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Introduction

Consider nonlinear dynamical system:

ẏ = F (y), y(0) = y0

F (y) = Ay + c︸ ︷︷ ︸
linear

+ g(y)︸︷︷︸
nonlinear

, A = DF (y0)

Exponential Integrator

ŷ(t) = etAy0 + t ϕ(tA) (c+ g(ŷ))

ϕ(z) =
ez − 1

z

Large-scale Hamiltonian systems
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Overview

1. Introduction

2. Integration Methods

3. Structure-preserving Exponential Integrators

4. HEKS

5. Numerical Experiments

6. Conclusions
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Hamiltonian and Symplectic Matrices

Let

J := Jn :=

[
0 In
−In 0

]
.

Definition

H ∈ R2n×2n Hamiltonian iff JH = (JH)T .

S ∈ R2n×2k symplectic (J-isometric/-orthogonal) iff SJS = I, where
SJ := JTSTJ .

Corollary

H Hamiltonian, S symplectic ⇒ SJHS Hamiltonian.

© benner@mpi-magdeburg.mpg.de Symplectic Krylov Subspace Methods for Hamiltonian Systems 4/27

mailto:benner@mpi-magdeburg.mpg.de


Hamiltonian and Symplectic Matrices

Let

J := Jn :=

[
0 In
−In 0

]
.

Definition

H ∈ R2n×2n Hamiltonian iff JH = (JH)T .

S ∈ R2n×2k symplectic (J-isometric/-orthogonal) iff SJS = I, where
SJ := JTSTJ .

Corollary

H Hamiltonian, S symplectic ⇒ SJHS Hamiltonian.

© benner@mpi-magdeburg.mpg.de Symplectic Krylov Subspace Methods for Hamiltonian Systems 4/27

mailto:benner@mpi-magdeburg.mpg.de


Hamiltonian and Symplectic Matrices

Let

J := Jn :=

[
0 In
−In 0

]
.

Definition

H ∈ R2n×2n Hamiltonian iff JH = (JH)T .

S ∈ R2n×2k symplectic (J-isometric/-orthogonal) iff SJS = I, where
SJ := JTSTJ .

Corollary

H Hamiltonian, S symplectic ⇒ SJHS Hamiltonian.

© benner@mpi-magdeburg.mpg.de Symplectic Krylov Subspace Methods for Hamiltonian Systems 4/27

mailto:benner@mpi-magdeburg.mpg.de


Hamiltonian Systems

ẏ = J−1∇H(y), H : R2n → R ”the Hamiltonian” (1)

~www� y =

[
p
q

]

ṗi = −∂H
∂qi

(p, q), q̇i =
∂H
∂pi

(p, q), i = 1, . . . , n

H : Rn × Rn → R

Conservative System
For initial condition y(t0) = y0, the Hamiltonian (loosely speaking, the ”total energy” of
the system) is preserved along solution trajectories:

H(y(t)) ≡ H(y0) ∀ t ≥ t0 if y(t) solves (1)

 numerical approximation should satisfy H(y(t)) ≈ H(y0) ∀ t ≥ t0.
 geometric/symplectic integrators
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Hamiltonian Systems and Hamiltonian Matrices

Linearization of ẏ = J−1∇H(y) at y0

ẏ = F (y) = Ay + c+ g(y), g(y0) = 0

Hamiltonian system =⇒ A Hamiltonian.
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Exponential Integrators [Hochbruck/Lubich/Selhofer 1998]

ẏ = F (y) := Ay + c+ g(y)

y(0) = y0, A = DF (y0)

Exponential Integrators

exponential(ly fitted) Euler method (EE)

y1 = ΦEE
h (y0) := ehAy0 + h ϕ(hA) (c+ g(y0)) = y0 + h ϕ(hA) F (y0)

explicit exponential midpoint rule (EEMP)

y1 = ΦEEMP
h (y0) := y0 + ehA(y−1 − y0) + 2hϕ(hA)g(y0)

implicit exponential midpoint rule (IEMP)

0 = e
h
2
A(y0 − ŷ) +

h

2
ϕ(
h

2
A)g(ŷ)

y1 = ΦIEMP
h (y0) := ŷ + ehA(y0 − ŷ) + hϕ(hA)g(ŷ)

Recall the phi function: ϕ(z) = ez−1
z

.
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Symplectic Integrators

Definition (Hairer/Lubich/Wanner 2006, Chapter VI, Def. 3.1)

y1 = Φh(y0) is symplectic iff DΦh(y0) is symplectic for Hamiltonian Systems.

Examples:
symplectic Euler,

leap frog/(Störmer-)Verlet,

symplectic Runge-Kutta methods,

splitting methods,

. . .
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Symplectic vs. Non-Symplectic Integrators
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Idea for picture taken from [Hairer/Lubich/Wanner 2006].
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Structure-preserving Exponential Integrators

For an efficient application of exponential integrators to large-scale Hamiltonian systems,
we need:

1. efficient evaluation of matrix function applied to a vector f(A)v, where
f ∈ {exp, ϕ}

 approximation of f(A)v using (rational) Krylov subspaces;

2. a symplectic flow to ensure preservation of the Hamiltonian, to guarantee this for
the approximation of f(A)v, one should use

symplectic bases

for the Krylov subspaces used in the approximation.
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1. Numerical Approximation of f(A)v

Given a function f : Rn×n → Rn×n, we are interested in approximating

f(A)v

for a large and sparse matrix A and a vector v (where we assume that f is sufficiently
regular so that f(A) is well defined).

Typical approach for large-scale computations:
find a matrix V ∈ Rn×k with orthonormal columns so that

f(A)x ≈ V f(V TAV )V T v. (2)
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As Ak = V TAV ∈ Rk×k, the evaluation of V f(Ak)V T v should be much faster
than that of f(A)v.

Note: The problem of approximating the action of f(A) to a vector is significantly
different from that of approximating f(A) (see seminal Higham book).
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for a large and sparse matrix A and a vector v (where we assume that f is sufficiently
regular so that f(A) is well defined).

Typical approach for large-scale computations:
find a matrix V ∈ Rn×k with orthonormal columns so that

f(A)x ≈ V f(V TAV )V T v. (2)

[Druskin/Knizhnerman 1998] suggest to use orthogonal basis of the extended Krylov
subspace

Kk(A, v) +Kk(A−1, A−1v) = span{A−kv, . . . , A−2v,A−1v, v, Av,A2v, . . . , Ak−1v}.

(. . . and later on also rational Krylov subspaces, see also Güttel, Beckermann, Simoncini, . . . )
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2. Symplectic Basis
Numerical Approximation of f(H)v for Hamiltonian matrices H

Hamiltonian Lanczos Method [B./Faßbender 1997, Ferng et al 1997]

Symplectic basis of Krylov subspace K2r(H,u1) = span{u1, Hu1, . . . , H
2r−1u1}.

Generates S = [Ur Vr] with Ur, Vr ∈ R2n×r with J-orthogonal columns such that

H[Ur Vr] = [Ur Vr]

[
G(r) T (r)

D(r) −G(r)

]
+ ur+1tr+1,re

T
2r

where G(r), D(r) ∈ Rr×r are diagonal and T (r) ∈ Rr×r is tridiagonal.

Short recurrence to compute the next vectors ur+1 and vr+1 of the basis involving
only the three preceding vectors vr, ur, ur−1.

Requires 2r matrix-vector products and 3r inner products.

Classical Arnoldi method requires 2r matrix-vector products and r2 inner products.

f(H)u1 ≈ ‖u1‖2Sf(JTr S
TJnHS)e1 as JTr (ST (Jnu1)) = ‖u1‖2e1.
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Let a Hamiltonian matrix H ∈ R2n×2n and a vector u1 ∈ R2n be given.

Construct Sr+s ∈ R2n×2(r+s) with J-orthonormal columns such that the columns of
Sr+s span the same subspace as K2r(H,u1) +K2s(H

−1, H−1u1).

Assume that dim K2r(H,u1) = 2r and dim K2s(H
−1, H−1u1) = 2s.
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Assume that
S2k =

[
Yk Uk | Xk Vk

]
∈ R2n×4k, Yk, Uk, Xk, Vk ∈ R2n×k

with J-orthonormal columns has been constructed such that its columns span the same
space as K2k(H,u1) +K2k(H−1, H−1u1).

Repeat the following steps until done:
Construct uk+1 and vk+1 and set

S2k+1 =
[
Yk Uk uk+1 | Xk Vk vk+1

]
=

[
Yk Uk+1 | Xk Vk+1

]
∈ R2n×4k+2

such that ST2k+1JnS2k+1 = J2k+1 and

span{S2k+1} = K2k+2(H,u1) +K2k(H
−1, H−1u1).

Construct yk+1 and xk+1 and set

S2k+2 =
[
yk+1 Yk Uk+1 | xk+1 Xk Vk+1

]
=

[
Yk+1 Uk+1 | Xk+1 Vk+1

]
∈ R2n×4k+4

such that ST2k+2JnS2k+2 = J2k+2 and

span{S2k+2} = K2k+2(H,u1) +K2k+2(H
−1, H−1u1).
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Observation:
In case r = s = k, H2k = J2kS

T
2kJnHS2k ∈ R4k×4k has the form (Hamiltonian)



0 λk γk
. . .

. . . . .
.

µk

. . .
. . . . .

.
. .
.

0 λ1 γ1 µ2
0 γ1 α1 β2

. . . . .
.

µ2 β2
. . .

. . .

. . . . .
.

. .
. . . .

. . . βk
0 γk µk βk αk

δk 0

. . .
. . .

. . .
. . .

δ1 0
ϑ1 0

. . .
. . .

. . .
. . .

ϑk 0


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Hamiltonian Extended Krylov Subspace (HEKS) Method

Observation:
In case r = s+ 1 = k + 1, the special form of the Hamiltonian matrix
H2k+1 = J2k+1S

T
2k+1JnHS2k+1 is given by
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Yields algorithm with short recurrences, about 1 page long.

Efficient implementation requires

4 matrix-vector-multiplications with H,

3 linear solves with H,

14 scalar products.

Theorem (B./Faßbender/Senn, arXiv:2202.12640)

Let H ∈ R2n×2n be a Hamiltonian matrix. Let r + s = n and either r = s+ 1 or r = s.
Then in case the procedure sketched does not break down for u1 ∈ R2n with ‖u1‖2 = 1,
there exists a symplectic matrix S ∈ R2n×2n such that Ses+1 = u1,

span{S} = K2r(H,u1) +K2s(H
−1, H−1u1),

and
S−1HS = Hr+s.
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Hamiltonian Extended Krylov Subspace (HEKS) Method

HEKS recursion for r = s = k

HS2k = S2kH2k + uk+1(µk+1e
T
2k+1 + βk+1e

T
4k).

In case µk+1 = βk+1 = 0 or uk+1 = 0, we have a lucky breakdown as

span{S2k} = K2k(H,u1) +K2k(H−1, H−1u1)

is H-invariant.

HEKS recursion for r = s+ 1 = k + 1

HS2k+1 = S2k+1H2k+1 + (γk+1yk+1 + βk+2uk+2)eT4k+2.

In case γk+1 = βk+2 = 0, we have a lucky breakdown as

span{S2k+1} = K2k+2(H,u1) +K2k(H−1, H−1u1)

is H-invariant.
Note that yk+1 6= 0 as it is a column of S2k+1!

Serious breakdown is possible.
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HEKS: Numerical Experiment
(CAREX15, [B./Laub/Mehrmann 1995])

H ∈ R1998×1998, x = randn (2n, 1); e = ones (2n, 1);
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Numerical Experiments

Compare
Classical Arnoldi (A) and unsymmetric Lanczos (UL) methods (non-symplectic basis),

symplectic Lanczos (SL) method [B./Faßbender 1997],

symplectic Arnoldi (SA) method (rangeS = K2r(H,u1) + JK2r(H,u1))
[Eirola/Koskela 2019],

isotropic Arnoldi (IA) method (S = [Ur, −JUr ]) [Mehrmann/Watkins 2000],

block J-orthogonal (BJ) method (S = Wr ⊕Wr) [Li/Celledoni 2019],

Hamiltonian extended Krylov subspace (HEKS) method
[Meister 2011, B./Faßbender/Senn 2022].

for the approximation of exp(H)v, ϕ(H)v using four semi-discretized 1D Hamiltonian PDE
examples:

linear wave equation (LW),

nonlinear Schrödinger equation (SE),

nonlinear Klein-Gordon equation (KGE),

sine-Gordon equation (SGE),
and a random Hamiltonian matrix (RHM). All Hamiltonian matrices are of size 2, 500× 2, 500.
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Numerical Experiments
Relative solution error for the approximation of exp(H)v
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Numerical Experiments
Relative solution error for the approximation of ϕ(H)v
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Numerical Experiments

Observations from previous experiment:

Both, classical Arnoldi and symplectic Lanczos are accurate for all considered
examples.

All other methods need higher-dimensional subspace, or do not reach full precision
at all, for at least one example.

Thus, for testing exponential integrators for Hamiltonian systems, we employ
classical Arnoldi (non-symplectic) and symplectic Lanczos (symplectic).

Using the same examples as before, we test the (approximated) exponential integrators

exponential(ly fitted) Euler (EE),

explicit exponential midpoint rule (EEMP),

implicit exponential midpoint rule (IEMP),

a fourth-order method (EI4) from [Hochbruck et al 1998].
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Numerical Experiments: nonlinear 1D Schrödinger equation from [Eirola/Koskela 2019]
Relative solution error and preservation of Hamiltonian for full-order models
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Numerical Experiments: nonlinear 1D Schrödinger equation from [Eirola/Koskela 2019]
Relative solution error and preservation of Hamiltonian for reduced-order models (EI4)
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Numerical Experiments: Linear Wave Equation
Relative solution error and preservation of Hamiltonian for reduced-order models (EE)
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Conclusions

Symplectic Lanczos method appears to be a reliable method for approximating the
action of a matrix function to a vector in exponential integrators for Hamiltonian
systems.

The Hamiltonian extended Krylov subspace method (HEKS) has interesting
numerical properties (sparse structure of matrix Rayleigh quotient, short
recurrence), but has to prove its merits in other areas.

Further applications:
model order reduction for linear (port?-)Hamiltonian systems,
efficient generation of snapshots for symplectic POD-like model order reduction
methods.

Thank you for your attention!
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