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Motivation
Dynamic processes

Dynamic models are important for

o analysis of transient behavior under operating
conditions,

@ control synthesis and design,
@ parameter optimization and optimal control,

@ long-time horizon prediction (health monitoring,
digital twins).
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@ Our Objective

Problem set-up

@ Construct a mathematical model

x(t) = £(x(1)),

describing dynamics of the process.
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@ Our Objective

Problem set-up

@ Construct a mathematical model

x(t) = £(x(2)),
describing dynamics of the process.

@ Neural network-based approaches: RNNs, LSTM, Neural ODEs, ... ~- black-box
models
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@ Our Objective

Problem set-up

@ Construct a mathematical model

x(t) = £(x(2)),
describing dynamics of the process.

@ Neural network-based approaches: RNNs, LSTM, Neural ODEs, ... ~- black-box
models

o Engineering design e.g., control, optimization, can be difficult.
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@ Our Objective

Problem set-up

o Construct a mathematical model

x(t) = £(x(t)),
describing dynamics of the process.

o Neural network-based approaches: RNNs, LSTM, Neural ODEs, ... ~- black-box
models

o Engineering design e.g., control, optimization, can be difficult.

Goal

o Construct simple dynamical models, capturing important dynamic behavior in a
state-space model that facilitates engineering tasks.
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Koopman Operator and DMD

o The simplest type of model one can think of is a Linear Model
~+ Many tools for optimal/feedback control, optimization, and prediction
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@ Koopman Operator and DMD

o The simplest type of model one can think of is a Linear Model
~+ Many tools for optimal/feedback control, optimization, and prediction

o Given data x(t;) and its derivative %(¢;), a linear model can be determined by

solving
IIIAiIl ||X - AX||7

where X = [%(t1),...,%(t,)] and X = [x(t1),...,%x(tn)].
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@ Koopman Operator and DMD

o The simplest type of model one can think of is a Linear Model
~+ Many tools for optimal/feedback control, optimization, and prediction

o Given data x(t;) and its derivative %(¢;), a linear model can be determined by
solving ]
min [|X — AX,

where X = [%(t1),...,%(t,)] and X = [x(t1),...,%x(tn)].

o Often referred to (in a simplistic view) as Dynamic Mode Decomposition or
Operator Inference.
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@ Koopman Operator and DMD

o The simplest type of model one can think of is a Linear Model
~+ Many tools for optimal/feedback control, optimization, and prediction

o Given data x(t;) and its derivative %(¢;), a linear model can be determined by
solving ]
min [|X — AX,

where X = [%(t1),...,%(t,)] and X = [x(t1),...,%x(tn)].

o Often referred to (in a simplistic view) as Dynamic Mode Decomposition or
Operator Inference.

@ Once a linear model is learned and verified, it can be deployed for control and
design tasks.
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@ Koopman Operator and DMD

The simplest type of model one can think of is a Linear Model
~+ Many tools for optimal/feedback control, optimization, and prediction

Given data x(t;) and its derivative %(¢;), a linear model can be determined by
solving ]
mAin IX - AX]|,

where X = [%(t1),...,%(t,)] and X = [x(t1),...,%x(tn)].

Often referred to (in a simplistic view) as Dynamic Mode Decomposition or
Operator Inference.

Once a linear model is learned and verified, it can be deployed for control and
design tasks.

However, several challenges remain:
o Often, one cannot measure the full state x ~ partial measurements!
o Real-world processes are often nonlinear, thus learning a linear model may not be
sufficient to characterize complex dynamic behavior.
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Koopman Operator and DMD

(Koopman 1931)

Operator in Nutshell
A nonlinear dynamical system x(t) = f(x(¢)) can be written as a linear system in a

infinite dimensional Hilbert space.

K
> ¥
Y2 Ya
Y3
Y1
Nonlinear Evolution of Linear Evolution of a
Dynamics lifted model

From Operator Inference to Quadratic Embeddings
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Operator in Nutshell (Koopman 1931)
A nonlinear dynamical system x(t) = f(x(¢)) can be written as a linear system in a
infinite dimensional Hilbert space.

1lo) .
2 3 DTy
T /
N;nlinear Evolution of Linear Evolution of a
Dynamics lifted model
Extended DMD (Williams et al. 2015)

@ The aim is to approximate infinite dimensional Koopman linear operator via a finite
dimensional one.
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Koopman Operator in Nutshell (Koopman 1931)

A nonlinear dynamical system x(t) = f(x(¢)) can be written as a linear system in a
infinite dimensional Hilbert space.

e .
T2 T3 = 7-’5‘4
) /
Nt;r;linear Evolution of Linear Evolution of a
Dynamics lifted model
Extended DMD (Williams et al. 2015)

@ The aim is to approximate infinite dimensional Koopman linear operator via a finite
dimensional one.
o For this, often hand-design observables are needed,
o but challenging design decisions need to be taken, and it still is an approximation.
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Our “Holy Grail”

o Try to re-write a nonlinear system using a simple structure in finite dimensions.

— In Koopman theory, the structure is that of a linear system and it is infinite
dimensional.
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Our “Holy Grail”

o Try to re-write a nonlinear system using a simple structure in finite dimensions.
— In Koopman theory, the structure is that of a linear system and it is infinite
dimensional.
@ Mapping from the observables to the state is linear (at least for good
low-dimensional linear representation).
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Our “Holy Grail”

o Try to re-write a nonlinear system using a simple structure in finite dimensions.
— In Koopman theory, the structure is that of a linear system and it is infinite
dimensional.
@ Mapping from the observables to the state is linear (at least for good
low-dimensional linear representation).

Lifting Principle
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Our “Holy Grail”

o Try to re-write a nonlinear system using a simple structure in finite dimensions.
— In Koopman theory, the structure is that of a linear system and it is infinite
dimensional.
@ Mapping from the observables to the state is linear (at least for good
low-dimensional linear representation).

Lifting Principle

@ McCormick proposed a convex relaxation to solve nonlinear non-convex optimization
problems. (McCormick 1976)

(©Peter Benner, benner@m y From Operator Inference to Quadratic Embeddings


mailto:benner@mpi-magdeburg.mpg.de

@ Our “Holy Grail”

o Try to re-write a nonlinear system using a simple structure in finite dimensions.
— In Koopman theory, the structure is that of a linear system and it is infinite
dimensional.
@ Mapping from the observables to the state is linear (at least for good
low-dimensional linear representation).

Lifting Principle

@ McCormick proposed a convex relaxation to solve nonlinear non-convex optimization
problems. (McCormick 1976)

o Key ingredient is lifting the optimization problem to a higher dimensional space
using auxiliary variables (similar to observables in Koopman theory).
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@ Our “Holy Grail”

o Try to re-write a nonlinear system using a simple structure in finite dimensions.
— In Koopman theory, the structure is that of a linear system and it is infinite
dimensional.
@ Mapping from the observables to the state is linear (at least for good
low-dimensional linear representation).

Lifting Principle

@ McCormick proposed a convex relaxation to solve nonlinear non-convex optimization
problems. (McCormick 1976)

o Key ingredient is lifting the optimization problem to a higher dimensional space
using auxiliary variables (similar to observables in Koopman theory).

o This ideas has been further developed for learning dynamical systems.

From Operator Inference to Quadratic Embeddings


mailto:benner@mpi-magdeburg.mpg.de

@ Lifting Principle for Dynamical Systems

Lifted Nonlinear Dynamical Models using Lifting principle

o Consider a nonlinear system of the generic form:
(1) = £(x),

where x € R", and the function f(-) is assumed to be smooth enough.
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@ Lifting Principle for Dynamical Systems

Lifted Nonlinear Dynamical Models using Lifting principle

o Consider a nonlinear system of the generic form:
(1) = £(x),

where x € R", and the function f(-) is assumed to be smooth enough.

@ Then, there exists a lifting £ : R™ — R™, and its “left” inverse mapping
L£F:R™ — R, resulting in a quadratic model

y()=Ay +H(y(t) ®y(?)) + B,
where y(t) = L(x(t)) and £ (y(t)) = x(t).
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@ Lifting Principle for Dynamical Systems

Lifted Nonlinear Dynamical Models using Lifting principle

o Consider a nonlinear system of the generic form:

where x € R", and the function f(-) is assumed to be smooth enough.

@ Then, there exists a lifting £ : R" — R™, and its “left” inverse mapping
LF:R™ — R", resulting in a quadratic model

yt)=Ay+H(y(t) ®y(t)) + B,
where y(t) = £(x(t)) and £ (y(t)) = x(t).

@ Such a lifting concept was first developed by (Savageau/Voit 1987) for control
purposes.

@ Also used for model reduction for nonlinear systems (Gu 2009, B./Breiten 2015).
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@ Lifting Principle for Dynamical Systems

Lifted Nonlinear Dynamical Models using Lifting principle

o Consider a nonlinear system of the generic form:

where x € R", and the function f(-) is assumed to be smooth enough.

@ Then, there exists a lifting £ : R" — R™, and its “left” inverse mapping
LF:R™ — R", resulting in a quadratic model
y(t)=Ay+H(y() ®y(t)) + B,
where y(t) = £(x(t)) and £ (y(t)) = x(t).

@ Such a lifting concept was first developed by (Savageau/Voit 1987) for control
purposes.

@ Also used for model reduction for nonlinear systems (Gu 2009, B./Breiten 2015).

@ Recently, it has become popular using terminology Lift and Learn by Willcox,
Peherstorfer, Qian, Kramer, ...(Qian et al. 2019).
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Lifting Principle for Dynamical Systems

o Consider the simple pendulum model:

(2] =[5
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@ Lifting Principle for Dynamical Systems

An illustration

o Consider the simple pendulum model:
1] [—sin(x2)
Cbz - L 1 ’

o Lifted coordinates (observables) and the corresponding inverse transformation:

1 Y1 Y1
L% = %2 ot (92 s Y = 1P
To sin(z2) Ys Ys Y2 To

cos(z2) Ya | Ya
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@ Lifting Principle for Dynamical Systems

An illustration

o Consider the simple pendulum model:

T1
T2

o Lifted coordinates (observables) and the

-

1 Y1

o et I e
T sin(z2) Y3
cos(z2) Ya |

— sin(z2)
T1

|

corresponding inverse transformation:

Y1

el =)
Y3 Y2 T2
Ya

o Consequently, we can write the dynamics in the variables y; as a quadratic system:

From

—Y3
Y1
Y1y4
—Y1Y3
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@ Lifting Principle for Dynamical Systems

An illustration

o Consider the simple pendulum model:

2=

o Lifted coordinates (observables) and the

1 Y1

o et I e
T sin(z2) Y3
cos(z2) Ya |

T

- sin(xz)} .

corresponding inverse transformation:

~ [ =)

Y1
Y2
Y3
Ya

, che

o Consequently, we can write the dynamics in the variables y; as a quadratic system:

U1
Y2
U3
Ya
o Note that the inverse mapping is indeed
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From

—Y3
Y1
Y1y4
—Y1Y3

linear.
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Lifting Principle for Dynamical Systems

o Using observables—inspired by lifting principle—we can write nonlinear systems as
quadratic systems
— which are finite dimensional
— for which we can reconstruct full-state using a linear projection (restriction) of
observables.
— so that for a given nonlinear system, lifted observables are easy to determine.

1 Q)

z(ti) = ¥(x(t:))
x(t;) = Caz(t;)

Nonlinear Evolution of Quadratic Evolution of
Dynamics a lifted dynamics
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Lifting Principle for Dynamical Systems

o Using observables—inspired by lifting principle—we can write nonlinear systems as
quadratic systems
— which are finite dimensional
— for which we can reconstruct full-state using a linear projection (restriction) of
observables.
— so that for a given nonlinear system, lifted observables are easy to determine.

1 Q)

z(ti) = ¥(x(t:))
x(t;) = Caz(t;)

Nonlinear Evolution of Quadratic Evolution of
Dynamics a lifted dynamics

@ For given nonlinear dynamical models, we can determine suitable observables.
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Lifting Principle for Dynamical Systems

o Using observables—inspired by lifting principle—we can write nonlinear systems as
quadratic systems
— which are finite dimensional
— for which we can reconstruct full-state using a linear projection (restriction) of
observables.
— so that for a given nonlinear system, lifted observables are easy to determine.

1 Q)

z(ti) = ¥(x(t:))
x(t;) = Caz(t;)

Nonlinear Evolution of Quadratic Evolution of
Dynamics a lifted dynamics

@ For given nonlinear dynamical models, we can determine suitable observables.

o However, our goal itself is to learn dynamical models from data.
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Q‘ @ Lifting Principle for Dynamical Systems

Problem Statement (for fast decay of Kolmogorov n-width) (Goyal/Benner 2022)

Given data {x(t1),...,x(¢tx)} and derivative information {X(¢1),...,%(tx)}, we seek
to identify

(©Peter Benner, benner@mpi-magdebi y From Operator Inference to Quadratic Embeddings


mailto:benner@mpi-magdeburg.mpg.de

@ Lifting Principle for Dynamical Systems

Problem Statement (for fast decay of Kolmogorov n-width) (Goyal/Benner 2022)

Given data {x(t1),...,x(¢tx)} and derivative information {X(¢1),...,%(tx)}, we seek
to identify

o observables z := 1)(x) such that

z(t) = Az(t) + H(z(t) ® z(t)) + B =: Q(z),
x(t) = Cz(t).
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@ Lifting Principle for Dynamical Systems

Problem Statement (for fast decay of Kolmogorov n-width) (Goyal/Benner 2022)

Given data {x(t1),...,x(¢tx)} and derivative information {X(¢1),...,%(tx)}, we seek
to identify

o observables z := 1)(x) such that

z(t) = Az(t) + H(z(t) ® z(t)) + B =: Q(z),
x(t) = Cz(t).

o Since we do not have any prior
information, we learn () using a
neural network.

Az+H(z®1z)+B
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@ Lifting Principle for Dynamical Systems

Problem Statement (for fast decay of Kolmogorov n-width) (Goyal/Benner 2022)

Given data {x(t1),...,x(¢tx)} and derivative information {X(¢1),...,%(tx)}, we seek
to identify

o observables z := 1)(x) such that

z(t) = Az(t) + H(z(t) ® z(t)) + B =: O(z),
x(t) = Cz(t).

o Since we do not have any prior

. . . X
information, we learn % (-) using a O .
H Z
neural network. o i AstH(EB
o We learn parameters of neural network

() and the system matrices

{A,H, B, C} simultaneously. (Lung: = = v ]

(©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings


mailto:benner@mpi-magdeburg.mpg.de

Loss function
o Compute z using x by the chain rule:
Lix = || (Vxz)x — Q(2)||

where Q(z) := (Az+ H (z ® z) + B)
and z = ¥(x).
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@ Lifting Principle for Dynamical Systems

Loss function (Goyal/B. 2022)
o Compute z using x by the chain rule:
Lix = || (Vxz) % — O(2)]|

where Q(z) := (Az+ H (z ® z) + B)
and z = ¥(x).

o Compute x using z:

x=Cz=C(Az+H(z®z)+ B), yielding
Liz=|x-—C(Az+H(z®z)+B)|.
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@ Lifting Principle for Dynamical Systems

Loss function

(Goyal/B. 2022)

o Compute z using x by the chain rule:

Lix = || (Vxz)% — Q(z)]|

where Q(z) := (Az + H(z®z) + B)

and z = ¥(x).

o Compute x using z:

x=Cz=C(Az+H(z®z)+ B), yielding
Liz=|x-—C(Az+H(z®z)+B)|.
o Autoencoder loss: Lencdec = ||x — CU(x)]|.
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@ Lifting Principle for Dynamical Systems

Loss function (Goyal/B. 2022)
o Compute z using x by the chain rule:
Lix = || (Vxz) % — O(2)]|

where Q(z) := (Az+ H (z ® z) + B)
and z = ¥(x).

Quadratic model

x=Cz=C(Az+H(z®z)+ B), yielding
Liz=|x—C(Az+H((z®z)+ B) |
o Autoencoder loss: Lencdec = ||x — CU(x)]|.
o Total loss is £ = Lencdec + Lz + Lix.

o Compute x using z:

(©Peter Benner, benner@mpi-magdeburg.mpg.de From Operator Inference to Quadratic Embeddings


mailto:benner@mpi-magdeburg.mpg.de

@ Lifting Principle for Dynamical Systems

Loss function (Goyal/B. 2022)
o Compute z using X by the chain rule:
Lix = || (Vxz)x — Q(2)]

where Q(z) := (Az+ H (z ® z) + B)
and z = ¥(x).

Linear projection:
x=Cz

x=Cz=C(Az+H(z®z)+ B), yielding
Liz=|x—C(Az+H((z®z)+ B) |

o Compute x using z:

o Autoencoder loss: Lencdec = |[|x — CU(x)]|.
o Total loss is £ = Lencdec + Lz + Lax.

o Note that once we have all these parameters, we need encoder (neural network)
only to get initial condition for z.

@ The rest of the model is very classical state-space quadratic model
~ can be used for engineering design.
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@ Numerical Examples

Lambda—Omega reaction—diffusion example

@ The governing equations are
(1= (u® + ) u+ B + v*)v + di (Uzz + Uyy),
v = =B +v°)u+ (1 — (1 + 0°))v + dao (Ve + Vyy)-

Ut

o We take 100 x 100 grid and collect 100 data points in time ¢ = [0, 5].
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@ Numerical Examples

Lambda—Omega reaction—diffusion example

@ The governing equations are

(1= (u® + ) u+ B + v*)v + di (Uzz + Uyy),
vy = —fb’(u2 + vz)u +(1- (u2 + ’UQ))’U + do(Vaa + vyy)-

Ut

o We take 100 x 100 grid and collect 100 data points in time ¢ = [0, 5].
o We consider the first 75 points for training and the last 25 for testing.
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@ Numerical Examples

Lambda—Omega reaction—diffusion example

@ The governing equations are

we = (1= (u® 4+ 0°))u + B’ + v*)v + di (Ues + Uyy),
v = =B +v°)u+ (1 — (1 + 0°))v + dao (Ve + Vyy)-
o We take 100 x 100 grid and collect 100 data points in time ¢ = [0, 5].

o We consider the first 75 points for training and the last 25 for testing.

o The data are high-dimensional (2 - 10*) and exhibit an exponential decay of singular
values, so we compress the data using projection onto the first two POD models.
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@ Numerical Examples

Lambda—Omega reaction—diffusion example

@ The governing equations are

we = (1= (u® 4+ 0°))u + B’ + v*)v + di (Ues + Uyy),
v = =B +v°)u+ (1 — (1 + 0°))v + dao (Ve + Vyy)-

o We take 100 x 100 grid and collect 100 data points in time ¢ = [0, 5].
o We consider the first 75 points for training and the last 25 for testing.

o The data are high-dimensional (2 - 10*) and exhibit an exponential decay of singular
values, so we compress the data using projection onto the first two POD models.

o We learn a quadratic model of dim = 2 using the projected data as input.
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@ Numerical Examples

Lambda—Omega reaction—diffusion example

@ The governing equations are

we = (1 — (u® 4+ ) u+ B + v*)v + di (U + Uyy),
v = =B + v u+ (1 — (U + 7)o + do(Vew + Vyy)-

o We take 100 x 100 grid and collect 100 data points in time ¢ = [0, 5].
o We consider the first 75 points for training and the last 25 for testing.

o The data are high-dimensional (2 - 10*) and exhibit an exponential decay of singular
values, so we compress the data using projection onto the first two POD models.

o We learn a quadratic model of dim = 2 using the projected data as input.

fibbees

training testing truth known testing truth unknown
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Challenges and Possible Solutions

1. Recall that we have a linear projection from z — x. It works good only if we have a
fast decay of singular values of our high-dimensional data
o However, there is no suitable low-dimensional linear subspace for advection-dominant
problems.

~~ Slow decay of Komologov n-width.
~~ Need a large-dimensional z, meaning engineering studies can still be intractable.
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Challenges and Possible Solutions

1. Recall that we have a linear projection from z — x. It works good only if we have a
fast decay of singular values of our high-dimensional data
o However, there is no suitable low-dimensional linear subspace for advection-dominant
problems.

~~ Slow decay of Komologov n-width.
~~ Need a large-dimensional z, meaning engineering studies can still be intractable.

Remedy: Use a nonlinear decoder using neural networks (e.g., convolutional
NNs for structured data)

|
i=Az+H(z®2)+b
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Challenges and Possible Solutions

1. Recall that we have a linear projection from z — x. It works good only if we have a
fast decay of singular values of our high-dimensional data
o However, there is no suitable low-dimensional linear subspace for advection-dominant
problems.

~~ Slow decay of Komologov n-width.
~~ Need a large-dimensional z, meaning engineering studies can still be intractable.

Remedy: Use a nonlinear decoder using neural networks (e.g., convolutional
NNs for structured data)

2. Moreover, to train networks, we need to determine derivative of output w.r.t.
inputs.

o If dim (x) is large, then derivative computations using, e.g., autograd become
computationally very expensive.

'

i=Az+H(z®
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Challenges and Possible Solutions

1. Recall that we have a linear projection from z — x. It works good only if we have a
fast decay of singular values of our high-dimensional data
o However, there is no suitable low-dimensional linear subspace for advection-dominant
problems.

~~ Slow decay of Komologov n-width.
~~ Need a large-dimensional z, meaning engineering studies can still be intractable.

Remedy: Use a nonlinear decoder using neural networks (e.g., convolutional
NNs for structured data)

2. Moreover, to train networks, we need to determine derivative of output w.r.t.
inputs.
o If dim (x) is large, then derivative computations using, e.g., autograd become
computationally very expensive.

[Remedy: Embed a numerical integrator ]

'

i=Az+H(z®
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Numerical Integrator and Low-dimensional Quadratic-embeddings

o Combining all, we have

Xk Encoding: zx = ¥(xk)
Decoding: x¢ = P(z)
Runge-Kutta Constraint:
Zey1 ~ TRka (2e)
g(z)=Az+H(z®z)+b

DECODER ®

o We focus on a Runge-Kutta scheme, but any integrator including adaptive ones can
be utilized using Neural ODEs. (Chen et al. 2018)

@ Once such an architecture is framed, we can learn encoder, decoder, and a
quadratic model.
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: Numerical Example
; Tubular Reactor Model

@ One dimensional model with a single reaction, describing dynamics of the species
concentration ¢ (z,t) and temperature 0(z,t) via

s~ g — DF(,67),
77777 ﬂ(e - eref) + BD}_(% 9; 7)7

with spatial variable z € (0,1), time ¢ > 0 and Arrhenius reaction term

F(th,0;7) =pexp (7 - %) :
o Collect snapshots in time T = [0, 10].
o We learn 2-dimensional embeddings using convolutional autoencoder.

@ For comparison, we also compute a 2-dimensional model using POD projection
(classical Oplnf).
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Numerical Example

Tubular Reactor Model

2 100 T
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(a) convolutional autoencoder (b) POD

Figure: 2-dimensional embeddings.
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Quad_NonlinearProjection
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(a) Concentration on the full-grid. (b) Temperature on the full-grid.

Figure: Comparison of the convolutional autoencoders and POD-based approaches.
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Numerical Example

2D Burgers equation

o Governing equation:

Ou(z,t) 11\ " 2
T*(E’E) Vu(e,8)> =0 Y(z,t) € Q2 x [0,7].
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Numerical Example

2D Burgers equation

o Governing equation:

Ou(z,t) 11\ " 2

T-‘,— (5,5) Vu(z,t) =0 V(z,t) € Qx[0,T].

o We collect snapshots 100 snapshots in [0, 1] by taking 512 points in = and y
directions ~~ full dimensional model with 262 144 DoFs.

o £=0.00 o =025 oo =050 oo =075 o t=10
015 o5 015 015 015
050 030, 050 050 050
025 025 025 025 025
000 000, 000, 000 000
-0z 025, 025 025 025
030 030 -0s0. 050 050
015 -ors. 015, 075, 075
a 100 100 -1 1
10 "o 05 00 05 10 C1lo 05 oo 05 10 <10 -05 00 05 10  -lo -05 00 05 10
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Numerical Example

2D Burgers equation

o Governing equation:

ot 22
o We collect snapshots 100 snapshots in [0, 1] by taking 512 points in  and y
directions ~~ full dimensional model with 262 144 DoFs.

bulz,t) + (l l)T SVu(z, )2 =0 Y(z,t) € Qx[0,T].

o We learn one-dimensional quadratic model, and encoder and decoder are
convolutional neural networks. (Goyal/B. 2021)

£=0.00 =025

100 100
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050 050
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000 000
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025 025
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Numerical Example

2D Burgers equation

o Governing equation:

Au(x, t) 1 1\ " 5
- . = Q T].
5 + (2, 2) Vu(z,t) 0 V(x,t) € Qx[0,T]

o We collect snapshots 100 snapshots in [0, 1] by taking 512 points in  and y
directions ~~ full dimensional model with 262 144 DoFs.

o We learn one-dimensional quadratic model, and encoder and decoder are
convolutional neural networks. (Goyal/B. 2021)

£=0.00 =025
100 100

075, 075
050 050
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000 000
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100 100
%o 05 oo 05 10 1o -05 00 05 10
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100 100

075 07s
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025 025
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025

015

o Note that for rich dynamics,we may need to increase the dimension of the quadratic
embeddings.
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@ Outlook

Contributions

o Discussed lifting principle for nonlinear dynamical systems.
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“ | @ Outlook

Contributions
o Discussed lifting principle for nonlinear dynamical systems.

o Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

~~ Notion of quadratic embeddings.

(©Peter Benner, benner@mpi-magdebu y From Operator Inference to Quadratic Embeddings


mailto:benner@mpi-magdeburg.mpg.de

“ @ Outlook

Contributions
o Discussed lifting principle for nonlinear dynamical systems.

o Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

~~ Notion of quadratic embeddings.

@ To determine embeddings, we make use of neural networks (e.g., CNNs).
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“ @ Outlook

Contributions
o Discussed lifting principle for nonlinear dynamical systems.

o Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

~~ Notion of quadratic embeddings.
@ To determine embeddings, we make use of neural networks (e.g., CNNs).

@ For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.
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“ @ Outlook

Contributions
o Discussed lifting principle for nonlinear dynamical systems.

o Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

~~ Notion of quadratic embeddings.
@ To determine embeddings, we make use of neural networks (e.g., CNNs).

@ For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work

o Extensions to Hamiltonian, parametric, and control systems.
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Contributions
o Discussed lifting principle for nonlinear dynamical systems.

o Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

~~ Notion of quadratic embeddings.
@ To determine embeddings, we make use of neural networks (e.g., CNNs).

@ For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work
o Extensions to Hamiltonian, parametric, and control systems.

o Stability guarantees of the quadratic model for the embeddings?
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“ @ Outlook

Contributions
o Discussed lifting principle for nonlinear dynamical systems.

o Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

~~ Notion of quadratic embeddings.
@ To determine embeddings, we make use of neural networks (e.g., CNNs).

@ For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work
o Extensions to Hamiltonian, parametric, and control systems.
o Stability guarantees of the quadratic model for the embeddings?

@ Work on real-engineering (reactor model) and investigate how to use more physics
e.g., mass/energy conservation laws!
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A @ Outlook

Contributions

o Discussed lifting principle for nonlinear dynamical systems.

o Lifting allows us to write nonlinear systems as quadratic systems using observables
(or lifted variables).

~~ Notion of quadratic embeddings.
@ To determine embeddings, we make use of neural networks (e.g., CNNs).

@ For high-dimensional data with slow decay of singular values, we utilize nonlinear
decoders, which allows identification of PDE models with slowly decaying
Kolmogorov n-width.

Open work
o Extensions to Hamiltonian, parametric, and control systems.
o Stability guarantees of the quadratic model for the embeddings?
o Wor} ! : e ehold ool S v hysics
e.g.

Thank you for your attention!!
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