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A Process Chain in Computational Sciences and Engineering (CSE)
Data-Driven Sciences

Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.
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A Process Chain in Computational Sciences and Engineering (CSE)
Data-Driven Sciences

Goal: Use all acquired knowledge about the model during the CSE process chain in
the design of the reduced-order model, including experimental data.

 Data-driven reduced-order modeling
or in AI/ML idiom: Learning a dynamical (compact) model from data.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction

3. Koopman Operator and DMD

4. Lifting Principle for Dynamical Systems
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Outline

1. Model Order Reduction of Dynamical Systems
Model Order Reduction of Linear Systems
MOR Methods Based on Projection

2. Data-driven/-enhanced Model Reduction

3. Koopman Operator and DMD

4. Lifting Principle for Dynamical Systems
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Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r � n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Learning State-Space Models of Dynamical Systems from Data 5/40

mailto:benner@mpi-magdeburg.mpg.de


Model Order Reduction of Dynamical Systems

Original System

Σ :

{
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Model Order Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Order Reduction of Linear Systems
Model Reduction Schematically

E,A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m

Ê, Â ∈ Rr×r

B̂ ∈ Rr×m

Ĉ ∈ Rp×r

D̂ ∈ Rp×m
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MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
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MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir (or WTEV = Ir).
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Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir (or WTEV = Ir).

For linear systems (E = In for simplicity), the reduced-order model is

x̂ = WTx, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

Important observation:

The state equation residual satisfies ˙̃x−Ax̃−Bu ⊥ W, since

WT ( ˙̃x−Ax̃−Bu
)

= WT
(
VWT ẋ−AVWTx−Bu

)
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WT ( ˙̃x−Ax̃−Bu
)
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(
VWT ẋ−AVWTx−Bu

)
= WT ẋ︸ ︷︷ ︸

˙̂x
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=Â
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−WTB︸ ︷︷ ︸
=B̂

u
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MOR Methods Based on Projection

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space)
along complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir (or WTEV = Ir).

For linear systems (E = In for simplicity), the reduced-order model is

x̂ = WTx, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

Extends to nonlinear systems with some effort:

˙̂x = WT f(t, V x̂, u),

ŷ = g(t, V x̂, u).

Needs hyperreduction if the cost for evaluation of the functions WT f, g is not reduced!
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MOR Methods Based on Projection

Classes of Projection-based MOR Methods

1 Modal Truncation

2 Rational Interpolation / Moment Matching
(Padé-Approximation and (rational) Krylov Subspace Methods)

3 Balanced Truncation

4 Proper Orthogonal Decomposition (POD) / Principal Component Analysis (PCA)

5 Reduced Basis Method

6 . . .

© benner@mpi-magdeburg.mpg.de Learning State-Space Models of Dynamical Systems from Data 8/40

mailto:benner@mpi-magdeburg.mpg.de


MOR Methods Based on Projection
Example: Thermal model of experimental machine tool MAX

50 subassemblies CAD model

FEM
 

FE-Model: 1.2M DOFs
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MAX: Results considering an inhomogeneous initial condition T0 6= 0
Results by Julia Vettermann (MiIT/TU Chemnitz)

FE-coupled

method red. order tol 10−3 tred
2phase 196 6.5h
BTX0 174 4.5h

output-coupled

method red. order tol 10−3 tred
2phase 3005 2h
BTX0 2515 1.8h

→ Required storage for reduced matrices just 1MB!
→ Simulation speed-up factors range from ≈ 8–2, 000.
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Vettermann, J., Sauerzapf, S., Naumann, A., Beitelschmidt, M., Herzog, R., Benner, P., Saak, J. (2021): Model order
reduction methods for coupled machine tool models. MM Science Journal, pp. 4652–4659.
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What about the Data?

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range (V ) = V, range (W ) =W, WTV = Ir.

The reduced-order model is

x̂ = WT x, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

We need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

 intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

 non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction
A few Remarks on System Identification and DNNs
DMD in a Nutshell
Operator Inference

3. Koopman Operator and DMD

4. Lifting Principle for Dynamical Systems
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ωk) and Xk ≈ X(ωk) or Yk ≈ Y (ωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . . ]

Neural networks: time domain [Narendra/Parthasarathy 1990; Lee/Carlberg 2019; . . . ]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . . ]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, . . . ],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Peherstorfer/Willcox 2016; Kramer, Qian, B., Goyal,. . . ]
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Operator inference (OpInf): time domain [Peherstorfer/Willcox 2016; Kramer, Qian, B., Goyal,. . . ]
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A few Remarks on System Identification and DNNs

System identification tries to infer discrete linear time-invariant (LTI) systems

xk+1 = Axk +Buk +Kwk,

yk = Cxk +Duk + vk.

from input-output data, given as time series (u0, y0), (u1, y1), . . . , (uK , yK), where
vk, wk are uncorrelated Gaussian white noise processes.

Early survey already 1971: Aström/Eykhoff, Automatica 7(2):123–162.

Popular methods are
1 MOESP — Multivariable Output Error State-SPace [Verhaegen/Dewilde 1992],
2 N4SID — Numerical algorithm for Subspace State Space System IDentification

[Van Overschee/De Moor 1994].

Both are based on decompositions of certain block-Hankel matrices built from the
input-output data and are available in standard software packages like the MATLAB
System Identification Toolbox and SLICOT.

Continuous-time system can be identified, e.g., by ”inverse” Euler method.

Many extensions to nonlinear systems, imposing certain structural assumptions,
including artificial neural networks. . .
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A few Remarks on System Identification and DNNs

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.
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A few Remarks on System Identification and DNNs

A book from 1996. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

Suykens, J.A.K., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.
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DMD in a Nutshell
Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
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ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.
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Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.

Basic DMD Algorithm

Set X0 := [x0, x1, . . . , xK−1 ] ∈ Rn×K , X1 := [x1, x2, . . . , xK ] ∈ Rn×K and note that
X1 = AX0 is desired  over-/underdetermined linear system, solved by linear least-squares
problem (regression):

A∗ := arg minA∈Rn×n‖X1 −AX0‖F +β‖A‖q
with a potential regularization term choosing β > 0, q = 0, 1, 2.

Computation usually via singular value decomposition (SVD), many variants.
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DMD in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.
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DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.

Take state, control, and output snapshots

xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment  nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.
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xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment  nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.

Basic ioDMD Algorithm (≡ N4SID)

Let S := Rn×n × Rn×m × Rp×n × Rp×m. Set X0, X1 as before and

U0 := [u0, u1, . . . , uK−1 ] ∈ Rm×K , Y0 := [ y0, y1, . . . , yK−1 ] ∈ Rp×K .

Solve the linear least-squares problem (regression):

(A∗, B∗, C∗, D∗) := arg min(A,B,C,D)∈S

∥∥∥∥[X1

Y0

]
−
[
A B
C D

] [
X0

U0

]∥∥∥∥
F

+β‖ [ABC D ] ‖q

with a potential regularization term choosing β > 0, q = 0, 1, 2.
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DMD in a Nutshell
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Operator Inference
Reduced-order / compressive DMD

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment  nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK ] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := arg minÂ∈Rr×r‖X̂1 − ÂX̂0‖F +β‖Â‖q.

Can be combined with ioDMD to obtain reduced-order LTI system.
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Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK ] ∈ Rn×(K+1), U := [u0, u1, . . . , uK ] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA)  X̂.

Compress snapshot matrix of time derivatives: if residuals f(tj , uj) are available

˙̂
X := [ ẋ(0), ẋ(t1), . . . , ẋ(tK) ] ≈ [ f(x0, u0), f(x1, u1), . . . , f(xK , uK) ] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences  ˙̂
X.

Solve the linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := arg min(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

]  X̂X̂2

U

∥∥
F

+β‖
[
Â Ĥ B̂

]
‖q

with potential regularization as before and X̂2 := [x0 ⊗ x0, . . . , xK ⊗ xK ].
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X := [ ẋ(0), ẋ(t1), . . . , ẋ(tK) ] ≈ [ f(x0, u0), f(x1, u1), . . . , f(xK , uK) ] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences  ˙̂
X.

Solve the linear least-squares problem (regression):
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Operator Inference: Numerical Examples
Batch Chromatography: A Chemical Separation Process

Desorbent

Feed (A+B)

Pump

fractionation 

valve
Chromatographic column

Pulse injection

AB

A

B

A
B

AB

A

B

The dynamics of a batch chromatography column can be described by the coupled PDE
system of advection-diffusion type:

∂ci

∂t
+

1− ε
ε

∂qi

∂t
+
∂ci

∂x
−

1

Pe

∂2ci

∂x2
= 0,

∂qi

∂t
= κi

(
qEq
i − qi

)
.

It is a coupled PDE; thus, the coupling structure is desired to be preserved in learned ROM

This is achieved by block diagonal projection, thereby not mixing separate physical
quantities.
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Operator Inference: Numerical Examples
Batch Chromatography: A Chemical Separation Process
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ŷ
(t
)|

)

Intrusive POD

Learned ROM

Figure: Batch chromatography example: A comparison of the POD intrusive model with the
learned model of order r = 4× 22, where n = 1600 and Pe = 2000.
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Operator Inference: Numerical Examples
Parameterized Shallow Water Equations

Parameterized shallow water equations are given by [Yıldız et al ’21]

∂

∂t
ũ = −hx + sin θ ṽ − ũũx − ṽũy + δ cos θ(hũ)x −

3

8
(δ cos θ)

2
(h

2
)x,

∂

∂t
ṽ = −hy + sin θ ũ+

1

2
δ sin θ cos θ h− ũṽx − ṽṽy

+ δ cos θ

(
(hũ)y +

1

2
h (ṽx − ũy)

)
−

3

8
(δ cos θ)

2
(h

2
)y,

∂

∂t
h = −(hũ)x − (hṽ)y +

1

2
δ cos θ(h

2
)x.

Parameterized by the latitude θ.

ũ =: (ũ; ṽ) is the canonical velocity.

h is the height field.

We collect the training data for 5 different parameter realizations θ in
[π

6
,
π

3

]
.

Infer a reduced parametric model directly from data of order r = 75.
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Comparison of the height field for the parameter θ =
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Operator Inference: Numerical Examples
Navier-Stokes Equations

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition. [B./Goyal/Heiland/Pontes ’22]
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Conclusions — Part I

DMD and operator inference (OpInf) are regression-based powerful methods to infer
linear and certain nonlinear dynamical systems from data.

Both look simple, but the devil is in the details.

Choice of good observables? (Learning to learn?)

Statistical aspects are not too well understood: impact of noise in the data on
inferred models?

Recent work combines OpInf with neural networks to solve nonlinear identification
problems ( Part II).

Error bounds for non-intrusive MOR not well developed yet, but theoretic results
indicate that the OpInf model asymptotically (when increasing the number of
snapshots) yields the POD model. Then, intrusive MOR error bounds can be
applied.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction

3. Koopman Operator and DMD

4. Lifting Principle for Dynamical Systems
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Koopman Operator and DMD

The simplest type of model one can think of is a Linear Model
 Many tools for optimal/feedback control, optimization, and prediction

Given data x(ti) and its derivative ẋ(ti), a linear model can be determined by
solving

min
A
‖Ẋ−AX‖,

where Ẋ = [ẋ(t1), . . . , ẋ(tn)] and X = [x(t1), . . . ,x(tn)].

Often referred to (in a simplistic view) as Dynamic Mode Decomposition or
Operator Inference.

Once a linear model is learned and verified, it can be deployed for control and
design tasks.

However, several challenges remain:
Often, one cannot measure the full state x  partial measurements!
Real-world processes are often nonlinear, thus learning a linear model may not be
sufficient to characterize complex dynamic behavior.
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Koopman Operator and DMD

Koopman Operator in Nutshell [Koopman 1931]

A nonlinear dynamical system ẋ(t) = f(x(t)) can be written as a linear system in a
infinite dimensional Hilbert space.

Nonlinear Evolution of
Dynamics

Linear Evolution of a
lifted model

Extended DMD [Williams et al. 2015]

The aim is to approximate infinite dimensional Koopman linear operator via a finite
dimensional one.

For this, often hand-design observables are needed,
but challenging design decisions need to be taken, and it still is an approximation.
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A nonlinear dynamical system ẋ(t) = f(x(t)) can be written as a linear system in a
infinite dimensional Hilbert space.

Nonlinear Evolution of
Dynamics

Linear Evolution of a
lifted model

Extended DMD [Williams et al. 2015]

The aim is to approximate infinite dimensional Koopman linear operator via a finite
dimensional one.

For this, often hand-design observables are needed,
but challenging design decisions need to be taken, and it still is an approximation.

© benner@mpi-magdeburg.mpg.de Learning State-Space Models of Dynamical Systems from Data 29/40

mailto:benner@mpi-magdeburg.mpg.de


Our “Holy Grail”

Try to re-write a nonlinear system using a simple structure in finite dimensions.
– In Koopman theory, the structure is that of a linear system and it is infinite

dimensional.

Mapping from the observables to the state is linear (at least for good
low-dimensional linear representation).

Lifting Principle

McCormick proposed a convex relaxation to solve nonlinear non-convex optimization
problems. [McCormick 1976]

Key ingredient is lifting the optimization problem to a higher dimensional space
using auxiliary variables (similar to observables in Koopman theory).

This ideas has been further developed for learning dynamical systems.
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Outline

1. Model Order Reduction of Dynamical Systems

2. Data-driven/-enhanced Model Reduction

3. Koopman Operator and DMD

4. Lifting Principle for Dynamical Systems
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Lifting Principle for Dynamical Systems

Lifted Nonlinear Dynamical Models using Lifting principle

Consider a nonlinear system of the generic form:

ẋ(t) = f(x),

where x ∈ Rn, and the function f(·) is assumed to be smooth enough.

Then, there exists a lifting L : Rn → Rm, and its “left” inverse mapping
L] : Rm → Rn, resulting in a quadratic model

ẏ(t) = Ay + H (y(t)⊗ y(t)) + B,

where y(t) = L(x(t)) and L] (y(t)) = x(t).

Such a lifting concept was first developed by [Savageau/Voit 1987] for control
purposes.

Also used for model reduction for nonlinear systems [Gu 2009, B./Breiten 2015].

Recently, it has become popular using terminology Lift and Learn by Willcox,
Peherstorfer, Qian, Krämer, . . . [Qian et al. 2019].
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ẏ(t) = Ay + H (y(t)⊗ y(t)) + B,

where y(t) = L(x(t)) and L] (y(t)) = x(t).

Such a lifting concept was first developed by [Savageau/Voit 1987] for control
purposes.

Also used for model reduction for nonlinear systems [Gu 2009, B./Breiten 2015].

Recently, it has become popular using terminology Lift and Learn by Willcox,
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Lifting Principle for Dynamical Systems

An illustration

Consider the simple pendulum model:[
ẋ1
ẋ2

]
=

[
− sin(x2)

x1

]
.

Lifted coordinates (observables) and the corresponding inverse transformation:

L :

[
x1
x2

]
7→


x1
x2

sin(x2)
cos(x2)

 =:


y1
y2
y3
y4

 , L] :


y1
y2
y3
y4

 7→ [
y1
y2

]
≡
[
x1
x2

]
.

Consequently, we can write the dynamics in the variables yi as a quadratic system:ẏ1ẏ2ẏ3
ẏ4

 =

 −y3y1y1y4
−y1y3

 .
Note that the inverse mapping is indeed linear.
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Lifting Principle for Dynamical Systems

Using observables—inspired by lifting principle—we can write nonlinear systems as
quadratic systems

– which are finite dimensional
– for which we can reconstruct full-state using a linear projection (restriction) of

observables.
– so that for a given nonlinear system, lifted observables are easy to determine.

For given nonlinear dynamical models, we can determine suitable observables.

However, our goal itself is to learn dynamical models from data.
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Lifting Principle for Dynamical Systems

Problem Statement (for fast decay of Kolmogorov n-width) (Goyal/Benner 2022)

Given data {x(t1), . . . ,x(tN )} and derivative information {ẋ(t1), . . . , ẋ(tN )}, we seek
to identify

observables z := ψ(x) such that

ż(t) = Az(t) + H (z(t)⊗ z(t)) + B =: Q(z),

x(t) = Cz(t).

Since we do not have any prior
information, we learn ψ(·) using a
neural network.

We learn parameters of neural network
ψ(·) and the system matrices
{A,H,B,C} simultaneously.
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Lifting Principle for Dynamical Systems

Loss function (Goyal/B. 2022)

Compute ż using ẋ by the chain rule:

Lżẋ = ‖ (∇xz) ẋ−Q(z)‖

where Q(z) := (Az + H (z⊗ z) + B)
and z = Ψ(x).

Compute ẋ using ż:

ẋ = Cż = C (Az + H (z⊗ z) + B) , yielding

Lẋż = ‖ẋ−C (Az + H (z⊗ z) + B) ‖.

Autoencoder loss: Lencdec = ‖x−CΨ(x)‖.
Total loss is L = Lencdec + Lẋż + Lżẋ.

Note that once we have all these parameters, we need encoder (neural network)
only to get initial condition for z.

The rest of the model is very classical state-space quadratic model
 can be used for engineering design.
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Lżẋ = ‖ (∇xz) ẋ−Q(z)‖
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Numerical Examples

Lambda–Omega reaction–diffusion example

The governing equations are

ut = (1− (u2 + v2))u+ β(u2 + v2)v + d1(uxx + uyy),

vt = −β(u2 + v2)u+ (1− (u2 + v2))v + d2(vxx + vyy).

We take 100× 100 grid and collect 100 data points in time t = [0, 5].

We consider the first 75 points for training and the last 25 for testing.

The data are high-dimensional (2 · 104) and exhibit an exponential decay of singular
values, so we compress the data using projection onto the first two POD models.

We learn a quadratic model of dim = 2 using the projected data as input.
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Challenges and Possible Solutions

1. Recall that we have a linear projection from z 7→ x. It works good only if we have a
fast decay of singular values of our high-dimensional data

However, there is no suitable low-dimensional linear subspace for advection-dominant
problems.
 Slow decay of Komologov n-width.
 Need a large-dimensional z, meaning engineering studies can still be intractable.

Remedy: Use a nonlinear decoder using neural networks (e.g., convolutional
NNs for structured data)

2. Moreover, to train networks, we need to determine derivative of output w.r.t.
inputs.

If dim (x) is large, then derivative computations using, e.g., autograd become
computationally very expensive.

Remedy: Embed a numerical integrator

x Encoder z Decoder x

ż = Az + H (z⊗ z) + b
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problems.
 Slow decay of Komologov n-width.
 Need a large-dimensional z, meaning engineering studies can still be intractable.

Remedy: Use a nonlinear decoder using neural networks (e.g., convolutional
NNs for structured data)

2. Moreover, to train networks, we need to determine derivative of output w.r.t.
inputs.

If dim (x) is large, then derivative computations using, e.g., autograd become
computationally very expensive.

Remedy: Embed a numerical integrator

x Encoder z Decoder x

ż = Az + H (z⊗ z) + b
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Numerical Integrator and Low-dimensional Quadratic-embeddings

Combining all, we have

We focus on a Runge-Kutta scheme, but any integrator including adaptive ones can
be utilized using Neural ODEs. [Chen et al. 2018]

Once such an architecture is framed, we can learn encoder, decoder, and a
quadratic model.
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Numerical Example
Tubular Reactor Model

One dimensional model with a single reaction, describing dynamics of the species
concentration ψ(x, t) and temperature θ(x, t) via

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
− ∂ψ

∂x
−DF(ψ, θ; γ),

∂θ

∂t
=

1

Pe

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θref) + BDF(ψ, θ; γ),

with spatial variable x ∈ (0, 1), time t > 0 and Arrhenius reaction term

F(ψ, θ; γ) = ψ exp
(
γ − γ

θ

)
.

Collect snapshots in time T = [0, 10].

We learn 2-dimensional embeddings using convolutional autoencoder.

For comparison, we also compute a 2-dimensional model using POD projection
(classical OpInf).
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Numerical Example
Tubular Reactor Model

(a) convolutional autoencoder (b) POD

Figure: 2-dimensional embeddings.

(a) Concentration on the full-grid. (b) Temperature on the full-grid.

Figure: Comparison of the convolutional autoencoders and POD-based approaches.
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Numerical Example
2D Burgers equation

Governing equation:

∂u(x, t)

∂t
+

(
1

2
,

1

2

)>
· ∇u(x, t)2 = 0 ∀(x, t) ∈ Ω× [0, T ].

We collect snapshots 100 snapshots in [0, 1] by taking 512 points in x and y
directions  full dimensional model with 262 144 DoFs.

We learn one-dimensional quadratic model, and encoder and decoder are
convolutional neural networks. [Goyal/B. 2021]

Note that for rich dynamics,we may need to increase the dimension of the quadratic
embeddings.
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Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work

Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!
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