5, 000.)
M-M.E.S.S.b provides solvers for large-scale matrix equations with sparse/low-rank
coefficients and basic MOR functionality; no O(n3) or O(n2) computations necessary!

ahttp://www.mpi-magdeburg.mpg.de/projects/morlab
bhttps://www.mpi-magdeburg.mpg.de/projects/mess, full MATLAB integration in progress.
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Numerical Examples
Electro-Thermic Simulation of Integrated Circuit (IC) [Source: Evgenii Rudnyi, CADFEM GmbH]

Simplorer® test circuit with 2 transistors.

Conservative thermic sub-system in Simplorer:
voltage  temperature, current  heat flow.

Original model: n = 270.593, m = q = 2 ⇒
Computing times (on Intel Xeon dualcore 3GHz, 1 Thread):

– Main computational cost for set-up data ≈ 22min.
– Computation of reduced models from set-up data: 44–49sec. (r = 20–70).
– Bode plot (MATLAB on Intel Core i7, 2,67GHz, 12GB):

7.5h for original system , < 1min for reduced system.
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Numerical Examples
Artificial Fishtail Model [Siebelts/Saak/Werner ’19]

Original system:

mechanical second-order structure

n = 779, 232, m = 1, p = 3

test simulation time ≈ 4 h

Second-Order Balanced Truncation:

two-step method with MORLAB backend

r = 1, wall time ≈ 21 h

test simulation time ≈ 10 msec (speed up ≈ 1.4 · 106)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3
·10−2

Time (s)

D
is

p
la

ce
m

en
t

(m
)

© benner@mpi-magdeburg.mpg.de Balanced Truncation for Linear and Nonlinear Systems on Industrial Scale 13/30

mailto:benner@mpi-magdeburg.mpg.de


Numerical Examples
Artificial Fishtail Model [Siebelts/Saak/Werner ’19]

Original system:

mechanical second-order structure

n = 779, 232, m = 1, p = 3

test simulation time ≈ 4 h

Second-Order Balanced Truncation:

two-step method with MORLAB backend

r = 1, wall time ≈ 21 h

test simulation time ≈ 10 msec (speed up ≈ 1.4 · 106)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3
·10−2

Time (s)

D
is

p
la

ce
m

en
t

(m
)

© benner@mpi-magdeburg.mpg.de Balanced Truncation for Linear and Nonlinear Systems on Industrial Scale 13/30

mailto:benner@mpi-magdeburg.mpg.de


Numerical Examples
Thermal Model of Experimental Machine Tool MAX [Vettermann et al ’21]

50 subassemblies CAD model

FEM
 

FE-Model: 1.2M DOFs

Industrial challenges for virtual twin:
non-homogeneous initial conditions (IC) — two approaches: augment input with IC
(”BTX0”) or use superposition (”2phase”),
subsystem reduction (”output coupled”) vs. holistic reduction (”FE-coupled”).
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Numerical Examples
MAX: Results considering an inhomogeneous initial condition x0 6= 0

FE-coupled

method red. order tol 10−3 tred
2phase 196 6.5h
BTX0 174 4.5h

output-coupled

method red. order tol 10−3 tred
2phase 3,005 2h
BTX0 2,515 1.8h

→ Required storage for reduced matrices just 1MB!
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temperature change in output (16, 0)
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2Phase,1.0e-2
2Phase,1.0e-3
2Phase,1.0e-4
2Phase,1.0e-5
BTX0,1.0e-2
BTX0,1.0e-3
BTX0,1.0e-4
BTX0,1.0e-5

Vettermann, J., Sauerzapf, S., Naumann, A., Beitelschmidt, M., Herzog, R., Benner, P., Saak, J. (2021): Model order
reduction methods for coupled machine tool models. MM Science Journal 2021:4652-4659.
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Numerical Examples
von Kármán Vortex Shedding [B./Saak/Uddin ’16]

Vortex shedding

Often encountered in industrial
applications: system of the form

Eẋ(t) = Ax(t) +Bu(t)

with singular E  
linear differential-algebraic
(descriptor) system

Here: linearized Navier-Stokes
equations for control design:
index = 2, n = 22, 385, m = 2, p = 7.

Balanced truncation approximation

r = 153 for tolerance τ = 10−5

hardware: Intel®Core™ i7-6700 with
16GB RAM

software: M-M.E.S.S.-2.0.1 in
MATLAB® R2018a

wall time:≈ 2min.

M.E.S.S. demo example:
bt mor DAE2(’NSE’,3,500)

(0,1)

(0,0)

(5,1)

(5,0)

Γin Γfeed1 Γfeed2 Γwall Γout Pobs,i

Model by Heiko K. Weichelt
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Balanced Truncation for Nonlinear Systems
Approaches

Nonlinear balancing based on energy functionals [Scherpen 1993, Gray/Mesko 1996].

Definition [Scherpen 1993, Gray/Mesko 1996]

The reachability energy functional Lc(x0), and observability energy functional Lo(x0) of a
system are given as:

Lc(x0) = inf
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt, Lo(x0) =

1

2

∫ ∞
0
‖y(t)‖2dt.

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi equations
which are hardly solvable for large-scale systems.

Note: For linear (LTI) systems,

Lc(x0) =
1

2
xT0 P

−1x0, Lo(x0) =
1

2
xT0 Qx0,

where P,Q are the controllability and observability Gramians, respectively!

Empirical Gramians/frequency-domain POD [Lall et al 1999, Willcox/Peraire 2002].

Disadvantage: Depends on chosen training input (e.g., δ(t0)) like other POD approaches.

For recent developments on empirical Gramians, see [Himpe 2018].

 Goal: computationally efficient and input-independent method!
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Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi equations
which are hardly solvable for large-scale systems.

Empirical Gramians/frequency-domain POD [Lall et al 1999, Willcox/Peraire 2002].

Example: controllability Gramian from time domain data (snapshots)

1 Define reachability Gramian of the system

P =
∫∞
0 x(t)x(t)T dt, where x(t) solves ẋ = f(x, δ), x(0) = x0.

2 Use time-domain integrator to produce snapshots xk ≈ x(tk), k = 1, . . . ,K.

3 Approximate P ≈
∑K
k=0 wkxkx

T
k with positive weights wk.

4 Analogously for observability Gramian.
5 Compute balancing transformation and apply it to nonlinear system.

Disadvantage: Depends on chosen training input (e.g., δ(t0)) like other POD approaches.

For recent developments on empirical Gramians, see [Himpe 2018].

 Goal: computationally efficient and input-independent method!
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W. S. Gray and J. P. Mesko. Controllability and observability functions for model reduction of nonlinear systems. In Proc. of the Conf. on
Information Sci. and Sys., pp. 1244–1249, 1996.

C. Himpe. emgr — The empirical Gramian framework. Algorithms 11(7): 91, 2018. doi:10.3390/a11070091.

S. Lall, J. Marsden, and S. Glavaški. A subspace approach to balanced truncation for model reduction of nonlinear control systems.
International Journal of Robust and Nonlinear Control, 12:519–535, 2002.

J. M. A. Scherpen. Balancing for nonlinear systems. Systems & Control Letters, 21:143–153, 1993.

K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40:2323–2330, 2002.
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Balanced Truncation for Polynomial Systems
Balanced Truncation for Nonlinear Systems

A possible solution is to obtain bounds for the energy functionals, instead of computing
them exactly.

For bilinear systems, such local bounds were derived in [B./Damm 2011] using the solutions
to the Lyapunov-plus-positive equations:

AP + PAT +
∑m
i=1 AiPA

T
i +BBT = 0,

ATQ+QAT +
∑m
i=1 A

T
i QAi + CTC = 0.

(Note: if their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

Here, we aim at determining algebraic Gramians for polynomial systems, which

provide bounds for the energy functionals of polynomial systems,
generalize the Gramians of linear and bilinear systems, and
allow us to find the states that are hard to reach as well as hard to observe in an
efficient and reliable way.
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Balanced Truncation for Polynomial Systems
Polynomial Control Systems

Now, consider the class of polynomial control (PC) Systems:

ẋ(t) = Ax(t) +

np∑
j=2

Hj
(
⊗jx(t)

)
+

np∑
j=2

m∑
k=1

Nk
j

(
⊗jx(t)

)
uk(t) +Bu(t),

y(t) = Cx(t), x(0) = 0,

where

np is the degree of the polynomial part of the system,

x(t) ∈ Rn, ⊗jx(t) = x(t)⊗ · · · ⊗ x(t)︸ ︷︷ ︸
j-times

,

u(t) ∈ Rm, and y(t) ∈ Rp, n� m, p.

A ∈ Rn×n, Hj , N
k
j ∈ Rn×n

j

, B ∈ Rn×m and C ∈ Rp×n.

Assumption: A is supposed to be Hurwitz ⇒ local stability.

Examples: FitzHugh-Nagumo and Chafee-Infante equations lead to cubic control
systems; cubic-quintic Allen-Cahn equation to quintic control system.
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Balanced Truncation for Polynomial Systems
Polynomial Control Systems
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ẋ(t) = Ax(t) +

np∑
j=2

Hj
(
⊗jx(t)

)
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np∑
j=2

m∑
k=1

Nk
j

(
⊗jx(t)

)
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Polynomial Control Systems
Volterra Series for Nonlinear Systems

Consider input → state map of (for simplicity) quadratic-bilinear system (nP = 2,
m = 1, N ≡ A1):

ẋ(t) = Ax(t) +Hx(t)⊗ x(t) +Nx(t)u(t) +Bu(t), x(0) = 0.

Integration yields

x(t) =

t∫
0

e
Aσ1Bu(t− σ1)dσ1 +

t∫
0

e
Aσ1Nx(t− σ1)u(t− σ1)dσ1

+

t∫
0

e
Aσ1Hx(t− σ1)⊗ x(t− σ1)dσ1

=

t∫
0

e
Aσ1Bu(t− σ1)dσ1 +

t∫
0

t−σ1∫
0

e
Aσ1Ne

Aσ2Bu(t− σ1)u(t− σ1 − σ2)dσ1dσ2

+

t∫
0

t−σ1∫
0

t−σ1∫
0

e
Aσ1H(e

Aσ2B ⊗ eAσ3B)u(t− σ1 − σ2)u(t− σ1 − σ3)dσ1dσ2dσ3 + . . .

By iteratively inserting expressions for x(t− •), we obtain the Volterra series expansion for
quadratic-bilinear (and, more general, polynomial) systems.

[Rugh 1981]
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Gramians for PC Systems
The Reachability Gramian

Expanding the response of the PC system into a Volterra series representation and using
the idea of iterated linear systems, we define the reachability Gramian as

P =
∞∑
k=1

∫ ∞
0

· · ·
∫ ∞
0

P̄k(t1, . . . , tk)P̄k(t1, . . . , tk)T dt1 . . . dtk,

where

P̄1(t1) = eAt1B, P̄2(t1, t2) =
m∑
k=1

eAt1Nk
1 e

At2B,

P̄3(t1, t2, t3) = eAt1H2e
At2B ⊗ eAt3B, . . .

are the kernels of the Volterra series expansion of the system output.

Theorem [B./Goyal/Pontes Duff 2018]

The reachability Gramian P of a PC system solves the polynomial Lyapunov equation

AP + PAT +BBT +

np∑
j=2

Hj
(
⊗jP

)
HT
j +

np∑
j=2

m∑
k=1

Nk
j

(
⊗jP

) (
Nk
j

)T
= 0.
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Gramians for PC Systems
Dual System and Observability Gramian

The Observability Gramian is defined as follows:

First, we write the adjoint system as [Fujimoto et al. 2002]

ẋ(t) = Ax(t) +

np∑
j=2

Hjx
⊗
j (t) +

np∑
j=1

m∑
k=1

N
k
j x
⊗
j (t)uk(t) + Bu(t),

ẋd(t) = −AT xd(t)−
np∑
j=2

H
(2)
j x

⊗
d,j(t)−

np∑
j=1

m∑
k=1

(
N
k,(2)
j

)
x
⊗
d,j(t)ud,k(t)− C

T
ud(t), xd(∞) = 0,

yd(t) = B
T
xd(t).

Then, by taking the kernel of Volterra series, one has

Theorem [B./Goyal/Pontes Duff 2018]

Let P be the reachability Gramian. Then, the observability Gramian Q of the PC system
solves the polynomial Lyapunov equation

A
T
Q +QA + C

T
C +

np∑
j=2

H
(2)
j

(
⊗j−1

P ⊗Q
) (
H

(2)
j

)T
+

np∑
j=2

m∑
k=1

N
k,(2)
j

(
⊗j−1

P ⊗Q
) (
N
k,(2)
j

)T
= 0.
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ẋd(t) = −AT xd(t)−
np∑
j=2

H
(2)
j x

⊗
d,j(t)−

np∑
j=1

m∑
k=1

(
N
k,(2)
j

)
x
⊗
d,j(t)ud,k(t)− C

T
ud(t), xd(∞) = 0,

yd(t) = B
T
xd(t).

Then, by taking the kernel of Volterra series, one has

Theorem [B./Goyal/Pontes Duff 2018]

Let P be the reachability Gramian. Then, the observability Gramian Q of the PC system
solves the polynomial Lyapunov equation

A
T
Q +QA + C

T
C +

np∑
j=2

H
(2)
j

(
⊗j−1

P ⊗Q
) (
H

(2)
j

)T
+

np∑
j=2

m∑
k=1

N
k,(2)
j

(
⊗j−1

P ⊗Q
) (
N
k,(2)
j

)T
= 0.

© benner@mpi-magdeburg.mpg.de Balanced Truncation for Linear and Nonlinear Systems on Industrial Scale 23/30

mailto:benner@mpi-magdeburg.mpg.de


Truncated Gramians

Polynomial Lyapunov equations are very expensive to solve, efficient algorithms
have not yet been developed.

We thus propose truncated Gramians that only involve a finite number of kernels
and can be computed using the methods in MORLAB or M-M.E.S.S.:

PT =

np+1∑
k=1

∫ ∞
0

· · ·
∫ ∞
0

P̄k(t1, . . . , tk)P̄k(t1, . . . , tk)T dt1 . . . dtk.

Truncated Gramians

The truncated reachability Gramian solves

APT + PT A
T +BBT +

np∑
j=2

Hj⊗jPlHT
j +

np∑
j=2

m∑
k=1

Nk
j ⊗jPl

(
Nk
j

)T
= 0.

where APl + PlA
T +BBT = 0

Advantage: Only need to solve a finite number of (linear) Lyapunov equations.
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Numerical Example
The FitzHugh-Nagumo Model, Revisited

εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + q,

wt(x, t) = hv(x, t)− γw(x, t) + q,

with a nonlinear function

f(v(x, t)) = v(v − 0.1)(1− v),

ε = 0.015, h = 0.5, γ = 2, q = 0.05, L = 0.2,
and boundary conditions:

vx(0, t) = i0(t), vx(L, t) = 0, t ≥ 0,

Spatial discretization leads to PC system with cubic nonlinearity of order npc = 600.

Lifting: z := v2 ⇒ f(v, z) = −vz + 1.1z − 0.1v, zt = 2vvt = . . .  

lifted quadratic-bilinear (QB) system of order nqb = 900.

Outputs of interest v(0, t), w(0, t) are the responses at the left boundary.

We compare balanced truncation for PC and QB systems.
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Numerical Example
The FitzHugh-Nagumo Model: Singular Value Decay

Decay of singular values for PC systems is faster ⇒ smaller reduced-order model!
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Numerical Example
The FitzHugh-Nagumo Model: Time-domain Simulation

Original PC system of order 600. Original QB system of order 900.

Reduced PC system of order 10. Reduced QB system of order 10.
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Numerical Example
The FitzHugh-Nagumo Model: Time-domain Simulation

Original PC system of order 600. Original QB system of order 900.

Reduced PC system of order 10. Reduced QB system of order 30.
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Numerical Example
The FitzHugh-Nagumo Model: Time-domain Simulation

Original PC system of order 600. Original QB system of order 900.

Reduced PC system of order 10. Reduced QB system of order 43.
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Conclusions

BT for linear systems:

Method of choice for model order reduction in optimal and feedback control.

Computational efficiency enhanced through advanced techniques from numerical linear
algebra so that problems of industrial scale can be reduced.

Numerous technical details necessary for use in digital and virtual twins.

Robust and efficient implementations available in numerous software packages like SLICOT,
M.E.S.S., MORLAB, pyMOR, . . .

BT for nonlinear systems:

BT extended to bilinear, quadratic-bilinear, and polynomial systems.

Not in this talk: local Lyapunov stability is preserved.

As of yet, only weak motivation by local bounds of energy functionals.

No error bounds in terms of ”Hankel” singular values.

Computationally efficient (as compared to nonlinear balancing), and input independent.

To do:

improve efficiency of Lyapunov solvers with many right-hand sides further;
error bound;
conditions for existence of new PC Gramians;
extension to descriptor systems.
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Commercial: 3-Volume Handbook ”Model Order Reduction”

Edited by Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi Rozza,
Wil Schilders, and Lúıs Miguel Silveira,

contains 30 tutorial chapters on modern model reduction techniques, methods,
applications, and software,

published by DeGruyter in 2021, ebook is fully Open Access!
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