

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

Confetten

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

An Alternative Algorithm for Unstable Balanced Truncation

Peter Benner

10th Vienna Internationa

MATHMOD 2022 on Mathematical Modelling Vienna, July 27–29, 2022

Supported by:

DFG-Graduiertenkolleg MATHEMATISCHE KOMPLEXITÄTSREDUKTION

Model Reduction of Linear Systems

Linear Time-Invariant (LTI) Systems

Original System

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{A}\widehat{x}(t) + \widehat{B}u(t), \\ \widehat{y}(t) = \widehat{C}\widehat{x}(t) + \widehat{D}u(t). \end{cases}$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,

• outputs
$$\hat{y}(t) \in \mathbb{R}^p$$
.

Model Reduction of Linear Systems

inear Time-Invariant (LTI) Systems

Original System

$$\Sigma : \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$$

- states $x(t) \in \mathbb{R}^n$,
- inputs $u(t) \in \mathbb{R}^m$,

• outputs
$$y(t) \in \mathbb{R}^p$$

\xrightarrow{u} Σ \xrightarrow{y}

Reduced-Order Model (ROM)

$$\widehat{\Sigma}: \begin{cases} \dot{\widehat{x}}(t) = \widehat{A}\widehat{x}(t) + \widehat{B}u(t), \\ \widehat{y}(t) = \widehat{C}\widehat{x}(t) + \widehat{D}u(t). \end{cases}$$

• states
$$\hat{x}(t) \in \mathbb{R}^r$$
 , $r \ll n$

• inputs
$$u(t) \in \mathbb{R}^m$$
,

• outputs
$$\hat{y}(t) \in \mathbb{R}^p$$
.

Goals: $\|y - \hat{y}\| < \text{tolerance} \cdot \|u\|$ for all admissible input signals.

Model Reduction of Linear Systems

Linear Time-Invariant (LTI) Systems

Original System

- $\Sigma: \begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t) + Du(t). \end{cases}$
 - states $x(t) \in \mathbb{R}^n$,
 - inputs $u(t) \in \mathbb{R}^m$,
 - outputs $y(t) \in \mathbb{R}^p$.

Reduced-Order Model (ROM)

$$\widehat{\mathbf{\Sigma}}: \begin{cases} \dot{\hat{x}}(t) = \widehat{A}\hat{x}(t) + \widehat{B}u(t), \\ \hat{y}(t) = \widehat{C}\hat{x}(t) + \widehat{D}u(t). \end{cases}$$

- states $\hat{x}(t) \in \mathbb{R}^r$, $r \ll n$
- inputs $u(t) \in \mathbb{R}^m$,
- outputs $\hat{y}(t) \in \mathbb{R}^p$.

Goals:

 $||y - \hat{y}|| < \text{tolerance} \cdot ||u||$ for all admissible input signals. Secondary goal: reconstruct approximation of x from \hat{x} .

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sX(s) - x(0))$ to LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

 $sX(s) = AX(s) + BU(s), \quad Y(s) = CX(s) + DU(s),$

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sX(s) - x(0))$ to LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sX(s) = AX(s) + BU(s), \quad Y(s) = CX(s) + DU(s),$$

 \implies I/O-relation in frequency domain:

$$Y(s) = \left(\underbrace{C(sI_n - A)^{-1}B + D}_{=:G(s)}\right)U(s).$$

G(s) is the **transfer function** of Σ .

Linear Systems in Frequency Domain

Application of Laplace transform $(x(t) \mapsto x(s), \dot{x}(t) \mapsto sX(s) - x(0))$ to LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)$$

with x(0) = 0 yields:

$$sX(s) = AX(s) + BU(s), \quad Y(s) = CX(s) + DU(s),$$

 \implies I/O-relation in frequency domain:

$$Y(s) = \left(\underbrace{C(sI_n - A)^{-1}B + D}_{=:G(s)}\right)U(s).$$

G(s) is the **transfer function** of Σ .

Model reduction in frequency domain: Fast evaluation of mapping $U \rightarrow Y$.

Formulating model reduction in frequency domain

Approximate the time domain dynamical system

$$\begin{split} \dot{x} &= Ax + Bu, \qquad A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times m}, \\ y &= Cx + Du, \qquad C \in \mathbb{R}^{p \times n}, \ D \in \mathbb{R}^{p \times m}, \end{split}$$

by reduced-order system

$$\begin{split} \dot{\hat{x}} &=& \hat{A}\hat{x} + \hat{B}u, \quad \hat{A} \in \mathbb{R}^{r \times r}, \ \hat{B} \in \mathbb{R}^{r \times m}, \\ \hat{y} &=& \hat{C}\hat{x} + \hat{D}u, \quad \hat{C} \in \mathbb{R}^{p \times r}, \ \hat{D} \in \mathbb{R}^{p \times m} \end{split}$$

of order $r \ll n$, such that

$$\begin{split} \|y - \hat{y}\| \simeq \left\| Y - \hat{Y} \right\| &= \left\| GU - \hat{G}U \right\| \\ &\leq \left\| G - \hat{G} \right\| \cdot \|U\| \simeq \left\| G - \hat{G} \right\| \cdot \|u\| \\ &\leq \mathsf{tolerance} \cdot \|u\| \,. \end{split}$$

• System
$$\Sigma$$
:

$$\begin{cases}
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t),
\end{cases}$$

with A stable, i.e., $\Lambda\left(A\right)\subset\mathbb{C}^{-}$,

is balanced, if system Gramians, i.e., solutions ${\cal P},{\cal Q}$ of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

• System
$$\Sigma$$
:

$$\begin{cases}
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t),
\end{cases}$$
with A stable, i.e., $\Lambda(A)$
is balanced, if system Gramians, i.e., solutions, P, Q of the Lyapupov

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

• $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .

 $\subset \mathbb{C}^{-}$,

• System
$$\Sigma$$
:

$$\begin{cases}
\dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t),
\end{cases}$$

with
$$A$$
 stable, i.e., $\Lambda(A) \subset \mathbb{C}^{-}$,

is balanced, if system Gramians, i.e., solutions P, Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- \bullet Compute balanced realization (needs P,Q!) of the system via state-space transformation

$$\begin{array}{rcl} \vdots (A,B,C) & \mapsto & (TAT^{-1},TB,CT^{-1}) \\ & = & \left(\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right], \left[\begin{array}{cc} B_1 \\ B_2 \end{array} \right], \left[\begin{array}{cc} C_1 & C_2 \end{array} \right] \right). \end{array}$$

• System
$$\Sigma$$
:
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t), \\ y(t) = Cx(t), \end{cases}$$

with
$$A$$
 stable, i.e., $\Lambda(A) \subset \mathbb{C}^{-}$,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0, \qquad A^{T}Q + QA + C^{T}C = 0,$$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- \bullet Compute balanced realization (needs P,Q!) of the system via state-space transformation

$$\begin{aligned} \mathcal{T}: (A, B, C) &\mapsto (TAT^{-1}, TB, CT^{-1}) \\ &= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} C_1 & C_2 \end{bmatrix} \right). \end{aligned}$$

• Truncation $\rightsquigarrow (\hat{A}, \hat{B}, \hat{C}) = (A_{11}, B_1, C_1).$ Note: in efficient algorithms, truncation is achieved via projection:

$$(\hat{A}, \hat{B}, \hat{C}) = (W^T A V, W^T B, C V), \quad \text{where} \quad W^T V = I_r.$$

• Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of r via computable error bound:

$$||y - \hat{y}||_2 \le ||G - \hat{G}||_{\mathcal{H}_{\infty}} ||u||_2 \le \left(2\sum_{k=r+1}^n \sigma_k\right) ||u||_2,$$

where $\|G\|_{\mathcal{H}_{\infty}} := \sup_{u \in \mathcal{L}_2 \setminus \{0\}} \frac{\|Gu\|_2}{\|u\|_2} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(G(j\omega)).$

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of r via computable error bound:

$$\|y - \hat{y}\|_{2} \le \|G - \hat{G}\|_{\mathcal{H}_{\infty}} \|u\|_{2} \le \left(2\sum_{k=r+1}^{n} \sigma_{k}\right) \|u\|_{2},$$

where $||G||_{\mathcal{H}_{\infty}} := \sup_{u \in \mathcal{L}_2 \setminus \{0\}} \frac{||Gu||_2}{||u||_2} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(G(j\omega)).$

Practical implementation

- Rather than solving Lyapunov equations for P, Q (n^2 unknowns!), find $S, R \in \mathbb{R}^{n \times s}$ with $s \ll n$ such that $P \approx SS^T$, $Q \approx RR^T$.
- Reduced-order model directly obtained via small-scale ($s \times s$) SVD of $R^T S!$

^ahttps://www.mpi-magdeburg.mpg.de/projects/morlab

^bhttps://www.mpi-magdeburg.mpg.de/projects/mess, full MATLAB integration in progress.

- Reduced-order model is stable with HSVs $\sigma_1, \ldots, \sigma_r$.
- Adaptive choice of r via computable error bound:

$$\|y - \hat{y}\|_{2} \le \|G - \hat{G}\|_{\mathcal{H}_{\infty}} \|u\|_{2} \le \left(2\sum_{k=r+1}^{n} \sigma_{k}\right) \|u\|_{2},$$

where $||G||_{\mathcal{H}_{\infty}} := \sup_{u \in \mathcal{L}_2 \setminus \{0\}} \frac{||Gu||_2}{||u||_2} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(G(j\omega)).$

Practical implementation

- Rather than solving Lyapunov equations for P, Q (n^2 unknowns!), find $S, R \in \mathbb{R}^{n \times s}$ with $s \ll n$ such that $P \approx SS^T$, $Q \approx RR^T$.
- Reduced-order model directly obtained via small-scale $(s \times s)$ SVD of $R^T S!$
- Two software packages:
 - MORLAB^a (Model Order Reduction LABoratory), based on spectral projection methods (\rightsquigarrow small to medium size problems, up to $n \sim 5,000.$)
 - M-M.E.S.S.^b provides solvers for large-scale matrix equations with sparse/low-rank coefficients and basic MOR functionality; no $\mathcal{O}(n^3)$ or $\mathcal{O}(n^2)$ computations necessary!

^ahttps://www.mpi-magdeburg.mpg.de/projects/morlab

^bhttps://www.mpi-magdeburg.mpg.de/projects/mess, full MATLAB integration in progress.

Industrial challenges for virtual twin:

- non-homogeneous initial conditions (IC) two approaches: augment input with IC ("BTX0") or use superposition ("2phase"),
- subsystem reduction ("output coupled") vs. holistic reduction ("FE-coupled").

FE-coupled

output-coupled

method	red. order tol 10^{-3}	t_{red}
2phase	196	6.5h
BTX0	174	4.5h

method	red. order tol 10^{-3}	t_{red}
2phase	3,005	2h
BTX0	2,515	1.8h

FE-coupled

output-coupled

 $\frac{t_{red}}{2h}$

method	red. order tol 10^{-3}	t_{red}]	method	red. order tol 10^{-3}
2phase	196	6.5h	1	2phase	3,005
BTX0	174	4.5h]	BTX0	2,515

 \rightarrow Required storage for reduced matrices just 1MB!

Vettermann, J., Sauerzapf, S., Naumann, A., Beitelschmidt, M., Herzog, R., Benner, P., Saak, J. (2021): Model order reduction methods for coupled machine tool models. MM Science Journal 2021:4652-4659.

Basic Principle

Given some positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Basic Principle

Given some positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Classical Balanced Truncation (BT)

• P =controllability Gramian of system given by (A, B, C, D).

• Q = observability Gramian of system given by (A, B, C, D).

• If A is stable, P, Q solve dual Lyapunov equations

 $AP + PA^T + BB^T = 0, \qquad A^TQ + QA + C^TC = 0.$

Basic Principle

Given some positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

LQG Balanced Truncation (LQGBT)

- P/Q = controllability/observability Gramian of closed-loop system based on LQG compensator.
- P, Q solve dual algebraic Riccati equations (AREs)

$$0 = AP + PA^{T} - PC^{T}CP + B^{T}B,$$

$$0 = A^{T}Q + QA - QBB^{T}Q + C^{T}C.$$

Computable error bound:

$$\|[N M] - [\hat{N} \hat{M}]\|_{\mathcal{H}_{\infty}} \le 2 \sum_{j=r+1}^{n} \frac{\sigma_{j}^{LQG}}{\sqrt{1 + (\sigma_{j}^{LQG})^{2}}},$$

where σ_j^{LQG} are the singular values of $(PQ)^{\frac{1}{2}}$ and $G = M^{-1}N$ and $\hat{G} = \hat{M}^{-1}\hat{N}$ are left coprime factorizations.

[Jonckheere/Silverman 1983]

Basic Principle

Given some positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Closed-loop Balanced Truncation (CLBT)

• First, stabilize the system using LQR feedback:

$$\dot{x}_s(t) = (A - BB^T X_s) x_s(t) + Bu(t), \qquad y_s(t) = C x_s(t), \qquad (*$$

where X_s is the stabilizing solution of the LQR Riccati equation

 $A^T X + XA - XBB^T X + C^T C = 0.$

[Wortelboer 1994

Basic Principle

Given some positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Closed-loop Balanced Truncation (CLBT)

• First, stabilize the system using LQR feedback:

$$\dot{x}_s(t) = (A - BB^T X_s) x_s(t) + Bu(t), \qquad y_s(t) = C x_s(t), \qquad (*$$

where X_s is the stabilizing solution of the LQR Riccati equation

$$A^T X + XA - XBB^T X + C^T C = 0.$$

• Then apply BT to the closed-loop system (*) by solving the Lyapunov equations

$$(A - BB^{T}X_{s})P_{s} + P_{s}(A - BB^{T}X_{s})^{T} + BB^{T} = 0,$$

$$(A - BB^{T}X_{s})^{T}Q_{s} + Q_{s}(A - BB^{T}X_{s}) + C^{T}C = 0.$$

[Wortelboer 1994]

Basic Principle

Given some positive semidefinite matrices $P = S^T S$, $Q = R^T R$, compute balancing state-space transformation so that

$$P = Q = \operatorname{diag}(\sigma_1, \dots, \sigma_n) = \Sigma, \quad \sigma_1 \ge \dots \ge \sigma_n \ge 0,$$

and truncate corresponding realization at size r with $\sigma_r > \sigma_{r+1}$.

Closed-loop Balanced Truncation (CLBT)

• First, stabilize the system using LQR feedback:

$$\dot{x}_s(t) = (A - BB^T X_s) x_s(t) + Bu(t), \qquad y_s(t) = C x_s(t), \qquad (*$$

where X_s is the stabilizing solution of the LQR Riccati equation

$$A^T X + XA - XBB^T X + C^T C = 0.$$

• Then apply BT to the closed-loop system (*) by solving the Lyapunov equations

$$(A - BB^{T}X_{s})P_{s} + P_{s}(A - BB^{T}X_{s})^{T} + BB^{T} = 0,$$

$$(A - BB^{T}X_{s})^{T}Q_{s} + Q_{s}(A - BB^{T}X_{s}) + C^{T}C = 0.$$

Observation: P_s can be computed without ever forming X_s !

[Wortelboer 1994

Let $\left(A,B\right)$ be stabilizable, $\left(A,C\right)$ be detectable, and define the Hamiltonian matrix

$$\begin{bmatrix} A & -BB^T \\ -C^T C & -A^T \end{bmatrix}$$

Let $\left(A,B\right)$ be stabilizable, $\left(A,C\right)$ be detectable, and define the Hamiltonian matrix

$$\begin{bmatrix} A & -BB^T \\ -C^T C & -A^T \end{bmatrix}$$

Then the unique stabilizing solution X_s to the LQR Riccati equation exists and is symmetric positive semidefinite.

Let (A,B) be stabilizable, (A,C) be detectable, and define the Hamiltonian matrix

$$\begin{bmatrix} A & -BB^T \\ -C^T C & -A^T \end{bmatrix}$$

Then the unique stabilizing solution X_s to the LQR Riccati equation exists and is symmetric positive semidefinite.

Hence, $A - BB^T X_s$ is stable, the closed-loop Lyapunov equations

$$(A - BB^{T}X_{s})P_{s} + P_{s}(A - BB^{T}X_{s})^{T} + BB^{T} = 0, (A - BB^{T}X_{s})^{T}Q_{s} + Q_{s}(A - BB^{T}X_{s}) + C^{T}C = 0,$$

have unique solutions $P_s = P_s^T \ge 0$, $Q_s = Q_s^T \ge 0$, resp., and it holds

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

Let (A,B) be stabilizable, (A,C) be detectable, and define the Hamiltonian matrix

$$\begin{bmatrix} A & -BB^T \\ -C^T C & -A^T \end{bmatrix}$$

Then the unique stabilizing solution X_s to the LQR Riccati equation exists and is symmetric positive semidefinite.

Hence, $A - BB^T X_s$ is stable, the closed-loop Lyapunov equations

$$(A - BB^{T}X_{s})P_{s} + P_{s}(A - BB^{T}X_{s})^{T} + BB^{T} = 0, (A - BB^{T}X_{s})^{T}Q_{s} + Q_{s}(A - BB^{T}X_{s}) + C^{T}C = 0,$$

have unique solutions $P_s = P_s^T \geq 0, \, Q_s = Q_s^T \geq 0, \, \text{resp., and it holds}$

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

But: Q_s still would need X_s first!

Recall:

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

Can neither get Q_s from this, nor X_s without further computations.

¹The proof is analogous to that of the previous theorem.

Recall:

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

Can neither get Q_s from this, nor X_s without further computations.

But: using the stable¹ closed-loop matrix $A - Y_s C^T C$ obtained from the filter Riccati equation, we obtain another stable LTI system.

$$\dot{x}_f(t) = (A - Y_s C^T C) x_f(t) + B u(t), \qquad y_f(t) = C x_f(t).$$
 (•)

 $^{^1 {\}rm The}$ proof is analogous to that of the previous theorem.

Recall:

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

Can neither get Q_s from this, nor X_s without further computations.

But: using the stable¹ closed-loop matrix $A - Y_s C^T C$ obtained from the filter Riccati equation, we obtain another stable LTI system.

$$\dot{x}_f(t) = (A - Y_s C^T C) x_f(t) + B u(t), \qquad y_f(t) = C x_f(t).$$
 (•)

The observability Gramian $ilde{Q}_s$ of (ullet) solves the Lyapunov equation

$$(A - Y_s C^T C)^T \tilde{Q} + \tilde{Q} (A - Y_s C^T C) + C^T C = 0.$$

¹The proof is analogous to that of the previous theorem.

Recall:

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

Can neither get Q_s from this, nor X_s without further computations.

But: using the stable¹ closed-loop matrix $A - Y_s C^T C$ obtained from the filter Riccati equation, we obtain another stable LTI system.

$$\dot{x}_f(t) = (A - Y_s C^T C) x_f(t) + B u(t), \qquad y_f(t) = C x_f(t).$$
 (•)

The observability Gramian $ilde{Q}_s$ of (ullet) solves the Lyapunov equation

$$(A - Y_s C^T C)^T \tilde{Q} + \tilde{Q} (A - Y_s C^T C) + C^T C = 0.$$

Now, analogously to P_s , \tilde{Q}_s can be read off from the (1,2)-block of the Hamiltonian matrix associated to the filter Riccati equation, i.e. $H^T \rightsquigarrow$

$$\begin{bmatrix} * & -2\tilde{Q}_s \\ * & * \end{bmatrix} = \operatorname{sign}\left(H^T\right)$$

¹The proof is analogous to that of the previous theorem.

Recall:

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

Can neither get Q_s from this, nor X_s without further computations.

But: using the stable¹ closed-loop matrix $A - Y_s C^T C$ obtained from the filter Riccati equation, we obtain another stable LTI system.

$$\dot{x}_f(t) = (A - Y_s C^T C) x_f(t) + B u(t), \qquad y_f(t) = C x_f(t).$$
 (•)

The observability Gramian $ilde{Q}_s$ of (ullet) solves the Lyapunov equation

$$(A - Y_s C^T C)^T \tilde{Q} + \tilde{Q}(A - Y_s C^T C) + C^T C = 0.$$

Now, analogously to P_s , \tilde{Q}_s can be read off from the (1,2)-block of the Hamiltonian matrix associated to the filter Riccati equation, i.e. $H^T \rightsquigarrow$

$$\begin{bmatrix} * & -2\tilde{Q}_s \\ * & * \end{bmatrix} = \operatorname{sign}(H^T) = \operatorname{sign}(H)^T \implies \tilde{Q}_s = X_s - X_s P_s X_s.$$

¹The proof is analogous to that of the previous theorem.

Recall:

$$\operatorname{sign}(H) = \begin{bmatrix} -I + 2P_s X_s & -2P_s \\ 2X_s P_s X_s - 2X_s & I - 2X_s P_s \end{bmatrix}.$$

Can neither get Q_s from this, nor X_s without further computations.

But: using the stable¹ closed-loop matrix $A - Y_s C^T C$ obtained from the filter Riccati equation, we obtain another stable LTI system.

$$\dot{x}_f(t) = (A - Y_s C^T C) x_f(t) + B u(t), \qquad y_f(t) = C x_f(t).$$
 (•)

The observability Gramian $ilde{Q}_s$ of (ullet) solves the Lyapunov equation

$$(A - Y_s C^T C)^T \tilde{Q} + \tilde{Q}(A - Y_s C^T C) + C^T C = 0.$$

Now, analogously to P_s , \tilde{Q}_s can be read off from the (1,2)-block of the Hamiltonian matrix associated to the filter Riccati equation, i.e. $H^T \rightsquigarrow$

$$\begin{bmatrix} * & -2\tilde{Q}_s \\ * & * \end{bmatrix} = \operatorname{sign}(H^T) = \operatorname{sign}(H)^T \qquad \Longrightarrow \quad \tilde{Q}_s = X_s - X_s P_s X_s.$$

This suggests a new balanced truncation scheme **CLBT2** using P_s, \tilde{Q}_s as Gramians.

¹The proof is analogous to that of the previous theorem.

C benner@mpi-magdeburg.mpg.de

CD player data set from the SLICOT benchmark collection^a, with n = 120, m = p = 2. We compute reduced-order models (ROMs) of order r = 30 using BT and LQGBT as implemented in MORLAB [B.2006, WERNER/B. 2020], and compare to the "new" variant CLBT2.

^ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/CD_Player

CD player data set from the SLICOT benchmark collection^{*a*}, with n = 120, m = p = 2. We compute reduced-order models (ROMs) of order r = 30 using BT and LQGBT as implemented in MORLAB [B.2006, WERNER/B. 2020], and compare to the "new" variant CLBT2.

^ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/CD_Player

EADY data set from the SLICOT benchmark collection^a, with n = 598, m = p = 1. We compute reduced-order models (ROMs) of order r = 17 using BT and LQGBT as implemented in MORLAB [B.2006, WERNER/B. 2020], and compare to the "new" variant CLBT2.

^ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Earth_Atmosphere

EADY data set from the SLICOT benchmark collection^a, with n = 598, m = p = 1. We compute reduced-order models (ROMs) of order r = 17 using BT and LQGBT as implemented in MORLAB [B.2006, WERNER/B. 2020], and compare to the "new" variant CLBT2.

^ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Earth_Atmosphere

EADY data set from the SLICOT benchmark collection^a, with n = 598, m = p = 1. We compute reduced-order models (ROMs) of order r = 17 using BT and LQGBT as implemented in MORLAB [B.2006, WERNER/B. 2020], and compare to the "new" variant CLBT2.

^ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Earth_Atmosphere

EADY data set from the SLICOT benchmark collection^a, with n = 598, m = p = 1. We compute reduced-order models (ROMs) of order r = 17 using BT and LQGBT as implemented in MORLAB [B.2006, WERNER/B. 2020], and compare to the "new" variant CLBT2.

Both examples indicate that LGQ BT and CLBT2 yield the same ROMs. If this holds, CLBT2 ROM satisfies same error bound as LQGBT.

^ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Earth_Atmosphere

• New balancing scheme for unstable systems based on closed-loop balancing. Gramians can be obtained from single evaluation of the matrix sign function of the Hamiltonian matrix associated to the LTI system.

- New balancing scheme for unstable systems based on closed-loop balancing. Gramians can be obtained from single evaluation of the matrix sign function of the Hamiltonian matrix associated to the LTI system.
- Numerical tests suggest equivalence of the reduced-order models to those obtained by LQG BT.

- New balancing scheme for unstable systems based on closed-loop balancing. Gramians can be obtained from single evaluation of the matrix sign function of the Hamiltonian matrix associated to the LTI system.
- Numerical tests suggest equivalence of the reduced-order models to those obtained by LQG BT.
- Note: the Gramians differ!

- New balancing scheme for unstable systems based on closed-loop balancing. Gramians can be obtained from single evaluation of the matrix sign function of the Hamiltonian matrix associated to the LTI system.
- Numerical tests suggest equivalence of the reduced-order models to those obtained by LQG BT.
- Note: the Gramians differ!
- So far: proof of equivalence under strong conditions (reachability & observability plus ...) [B./DAMM ONGOING].

- New balancing scheme for unstable systems based on closed-loop balancing. Gramians can be obtained from single evaluation of the matrix sign function of the Hamiltonian matrix associated to the LTI system.
- Numerical tests suggest equivalence of the reduced-order models to those obtained by LQG BT.
- Note: the Gramians differ!
- So far: proof of equivalence under strong conditions (reachability & observability plus ...) [B./DAMM ONGOING].
- Further connections to balanced truncation for unstable systems based on frequency domain definition of Gramians?

- New balancing scheme for unstable systems based on closed-loop balancing. Gramians can be obtained from single evaluation of the matrix sign function of the Hamiltonian matrix associated to the LTI system.
- Numerical tests suggest equivalence of the reduced-order models to those obtained by LQG BT.
- Note: the Gramians differ!
- So far: proof of equivalence under strong conditions (reachability & observability plus ...) [B./DAMM ONGOING].
- Further connections to balanced truncation for unstable systems based on frequency domain definition of Gramians?
- Implementation of CLBT2 via sign function method is computationally more efficient than LQG BT. But: no implementation strategy for large-scale sparse systems so far!

References

P. Benner, E. S. Quintana-Ortí, and G. Quintana-Ortí.

Balanced truncation model reduction of large-scale dense systems on parallel computers. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 6:383–405, 2000.

P. Benner.

Solving large-scale control problems. IEEE CONTROL SYSTEMS MAGAZINE, 24:44–59, 2004.

P. Benner and S. W. R. Werner.

MORLAB - A model order reduction framework in MATLAB and Octave.

In MATHEMATICAL SOFTWARE – ICMS 2020, A. M. Bigatti, J. Carette, J. H. Davenport, M. Joswig, and T. de Wolff, eds., LNCS 12097, Springer International Publishing, Cham, pp. 432–441, 2020.

P. Benner, M. Köhler, and J. Saak.

 $Matrix \ equations, \ sparse \ solvers: \ M-M.E.S.S.-2.0.1 - philosophy, \ features \ and \ application \ for \ (parametric) \ model \ order \ reduction.$

In MODEL REDUCTION OF COMPLEX DYNAMICAL SYSTEMS, P. Benner, T. Breiten, H. Faßbender, M. Hinze, T. Stykel, and R. Zimmermann, eds., ISNM 171, Birkhäuser, Cham, pp. 369–392, 2021.

E. A. Jonckheere and L. M. Silverman.

A new set of invariants for linear systems—application to reduced order compensator. IEEE TRANS. AUTOM. CONTROL, 28:953–964, 1983.

C. Kenney, A. J. Laub, and E. A. Jonckheere.

Positive and negative solutions of dual Riccati equations by matrix sign function iteration. SYSTEMS CONTROL LETT., 13:109–116, 1989.

B. C. Moore.

Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE TRANS. AUTOM. CONTROL, AC-26(1):17-32, 1981.

J. Vettermann, S. Sauerzapf, A. Naumann, M. Beitelschmidt, R. Herzog, P. Benner, and J. Saak. Model order reduction methods for coupled machine tool models. MM SCIENCE JOURNAL, pp. 4652–4659, 2021.

Commercial: 3-Volume Handbook "Model Order Reduction"

- Edited by Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi Rozza, Wil Schilders, and Luís Miguel Silveira,
- contains 30 tutorial chapters on modern model reduction techniques, methods, applications, and software,
- published by DeGruyter in 2021, ebook is fully Open Access!