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Motivation
Dynamic processes

Dynamic models are important for
analysis of transient behavior under operating
conditions,

control synthesis and design,

parameter optimization and optimal control,

long-time horizon prediction (health monitoring,
digital twins).
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Our Objective

Problem set-up

Construct a mathematical model

ẋ(t) = f(x(t)),

describing dynamics of the process.

Neural network-based approaches: RNNs, LSTM, Neural ODEs, . . .  black-box
models

Engineering design e.g., control, optimization, can be difficult.

Goal

Construct simple dynamical models, capturing important dynamic behavior in a
state-space model that facilitates engineering tasks.
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Koopman Operator and DMD

The simplest type of model one can think of is a Linear Model
 Many tools for optimal/feedback control, optimization, and prediction

Given data x(ti) and its derivative ẋ(ti), a linear model can be determined by
solving

min
A
‖Ẋ−AX‖,

where Ẋ = [ẋ(t1), . . . , ẋ(tn)] and X = [x(t1), . . . ,x(tn)].

Often referred to (in a simplistic view) as Dynamic Mode Decomposition or
Operator Inference.

Once a linear model is learned and verified, it can be deployed for control and
design tasks.

However, several challenges remain:
Often, one cannot measure the full state x  partial measurements!
Real-world processes are often nonlinear, thus learning a linear model may not be
sufficient to characterize complex dynamic behavior.
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Koopman Operator and DMD

Koopman Operator in Nutshell (Koopman 1931)

A nonlinear dynamical system ẋ(t) = f(x(t)) can be written as a linear system in a
infinite dimensional Hilbert space.

Nonlinear Evolution of
Dynamics

Linear Evolution of a
lifted model

Extended DMD (Williams et al. 2015)

The aim is to approximate infinite dimensional Koopman linear operator via a finite
dimensional one.

For this, often hand-design observables are needed,
but challenging design decisions need to be taken, and it still is an approximation.
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Our “Holy Grail”

Try to re-write a nonlinear system using a simple structure in finite dimensions.
– In Koopman theory, the structure is that of a linear system and it is infinite

dimensional.

Mapping from the observables to the state is linear (at least for good
low-dimensional linear representation).

Lifting Principle

McCormick proposed a convex relaxation to solve nonlinear non-convex optimization
problems. (McCormick 1976)

Key ingredient is lifting the optimization problem to a higher dimensional space
using auxiliary variables (similar to observables in Koopman theory).

This ideas has been further developed for learning dynamical systems.
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Lifting Principle for Dynamical Systems

Lifted Nonlinear Dynamical Models using Lifting principle

Consider a nonlinear system of the generic form:

ẋ(t) = f(x),

where x ∈ Rn, and the function f(·) is assumed to be smooth enough.

Then, there exists a lifting L : Rn → Rm, and its “left” inverse mapping
L] : Rm → Rn, resulting in a quadratic model

ẏ(t) = Ay + H (y(t)⊗ y(t)) + B,

where y(t) = L(x(t)) and L] (y(t)) = x(t).

Such a lifting concept was first developed by (Savageau/Voit 1987) for control
purposes.

Also used for model reduction for nonlinear systems (Gu 2009, B./Breiten 2015).

Recently, it has become popular using terminology Lift and Learn by Willcox,
Peherstorfer, Qian, Krämer, . . . (Qian et al. 2019).
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Lifting Principle for Dynamical Systems

An illustration

Consider the simple pendulum model:[
ẋ1
ẋ2

]
=

[
− sin(x2)

x1

]
.

Lifted coordinates (observables) and the corresponding inverse transformation:

L :

[
x1
x2

]
7→


x1
x2

sin(x2)
cos(x2)

 =:


y1
y2
y3
y4

 , L] :


y1
y2
y3
y4

 7→ [
y1
y2

]
≡
[
x1
x2

]
.

Consequently, we can write the dynamics in the variables yi as a quadratic system:ẏ1ẏ2ẏ3
ẏ4

 =

 −y3y1
y1y4
−y1y3

 .

Note that the inverse mapping is indeed linear.
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ẋ2

]
=

[
− sin(x2)

x1

]
.

Lifted coordinates (observables) and the corresponding inverse transformation:

L :

[
x1
x2

]
7→


x1
x2

sin(x2)
cos(x2)

 =:


y1
y2
y3
y4

 , L] :


y1
y2
y3
y4

 7→ [
y1
y2

]
≡
[
x1
x2

]
.

Consequently, we can write the dynamics in the variables yi as a quadratic system:ẏ1ẏ2ẏ3
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Lifting Principle for Dynamical Systems

Using observables—inspired by lifting principle—we can write nonlinear systems as
quadratic systems

– which are finite dimensional
– for which we can reconstruct full-state using a linear projection (restriction) of

observables.
– so that for a given nonlinear system, lifted observables are easy to determine.

For given nonlinear dynamical models, we can determine suitable observables.

However, our goal itself is to learn dynamical models from data.
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Lifting Principle for Dynamical Systems

Problem Statement (for fast decay of Kolmogorov n-width) (Goyal/Benner 2022)

Given data {x(t1), . . . ,x(tN )} and derivative information {ẋ(t1), . . . , ẋ(tN )}, we seek
to identify

observables z := ψ(x) such that

ż(t) = Az(t) + H (z(t)⊗ z(t)) + B =: Q(z),

x(t) = Cz(t).

Since we do not have any prior
information, we learn ψ(·) using a
neural network.

We learn parameters of neural network
ψ(·) and the system matrices
{A,H,B,C} simultaneously.
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ż(t) = Az(t) + H (z(t)⊗ z(t)) + B =: Q(z),

x(t) = Cz(t).

Since we do not have any prior
information, we learn ψ(·) using a
neural network.

We learn parameters of neural network
ψ(·) and the system matrices
{A,H,B,C} simultaneously.

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 10/19

mailto:benner@mpi-magdeburg.mpg.de


Lifting Principle for Dynamical Systems

Problem Statement (for fast decay of Kolmogorov n-width) (Goyal/Benner 2022)

Given data {x(t1), . . . ,x(tN )} and derivative information {ẋ(t1), . . . , ẋ(tN )}, we seek
to identify

observables z := ψ(x) such that

ż(t) = Az(t) + H (z(t)⊗ z(t)) + B =: Q(z),

x(t) = Cz(t).

Since we do not have any prior
information, we learn ψ(·) using a
neural network.

We learn parameters of neural network
ψ(·) and the system matrices
{A,H,B,C} simultaneously.
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Lifting Principle for Dynamical Systems

Loss function (Goyal/B. 2022)

Compute ż using ẋ by the chain rule:

Lżẋ = ‖ (∇xz) ẋ−Q(z)‖

where Q(z) := (Az + H (z⊗ z) + B)
and z = Ψ(x).

Compute ẋ using ż:

ẋ = Cż = C (Az + H (z⊗ z) + B) , yielding

Lẋż = ‖ẋ−C (Az + H (z⊗ z) + B) ‖.

Autoencoder loss: Lencdec = ‖x−CΨ(x)‖.
Total loss is L = Lencdec + Lẋż + Lżẋ.

Note that once we have all these parameters, we need encoder (neural network)
only to get initial condition for z.

The rest of the model is very classical state-space quadratic model
 can be used for engineering design.
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Compute ż using ẋ by the chain rule:
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Numerical Examples

Lambda–Omega reaction–diffusion example

The governing equations are

ut = (1− (u2 + v2))u+ β(u2 + v2)v + d1(uxx + uyy),

vt = −β(u2 + v2)u+ (1− (u2 + v2))v + d2(vxx + vyy).

We take 100× 100 grid and collect 100 data points in time t = [0, 5].

We consider the first 75 points for training and the last 25 for testing.

The data are high-dimensional (2 · 104) and exhibit an exponential decay of singular
values, so we compress the data using projection onto the first two POD models.

We learn a quadratic model of dim = 2 using the projected data as input.
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Challenges and Possible Solutions

1. Recall that we have a linear projection from z 7→ x. It works good only if we have a
fast decay of singular values of our high-dimensional data

However, there is no suitable low-dimensional linear subspace for advection-dominant
problems.
 Slow decay of Komologov n-width.
 Need a large-dimensional z, meaning engineering studies can still be intractable.

Remedy: Use a nonlinear decoder using neural networks (e.g., convolutional
NNs for structured data)

2. Moreover, to train networks, we need to determine derivative of output w.r.t.
inputs.

If dim (x) is large, then derivative computations using, e.g., autograd become
computationally very expensive.

Remedy: Embed a numerical integrator

x Encoder z Decoder x

ż = Az + H (z⊗ z) + b
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Numerical Integrator and Low-dimensional Quadratic-embeddings

Combining all, we have

We focus on a Runge-Kutta scheme, but any integrator including adaptive ones can
be utilized using Neural ODEs. (Chen et al. 2018)

Once such an architecture is framed, we can learn encoder, decoder, and a
quadratic model.
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Numerical Example
Tubular Reactor Model

One dimensional model with a single reaction, describing dynamics of the species
concentration ψ(x, t) and temperature θ(x, t) via

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
− ∂ψ

∂x
−DF(ψ, θ; γ),

∂θ

∂t
=

1

Pe

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θref) + BDF(ψ, θ; γ),

with spatial variable x ∈ (0, 1), time t > 0 and Arrhenius reaction term

F(ψ, θ; γ) = ψ exp
(
γ − γ

θ

)
.

Collect snapshots in time T = [0, 10].

We learn 2-dimensional embeddings using convolutional autoencoder.

For comparison, we also compute a 2-dimensional model using POD projection
(classical OpInf).
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Numerical Example
Tubular Reactor Model

(a) convolutional autoencoder (b) POD

Figure: 2-dimensional embeddings.

(a) Concentration on the full-grid. (b) Temperature on the full-grid.

Figure: Comparison of the convolutional autoencoders and POD-based approaches.
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Numerical Example
2D Burgers equation

Governing equation:

∂u(x, t)

∂t
+

(
1

2
,

1

2

)>
· ∇u(x, t)2 = 0 ∀(x, t) ∈ Ω× [0, T ].

We collect snapshots 100 snapshots in [0, 1] by taking 512 points in x and y
directions  full dimensional model with 262 144 DoFs.

We learn one-dimensional quadratic model, and encoder and decoder are
convolutional neural networks. (Goyal/B. 2021)

Note that for rich dynamics,we may need to increase the dimension of the quadratic
embeddings.
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Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work

Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work

Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work

Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work

Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work
Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work
Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work
Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Outlook

Contributions
Discussed lifting principle for nonlinear dynamical systems.

Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

 Notion of quadratic embeddings.

To determine embeddings, we make use of neural networks (e.g., CNNs).

For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work
Extensions to Hamiltonian, parametric, and control systems.

Stability guarantees of the quadratic model for the embeddings?

Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!

Thank you for your attention!!

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 18/19

mailto:benner@mpi-magdeburg.mpg.de


Selected References (Alphabetical)

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018).
Neural ordinary differential equations.
In Advances Neural Inform. Processing Sys., pages 6571–6583.

Folkestad, C., Pastor, D., Mezic, I., Mohr, R., Fonoberova, M., and Burdick, J. (2020).
Extended dynamic mode decomposition with learned Koopman eigenfunctions for prediction and control.
In American Control Conference (ACC), pages 3906–3913. IEEE.

Goyal, P. and Benner, P. (2021).
Learning low-dimensional quadratic-embeddings of high-fidelity nonlinear dynamics using deep learning.
e-print 2111.12995, arXiv.

Gu, C. (2011).
QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear
systems.
IEEE Trans. Comput. Aided Des. Integr. Circuits. Syst., 30(9):1307–1320.

Koopman, B. O. (1931).
Hamiltonian systems and transformation in Hilbert space.
Proc. Nat. Acad. Sci. U.S.A., 17(5):315.

Lusch, B., Kutz, J. N., and Brunton, S. L. (2018).
Deep learning for universal linear embeddings of nonlinear dynamics.
Nature Commu., 9(1):1–10.

Qian, E., Kramer, B., Peherstorfer, B., and Willcox, K. (2020).
Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems.
Physica D: Nonlinear Phenomena, 406:132401.

Williams, M. O., Kevrekidis, I. G., and Rowley, C. W. (2015).
A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition.
J. Nonlinear Science, 25(6):1307–1346.

©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings 19/19

mailto:benner@mpi-magdeburg.mpg.de

	Motivation
	Dynamic processes

	Our Objective
	Koopman Operator and DMD
	Lifting Principle for Dynamical Systems

	anm2: 
	2.99: 
	2.98: 
	2.97: 
	2.96: 
	2.95: 
	2.94: 
	2.93: 
	2.92: 
	2.91: 
	2.90: 
	2.89: 
	2.88: 
	2.87: 
	2.86: 
	2.85: 
	2.84: 
	2.83: 
	2.82: 
	2.81: 
	2.80: 
	2.79: 
	2.78: 
	2.77: 
	2.76: 
	2.75: 
	2.74: 
	2.73: 
	2.72: 
	2.71: 
	2.70: 
	2.69: 
	2.68: 
	2.67: 
	2.66: 
	2.65: 
	2.64: 
	2.63: 
	2.62: 
	2.61: 
	2.60: 
	2.59: 
	2.58: 
	2.57: 
	2.56: 
	2.55: 
	2.54: 
	2.53: 
	2.52: 
	2.51: 
	2.50: 
	2.49: 
	2.48: 
	2.47: 
	2.46: 
	2.45: 
	2.44: 
	2.43: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


