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Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

© benner@mpi-magdeburg.mpg.de An Alternative Algorithm for Unstable Balanced Truncation 2/14

mailto:benner@mpi-magdeburg.mpg.de


Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
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Model Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Reduction in Frequency Domain
Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),
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Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),

=⇒ I/O-relation in frequency domain:

Y (s) =
(
C(sIn −A)−1B +D︸ ︷︷ ︸

=:G(s)

)
U(s).

G(s) is the transfer function of Σ.
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Transfer Functions of LTI Systems

Linear Systems in Frequency Domain

Application of Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sX(s)− x(0)) to LTI
system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

with x(0) = 0 yields:

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s),

=⇒ I/O-relation in frequency domain:

Y (s) =
(
C(sIn −A)−1B +D︸ ︷︷ ︸

=:G(s)

)
U(s).

G(s) is the transfer function of Σ.

Model reduction in frequency domain: Fast evaluation of mapping U → Y .
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Model Reduction in Frequency Domain
The Model Reduction Problem as Approximation Problem in Frequency Domain

Formulating model reduction in frequency domain

Approximate the time domain dynamical system

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m,

by reduced-order system

˙̂x = Âx̂+ B̂u, Â ∈ Rr×r, B̂ ∈ Rr×m,

ŷ = Ĉx̂+ D̂u, Ĉ ∈ Rp×r, D̂ ∈ Rp×m

of order r � n, such that

‖y − ŷ‖ '
∥∥∥Y − Ŷ ∥∥∥ =

∥∥∥GU − ĜU∥∥∥
≤
∥∥∥G− Ĝ∥∥∥ · ‖U‖ ' ∥∥∥G− Ĝ∥∥∥ · ‖u‖

≤ tolerance · ‖u‖ .
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Balanced Truncation for Stable Systems

Basic concept

System Σ :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization (needs P,Q!) of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1, TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

])
.

Truncation  (Â, B̂, Ĉ) = (A11, B1, C1).
Note: in efficient algorithms, truncation is achieved via projection:

(Â, B̂, Ĉ) = (WTAV,WTB,CV ), where WTV = Ir.
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Balanced Truncation for Stable Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr.

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤ ‖G− Ĝ‖H∞ ‖u‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2 ,

where ‖G‖H∞ := supu∈L2\{0}
‖Gu‖2
‖u‖2

= supω∈R σmax(G(ω)).
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Balanced Truncation for Stable Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr.

Adaptive choice of r via computable error bound:

‖y − ŷ‖2 ≤ ‖G− Ĝ‖H∞ ‖u‖2 ≤
(

2
∑n

k=r+1
σk

)
‖u‖2 ,

where ‖G‖H∞ := supu∈L2\{0}
‖Gu‖2
‖u‖2

= supω∈R σmax(G(ω)).

Practical implementation

Rather than solving Lyapunov equations for P,Q (n2 unknowns!), find S,R ∈ Rn×s with
s� n such that P ≈ SST , Q ≈ RRT .

Reduced-order model directly obtained via small-scale (s× s) SVD of RTS!

Two software packages:

MORLABa (Model Order Reduction LABoratory), based on spectral projection
methods ( small to medium size problems, up to n ∼ 5, 000.)
M-M.E.S.S.b provides solvers for large-scale matrix equations with sparse/low-rank
coefficients and basic MOR functionality; no O(n3) or O(n2) computations necessary!

ahttps://www.mpi-magdeburg.mpg.de/projects/morlab
bhttps://www.mpi-magdeburg.mpg.de/projects/mess, full MATLAB integration in progress.
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Numerical Example
Thermal Model of Experimental Machine Tool MAX [Vettermann et al ’21]

50 subassemblies CAD model

FEM
 

FE-Model: 1.2M DOFs

Industrial challenges for virtual twin:
non-homogeneous initial conditions (IC) — two approaches: augment input with IC
(”BTX0”) or use superposition (”2phase”),
subsystem reduction (”output coupled”) vs. holistic reduction (”FE-coupled”).
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Numerical Example
MAX: Results considering an inhomogeneous initial condition x0 6= 0

FE-coupled

method red. order tol 10−3 tred
2phase 196 6.5h
BTX0 174 4.5h

output-coupled

method red. order tol 10−3 tred
2phase 3,005 2h
BTX0 2,515 1.8h

→ Required storage for reduced matrices just 1MB!

0 1 2 3 4 5 6 7 8
t [h]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

T(
t) 

- T
(0

) [
K]

temperature change in output (16, 0)
full
2Phase,1.0e-2
2Phase,1.0e-3
2Phase,1.0e-4
2Phase,1.0e-5
BTX0,1.0e-2
BTX0,1.0e-3
BTX0,1.0e-4
BTX0,1.0e-5

Vettermann, J., Sauerzapf, S., Naumann, A., Beitelschmidt, M., Herzog, R., Benner, P., Saak, J. (2021): Model order
reduction methods for coupled machine tool models. MM Science Journal 2021:4652-4659.
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Balanced Truncation for Unstable Systems

Basic Principle

Given some positive semidefinite matrices P = STS, Q = RTR, compute balancing state-space
transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.
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Basic Principle

Given some positive semidefinite matrices P = STS, Q = RTR, compute balancing state-space
transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Classical Balanced Truncation (BT) [Mullis/Roberts 1976, Moore 1981]

P = controllability Gramian of system given by (A,B,C,D).

Q = observability Gramian of system given by (A,B,C,D).

If A is stable, P,Q solve dual Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0.
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Balanced Truncation for Unstable Systems

Basic Principle

Given some positive semidefinite matrices P = STS, Q = RTR, compute balancing state-space
transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

LQG Balanced Truncation (LQGBT) [Jonckheere/Silverman 1983]

P/Q = controllability/observability Gramian of closed-loop system based on LQG
compensator.

P,Q solve dual algebraic Riccati equations (AREs)

0 = AP + PAT − PCTCP +BTB,

0 = ATQ+QA−QBBTQ+ CTC.

Computable error bound:

‖[N M ]− [ N̂ M̂ ]‖H∞ ≤ 2
n∑

j=r+1

σLQG
j√

1 + (σLQG
j )2

,

where σLQG
j are the singular values of (PQ)

1
2 and G = M−1N and Ĝ = M̂−1N̂ are left

coprime factorizations.
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Balanced Truncation for Unstable Systems

Basic Principle

Given some positive semidefinite matrices P = STS, Q = RTR, compute balancing state-space
transformation so that

P = Q = diag(σ1, . . . , σn) = Σ, σ1 ≥ . . . ≥ σn ≥ 0,

and truncate corresponding realization at size r with σr > σr+1.

Closed-loop Balanced Truncation (CLBT) [Wortelboer 1994]

First, stabilize the system using LQR feedback:

ẋs(t) = (A−BBTXs)xs(t) +Bu(t), ys(t) = Cxs(t), (∗)

where Xs is the stabilizing solution of the LQR Riccati equation

ATX +XA−XBBTX + CTC = 0.

Then apply BT to the closed-loop system (∗) by solving the Lyapunov equations

(A−BBTXs)Ps + Ps(A−BBTXs)T +BBT = 0,

(A−BBTXs)TQs +Qs(A−BBTXs) + CTC = 0.

Observation: Ps can be computed without ever forming Xs!
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CLBT via the Matrix Sign Function

Theorem (Kenney/Laub/Jonckheere 1989, B. 2019)

Let (A,B) be stabilizable, (A,C) be detectable, and define the Hamiltonian matrix[
A −BBT

−CTC −AT

]
.

Then the unique stabilizing solution Xs to the LQR Riccati equation exists and is
symmetric positive semidefinite.

Hence, A−BBTXs is stable, the closed-loop Lyapunov equations

(A−BBTXs)Ps + Ps(A−BBTXs)T +BBT = 0,

(A−BBTXs)TQs +Qs(A−BBTXs) + CTC = 0,

have unique solutions Ps = PT
s ≥ 0, Qs = QT

s ≥ 0, resp., and it holds

sign(H) =

[
−I + 2PsXs −2Ps

2XsPsXs − 2Xs I − 2XsPs

]
.

But: Qs still would need Xs first!
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CLBT via the Matrix Sign Function
Where is Qs?

Recall:

sign(H) =

[
−I + 2PsXs −2Ps

2XsPsXs − 2Xs I − 2XsPs

]
.

Can neither get Qs from this, nor Xs without further computations.

But: using the stable1 closed-loop matrix A− YsC
TC obtained from the filter Riccati

equation, we obtain another stable LTI system.

ẋf (t) = (A− YsC
TC)xf (t) +Bu(t), yf (t) = Cxf (t). (•)

The observability Gramian Q̃s of (•) solves the Lyapunov equation

(A− YsC
TC)T Q̃+ Q̃(A− YsC

TC) + CTC = 0.

Now, analogously to Ps, Q̃s can be read off from the (1, 2)-block of the Hamiltonian
matrix associated to the filter Riccati equation, i.e. HT  [

∗ −2Q̃s

∗ ∗

]
= sign

(
HT
)

= sign(H)T =⇒ Q̃s = Xs −XsPsXs.

This suggests a new balanced truncation scheme CLBT2 using Ps, Q̃s as Gramians.

1The proof is analogous to that of the previous theorem.
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Numerical Examples
CD Player (SLICOT)

CD player data set from the SLICOT benchmark collectiona, with n = 120, m = p = 2.
We compute reduced-order models (ROMs) of order r = 30 using BT and LQGBT as
implemented in MORLAB [B.2006, Werner/B. 2020], and compare to the ”new” variant CLBT2.
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Numerical Examples
Earth Atmospheric Storm Track (SLICOT)

EADY data set from the SLICOT benchmark collectiona, with n = 598, m = p = 1.
We compute reduced-order models (ROMs) of order r = 17 using BT and LQGBT as
implemented in MORLAB [B.2006, Werner/B. 2020], and compare to the ”new” variant CLBT2.

Both examples indicate that LGQ BT and CLBT2 yield the same ROMs.
If this holds, CLBT2 ROM satisfies same error bound as LQGBT.

ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Earth_Atmosphere
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Conclusions and Outlook

New balancing scheme for unstable systems based on closed-loop balancing.
Gramians can be obtained from single evaluation of the matrix sign function of the
Hamiltonian matrix associated to the LTI system.

Numerical tests suggest equivalence of the reduced-order models to those obtained
by LQG BT.

Note: the Gramians differ!

So far: proof of equivalence under strong conditions (reachability & observability
plus . . . ) [B./Damm ongoing].

Further connections to balanced truncation for unstable systems based on frequency
domain definition of Gramians?

Implementation of CLBT2 via sign function method is computationally more
efficient than LQG BT.
But: no implementation strategy for large-scale sparse systems so far!
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Commercial: 3-Volume Handbook ”Model Order Reduction”

Edited by Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni, Gianluigi Rozza,
Wil Schilders, and Lúıs Miguel Silveira,

contains 30 tutorial chapters on modern model reduction techniques, methods,
applications, and software,

published by DeGruyter in 2021, ebook is fully Open Access!
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