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A Process Chain in Computational Sciences and Engineering (CSE)
Optimization, Control, and Uncertainty Quantification
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A Process Chain in Computational Sciences and Engineering (CSE)
Model Order Reduction (MOR)
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A Process Chain in Computational Sciences and Engineering (CSE)
Data-Driven Sciences
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A Process Chain in Computational Sciences and Engineering (CSE)

Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.
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A Process Chain in Computational Sciences and Engineering (CSE)

Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.

 Data-enhanced model reduction methods.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction

3. Operator Inference in Detail

4. Operator Inference for General Nonlinear Systems

5. Linear-Quadratic Residual Networks

6. Numerical Experiments
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Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Learning State-Space Models of Dynamical Systems from Data 5/44

mailto:benner@mpi-magdeburg.mpg.de


Model Order Reduction of Dynamical Systems

Original System

Σ :

{
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Model Order Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Order Reduction of Linear Systems
Model Reduction Schematically

E,A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m

Ê, Â ∈ Rr×r

B̂ ∈ Rr×m

Ĉ ∈ Rp×r

D̂ ∈ Rp×m
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MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
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MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.
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Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.

For linear systems, the reduced-order model is

x̂ = WTx, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x−Ax̃−Bu ⊥ W, since

WT ( ˙̃x−Ax̃−Bu
)

= WT
(
VWT ẋ−AVWTx−Bu

)
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(
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MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.

For linear systems, the reduced-order model is

x̂ = WTx, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

Extends to nonlinear systems with some effort:

˙̂x = WT f(t, V x̂, u),

ŷ = g(t, V x̂, u).

Needs hyperreduction if the cost for evaluation of the functions WT f, g is not reduced!
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MOR Methods Based on Projection

Classes of Projection-based MOR Methods

1 Modal Truncation

2 Rational Interpolation / Moment Matching
(Padé-Approximation and (rational) Krylov Subspace Methods)

3 Balanced Truncation

4 Proper Orthogonal Decomposition (POD) / Principal Component Analysis (PCA)

5 Reduced Basis Method

6 . . .
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MOR Methods Based on Projection
Example: Thermal model of experimental machine tool MAX

50 subassemblies CAD model

FEM
 

FE-Model: 1.2M DOFs
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MAX: Results considering an inhomogeneous initial condition T0 6= 0
Results by Julia Vettermann (MiIT/TU Chemnitz)

FE-coupled

method red. order tol 10−3 tred
2phase 196 6.5h
BTX0 174 4.5h

output-coupled

method red. order tol 10−3 tred
2phase 3005 2h
BTX0 2515 1.8h

→ Required storage for reduced matrices just 1MB!
→ Simulation speed-up factors range from ≈ 8–2, 000.
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Vettermann, J., Sauerzapf, S., Naumann, A., Beitelschmidt, M., Herzog, R., Benner, P., Saak, J. (2021): Model order
reduction methods for coupled machine tool models. MM Science Journal, pp. 4652–4659.
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What about the Data?

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.

The reduced-order model is

x̂ =WT x, Â :=WTAV, B̂ :=WTB, Ĉ := CV, (D̂ := D).

We need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

 intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

 non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate Σ, given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate Σ, given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . . ]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . . ]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . . ]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, . . . ],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Peherstorfer/Willcox 2016; Kramer, Qian, B., Goyal,. . . ]
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to evaluate Σ, given u(t) or U(s):

Black box Σ: the only information we can get is either
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Some methods:
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Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . . ]

Koopman/Dynamic Mode Decomposition (DMD): time domain
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A few Remarks on System Identification and DNNs

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks. . .
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A few Remarks on System Identification and DNNs

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.
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A few Remarks on System Identification and DNNs

A book from 1996. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

Suykens, J.A.K., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.
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DMD in a Nutshell
Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
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ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.
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ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.

Basic DMD Algorithm

Set X0 := [x0, x1, . . . , xK−1 ] ∈ Rn×K , X1 := [x1, x2, . . . , xK ] ∈ Rn×K and note that
X1 = AX0 is desired  over-/underdetermined linear system, solved by linear least-squares
problem (regression):

A∗ := argminA∈Rn×n‖X1 −AX0‖F+β‖A‖q
with a potential regularization term choosing β > 0, q = 0, 1, 2.

Computation usually via singular value decomposition (SVD), many variants.
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DMD in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.
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DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.

Take state, control, and output snapshots

xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment  nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.
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xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment  nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.

Basic ioDMD Algorithm (≡ N4SID)

Let S := Rn×n × Rn×m × Rp×n × Rp×m. Set X0, X1 as before and

U0 := [u0, u1, . . . , uK−1 ] ∈ Rm×K , Y0 := [ y0, y1, . . . , yK−1 ] ∈ Rp×K .

Solve the linear least-squares problem (regression):

(A∗, B∗, C∗, D∗) := argmin(A,B,C,D)∈S

∥∥∥∥[X1

Y0

]
−
[
A B
C D

] [
X0

U0

]∥∥∥∥
F

+β‖ [ABC D ] ‖q

with a potential regularization term choosing β > 0, q = 0, 1, 2.
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DMD in a Nutshell
Selected References (Chronological)
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Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK ] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := arg minÂ∈Rr×r‖X̂1 − ÂX̂0‖F +β‖Â‖q.

Can be combined with ioDMD to obtain reduced-order LTI system.
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Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK ] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := arg minÂ∈Rr×r‖X̂1 − ÂX̂0‖F +β‖Â‖q.

Can be combined with ioDMD to obtain reduced-order LTI system.
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Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK ] ∈ Rn×(K+1), U := [u0, u1, . . . , uK ] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA)  X̂.

Compress snapshot matrix of time derivatives: if residuals f(tj , uj) are available

˙̂
X := [ ẋ(0), ẋ(t1), . . . , ẋ(tK) ] ≈ [ f(x0, u0), f(x1, u1), . . . , f(xK , uK) ] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences  ˙̂
X.

Solve the linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

]  X̂X̂2

U

∥∥
F
+β‖

[
Â Ĥ B̂

]
‖q

with potential regularization as before and X̂2 := [x0 ⊗ x0, . . . , xK ⊗ xK ].
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Conclusions — Part I

DMD and operator inference (OpInf) are regression-based powerful methods to infer
linear and certain nonlinear dynamical systems from data.

Both look simple, but the devil is in the details.

Choice of good observables? (Learning to learn?)

Statistical aspects are not too well understood: impact of noise in the data on
inferred models?

Recent work combines OpInf with neural networks to solve nonlinear identification
problems ( Part II).

Error bounds for non-intrusive MOR not well developed yet, but theoretic results
indicate that the OpInf model asymptotically (when increasing the number of
snapshots) yields the POD model. Then, intrusive MOR error bounds can be
applied.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction

3. Operator Inference in Detail

4. Operator Inference for General Nonlinear Systems
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Part II: Enhancing Operator Inference by Deep Learning

Engineering processes are supported by domain knowledge and first principles

 a PDE model can be obtained that adequately explains the dynamics

PDE discretize
high-fidelity

model

model (low
dimensional)

Data

Data collection: obtained using a legacy code, or commercial software, or
experiments.

Ideal goal: obtain the same reduced-order model (ROM) as obtained by intrusive
model order reduction using data, so that error bounds and convergence analysis for
ROMs can be directly employed!
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Operator Inference in Detail
Non-intrusive approach

Operator inference framework [Peherstorfer/Willcox ’16]

Operator inference leverages the known physical structure at the PDE level.

Assume a quadratic high-fidelity model resulting from an underlying PDE
∂x
∂t

= A(x) +H(x) with linear and quadratic terms:

ẋ(t) = Ax(t) + H(x(t)⊗ x(t))

Data preparation (in reduced dimension)

1 Build temporal snapshot matrix X :=

 x0 x1 · · · xk

.

2 Compute projection matrix V using dominant POD basis vectors.
3 Reduced state vectors

X̂ := V TX =

 x̂0 x̂1 · · · x̂k

 , X̂⊗ :=

 x̂⊗0 x̂⊗1 · · · x̂⊗k

 .
4 Approximate time-derivative data

˙̂
X :=

 ˙̂x0
˙̂x1 · · · ˙̂xk

.
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Operator Inference in Detail
Learning operators

Operator inference framework [Peherstorfer/Willcox ’16]

A ROM of the form
˙̂x(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t))

can be obtained using projected data by solving the optimization problem

min
Â,Ĥ

∥∥∥ ˙̂
X− ÂX̂− ĤX̂⊗

∥∥∥ .

+R(Â, Ĥ).

Remarks:

Notice that we do not require at any step the full-order discretized model.

Operator inference recovers intrusive POD reduced model if data are Markovian.
[Peherstorfer ’20]

Typically, the least-squares problem is ill-conditioned, hence need regularization.
[McQuarrie et al. ’21, B./Goyal/Heiland/Pontes ’21]
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Operator Inference for General Nonlinear Systems

Nonlinear systems [B./Goyal/Kramer/Peherstorfer/Willcox ’20]

Consider a nonlinear system of the form

∂s

∂t
= A(s) +H(s) + F(t, s),

where the analytic form of F(t, s) is known.

We can learn a ROM of the form

˙̂s(t) = Âŝ + Ĥ (ŝ⊗ ŝ) + f̂(t, ŝ)

directly from data!

Simulation of reduced nonlinear system can be further accelerated using
hyper-reduction.
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Batch Chromatography: A Chemical Separation Process

Desorbent

Feed (A+B)

Pump

fractionation 

valve
Chromatographic column

Pulse injection

AB

A

B

A
B

AB

A

B

The dynamics of a batch chromatography column can be described by the coupled PDE
system of advection-diffusion type:

∂ci

∂t
+

1− ε
ε

∂qi

∂t
+
∂ci

∂x
−

1

Pe

∂2ci

∂x2
= 0,

∂qi

∂t
= κi

(
qEq
i − qi

)
.

It is a coupled PDE; thus, the coupling structure is desired to be preserved in learned ROM

This is achieved by block diagonal projection, thereby not mixing separate physical
quantities.

© benner@mpi-magdeburg.mpg.de Learning State-Space Models of Dynamical Systems from Data 29/44

mailto:benner@mpi-magdeburg.mpg.de


Batch Chromatography: A Chemical Separation Process
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Figure: Batch chromatography example: A comparison of the POD intrusive model with the
learned model of order r = 4× 22, where n = 1600 and Pe = 2000.
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Parameterized Shallow Water Equations

Parameterized shallow water equations are given by [Yıldız et al ’21]

∂

∂t
ũ = −hx + sin θ ṽ − ũũx − ṽũy + δ cos θ(hũ)x −

3

8
(δ cos θ)

2
(h

2
)x,

∂

∂t
ṽ = −hy + sin θ ũ+

1

2
δ sin θ cos θ h− ũṽx − ṽṽy

+ δ cos θ

(
(hũ)y +

1

2
h (ṽx − ũy)

)
−

3

8
(δ cos θ)

2
(h

2
)y,

∂

∂t
h = −(hũ)x − (hṽ)y +

1

2
δ cos θ(h

2
)x.

Parameterized by the latitude θ.

ũ =: (ũ; ṽ) is the canonical velocity.

h is the height field.

We collect the training data for 5 different parameter realizations θ in
[π

6
,
π

3

]
.

Infer a reduced parametric model directly from data of order r = 75.
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(b) Learned parametric model
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Operator Inference for Structured DAE Systems

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition. [B./Goyal/Heiland/Pontes ’22]

Γ0 Γ1
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y p
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y p
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Combining Operator Inference with Deep Learning
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Operator Inference for General Nonlinear Systems

Problem formulation

v̇(t) = f(v(t)) + r(v(t))

f(v(t)): known from physical laws or expert knowledge;
e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.
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Operator Inference for General Nonlinear Systems

Problem formulation

v̇(t) = f(v(t)) + r(v(t))

f(v(t)): known from physical laws or expert knowledge;
e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.

Observation

Often, governing equations are quadratic, i.e.,

f(v) := Av + H (v ⊗ v).

If no additional information is given,
we assume f to be quadratic.

Moreover, possible to find artificial variables in
which dynamics are quadratic.

Philosophy: Lift & learn [Qian et al. ’20]

Navier-Stokes equations

Fisher’s equation
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Operator Inference for General Nonlinear Systems

Problem formulation

v̇(t) = f(v(t)) + r(v(t))

f(v(t)): known from physical laws or expert knowledge;
e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.

Lifting [Gu ’09/’11, B./Breiten ’12/’15, Qian et al ’20]

Consider the nonlinear system:
ẋ = −x + e−x

Define z(t) = e−x  ż(t) = −e−xẋ = −z(t) (−x(t) + z(t))

The system becomes linear-quadratic in (x(t), z(t)), i.e.,[
ẋ(t)
ż(t)

]
=

[
−x(t) + z(t)

0

]
+

[
0

z(t) (x(t)− z(t))

]
.
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ż(t)

]
=

[
−x(t) + z(t)

0

]
+

[
0

z(t) (x(t)− z(t))

]
.

© benner@mpi-magdeburg.mpg.de Learning State-Space Models of Dynamical Systems from Data 34/44

mailto:benner@mpi-magdeburg.mpg.de


Operator Inference for General Nonlinear Systems

Problem formulation

v̇(t) = f(v(t)) + r(v(t))

f(v(t)): known from physical laws or expert knowledge;
e.g., for chemical reaction models, we expect to have an Arrhenius-type term.

r(v(t)): unknown terms
e.g., friction terms in robotics or vibration systems, effects of removed
higher-frequency dynamics on the low-frequency response, etc.

Lifting [Gu ’09/’11, B./Breiten ’12/’15, Qian et al ’20]

Consider the nonlinear system:
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction

3. Operator Inference in Detail

4. Operator Inference for General Nonlinear Systems

5. Linear-Quadratic Residual Networks

6. Numerical Experiments
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Linear-Quadratic Residual Networks

For simplicity, consider the form:

v̇(t) = f(v(t)) = Av(t) + H (v(t)⊗ v(t)) + r(v(t)),

where

r(v(t)) can be interpreted as a residual that cannot be resolved by the
quadratic-form or prior knowledge.
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Linear-Quadratic Residual Networks
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v̇(t) = f(v(t)) = Av(t) + H (v(t)⊗ v(t)) + r(v(t)),

where

r(v(t)) can be interpreted as a residual that cannot be resolved by the
quadratic-form or prior knowledge.

Residual networks [He/Ren/Sun ’16]

Have shown their power in
computer vision applications.

There is an established connection
to dynamical systems.

Residual type connections hint to
adaptive refinement of solution or
features.
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Linear-Quadratic Residual Networks

For simplicity, consider the form:

v̇(t) = f(v(t)) = Av(t) + H (v(t)⊗ v(t)) + r(v(t)),

where

r(v(t)) can be interpreted as a residual that cannot be resolved by the
quadratic-form or prior knowledge.

Linear-Quadratic Residual Networks (LQResNet) [Goyal/B. ’21]

...

v

...
...

v A(v)

...
...

v⊗

H(v)

...
...

...
...

Residual-
type

Architecture

v R(v)

+
...

f(v)

Linear term Av

Quadratic term H (v ⊗ v)

Residual R(v)
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Advantages of the Architecture

Linear-Quadratic Residual Networks (LQResNet) [Goyal/B. ’21]

...

v

...
...

v A(v)

...
...

v⊗

H(v)

...
...

...
...

Residual-
type

Architecture

v R(v)

+
...

f(v)

Linear term Av

Quadratic term H (v ⊗ v)

Residual R(v)

Remarks

Due to skip connections, loss landscape becomes less bumpy. [Li et al. ’18]

Layers can be added without restarting whole optimization as deep residual layers
tend to refine the mapping.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction

3. Operator Inference in Detail

4. Operator Inference for General Nonlinear Systems

5. Linear-Quadratic Residual Networks

6. Numerical Experiments
FitzHugh-Nagumo
Glycolytic Oscillator
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Numerical Experiments
FitzHugh-Nagumo

Set-up

The FitzHugh-Nagumo model is a coupled PDE-ODE model describing the spiking
of a neuron.

Assume to have time-series data for 10 different initial conditions.

We build different networks for both variables.

We check the predictive capabilities of the inferred model under new initial
condition.
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Numerical Experiments

Glycolytic Oscillator [Daniels/Daniels ’15]

Set-up

Represents complex wide-range dynamical behavior in yeast
glycolysis.

There are 7 involved species.

Data for 30 different initial conditions.

Utilized interaction topology in learning.

Check the predictive capabilities under new condition.

S1

S2

S3

S4
S5

S6

S7

Figure: Interaction
topology for 7 species.
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Tubular Reactor Model

One dimensional model with a single reaction, describing dynamics of the species
concentration ψ(x, t) and temperature θ(x, t) via

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
− ∂ψ

∂x
−DF(ψ, θ; γ),

∂θ

∂t
=

1

Pe

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θref) + BDF(ψ, θ; γ),

with spatial variable x ∈ (0, 1), time t > 0 and Arrhenius reaction term

F(ψ, θ; γ) = ψ exp
(
γ − γ

θ

)
.

The quantity of interest is the temperature oscillation at the reactor exit:

y(t) = θ(x = 1, t).
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Tubular Reactor Model
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Figure: Decay of singular values of the snapshots.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Tubular Reactor Model

Figure: A comparison of the temperature oscillations at exit.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Tubular Reactor Model
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Figure: A comparison of the temperature oscillations at exit.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Tubular Reactor Model
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Figure: A comparison of the temperature oscillations in the whole domain.

Rapid decay of singular values of training data  possibility of lower order models.

The dominant three POD modes capture more than 99.8% of the energy, yet the
POD model is unstable.

We employ the LQResNet approach to learn the correction.
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Outlook

Contribution

We have studied an approach to learn a mathematical model to describe nonlinear
dynamics.

Basis: operator inference and its extensions, utilizing prior PDE knowledge.

New: model residual identified using architecture LQResNet, inspired by residual
network.

The design allows us to incorporate prior hypotheses about the process.

On-going work

Very often, we can build a dictionary of good candidate basis functions, but probably
do not want all of them in the dictionary. Therefore, we seek a parsimonious model

to pick few entries from the dictionary and learn residual by deep learning.

Appropriate treatment of noise . . . [Rudy/Kutz/Brunton ’19]

Missing/corrupted data in time series.

Working with several applications in material science and chemical engineering.

Thank you for your attention!!
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network.

The design allows us to incorporate prior hypotheses about the process.

On-going work

Very often, we can build a dictionary of good candidate basis functions, but probably
do not want all of them in the dictionary. Therefore, we seek a parsimonious model

to pick few entries from the dictionary and learn residual by deep learning.

Appropriate treatment of noise . . . [Rudy/Kutz/Brunton ’19]

Missing/corrupted data in time series.

Working with several applications in material science and chemical engineering.

Thank you for your attention!!
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