

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

The Hamiltonian Extended Krylov Subspace Method (HEKS)

Peter Benner joint work with: Heike Faßbender, Michel-Niklas Senn (TU Braunschweig)

> CSC-DRI Seminar MPI Magdeburg 15 March 2022

arXiv:2202.12640 codes: https://doi.org/10.5281/zenodo.6261078 submitted to Electronic Journal of Linear Algebra (ELA)

f(A)v

for a large and sparse matrix A and a vector v (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach for large-scale computations: find a matrix $V \in \mathbb{R}^{n imes k}$ with orthogonal columns so that

 $f(A)v \approx V f(V^T A V) V^T v.$

- As $A_k = V^T A V \in \mathbb{R}^{k \times k}$, the evaluation of $V f(A_k) V^T v$ should be much faster than that of f(A)v.
- **Note:** The problem of approximating the action of f(A) to a vector is significantly different from that of approximating f(A) (see seminal Higham book).

f(A)v

for a large and sparse matrix A and a vector v (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach for large-scale computations: find a matrix $V\in\mathbb{R}^{n\times k}$ with orthogonal columns so that

 $f(A)v \approx V f(V^T A V) V^T v.$

- As $A_k = V^T A V \in \mathbb{R}^{k \times k}$, the evaluation of $V f(A_k) V^T v$ should be much faster than that of f(A)v.
- **Note:** The problem of approximating the action of f(A) to a vector is significantly different from that of approximating f(A) (see seminal Higham book).

f(A)v

for a large and sparse matrix A and a vector v (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach for large-scale computations: find a matrix $V\in\mathbb{R}^{n\times k}$ with orthogonal columns so that

 $f(A)v \approx V f(V^T A V) V^T v.$

As $A_k = V^T A V \in \mathbb{R}^{k \times k}$, the evaluation of $V f(A_k) V^T v$ should be much faster than that of f(A)v.

Note: The problem of approximating the action of f(A) to a vector is significantly different from that of approximating f(A) (see seminal Higham book).

f(A)v

for a large and sparse matrix A and a vector v (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach for large-scale computations: find a matrix $V\in\mathbb{R}^{n\times k}$ with orthogonal columns so that

 $f(A)v \approx V f(V^T A V) V^T v.$

As $A_k = V^T A V \in \mathbb{R}^{k \times k}$, the evaluation of $V f(A_k) V^T v$ should be much faster than that of f(A)v.

Note: The problem of approximating the action of f(A) to a vector is significantly different from that of approximating f(A) (see seminal Higham book).

f(A)v

for a large and sparse matrix A and a vector x (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach: find a matrix $V \in \mathbb{R}^{n \times k}$ with orthogonal columns so that

$$f(A)x \approx V f(V^T A V) V^T v. \tag{1}$$

Use, e.g., Arnoldi method to compute V as an orthogonal basis of Krylov subspace

$$\mathcal{K}_k(A, v) = \operatorname{span}\{v, Av, A^2v, \dots, A^{k-1}v\}.$$

As $Ve_1 = v/||v||_2$, (1) simplifies to

CSC

$$f(A)v \approx \|v\|_2 V f(V^T A V) e_1.$$

f(A)v

for a large and sparse matrix A and a vector x (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach: find a matrix $V \in \mathbb{R}^{n \times k}$ with orthogonal columns so that

$$f(A)x \approx V f(V^T A V) V^T v.$$
⁽¹⁾

Use, e.g., Arnoldi method to compute V as an orthogonal basis of Krylov subspace

$$\mathcal{K}_k(A, v) = \operatorname{span}\{v, Av, A^2v, \dots, A^{k-1}v\}.$$

As $Ve_1 = v/||v||_2$, (1) simplifies to

CSC

 $f(A)v \approx \|v\|_2 V f(V^T A V) e_1.$

f(A)v

for a large and sparse matrix A and a vector x (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach: find a matrix $V \in \mathbb{R}^{n \times k}$ with orthogonal columns so that

$$f(A)x \approx V f(V^T A V) V^T v.$$
⁽¹⁾

Use, e.g., Arnoldi method to compute V as an orthogonal basis of Krylov subspace

$$\mathcal{K}_k(A, v) = \operatorname{span}\{v, Av, A^2v, \dots, A^{k-1}v\}.$$

As $Ve_1 = v/||v||_2$, (1) simplifies to

CSC

$$f(A)v \approx ||v||_2 V f(V^T A V) e_1.$$

f(A)v

for a large and sparse matrix A and a vector x (where we assume that f is sufficiently regular so that f(A) is well defined).

Typical approach: find a matrix $V \in \mathbb{R}^{n imes k}$ with orthogonal columns so that

$$f(A)x \approx V f(V^T A V) V^T v.$$

[Druskin/Knizhnerman 1998] suggest to use orthogonal basis of the extended Krylov subspace

$$\mathcal{K}_k(A, v) + \mathcal{K}_k(A^{-1}, A^{-1}v) = \operatorname{span}\{A^{-k}v, \dots, A^{-2}v, A^{-1}v, v, Av, A^2v, \dots, A^{k-1}v\}.$$

Given v, A, set $\mathbf{V}_1 = \operatorname{gram.sh}([v, A^{-1}v]), \mathcal{V}_0 = \emptyset$. For m = 1, 2, ...,1. $\mathcal{V}_m = [\mathcal{V}_{m-1}, \mathbf{V}_m]$ 2. Set $\mathcal{T}_m = \mathcal{V}_m^T A \mathcal{V}_m$ 3. Compute $y_m = f(\mathcal{T}_m)e_1$ 4. If converged then $u_m = \mathcal{V}_m y_m$ and stop 5. $\mathbf{V}'_{m+1} = [A\mathbf{V}_m e_1, A^{-1}\mathbf{V}_m e_2]$ 6. $\hat{\mathbf{V}}_{m+1} \leftarrow \text{orthogonalize } \mathbf{V}'_{m+1} \text{ w.r.to } \mathcal{V}_m$ 7. $\mathbf{V}_{m+1} = \operatorname{gram.sh}(\hat{\mathbf{V}}_{m+1})$

At each iteration, two new vectors are added to the space.

- Unless breakdown occurs, at the *m*th iteration the method has constructed an orthonormal basis of dimension 2m, given by $\mathcal{V}_m = [V_1, V_2, \dots, V_m], V_i \in \mathbb{R}^{n \times 2}$.
- The orthogonalization is performed first with respect to the previous basis vectors, and then within the new block of 2 vectors.
- Arnoldi-like recurrence

$$A\mathcal{V}_m = \mathcal{V}_m \mathcal{T}_m + V_{m+1} \tau_{m+1,1} E_m^T$$

Given v, A, set $\mathbf{V}_1 = \operatorname{gram.sh}([v, A^{-1}v]), \mathcal{V}_0 = \emptyset$. For m = 1, 2, ...,1. $\mathcal{V}_m = [\mathcal{V}_{m-1}, \mathbf{V}_m]$ 2. Set $\mathcal{T}_m = \mathcal{V}_m^T \mathcal{V}_m$ 3. Compute $y_m = f(\mathcal{T}_m)e_1$ 4. If converged then $u_m = \mathcal{V}_m y_m$ and stop 5. $\mathbf{V}'_{m+1} = [A\mathbf{V}_m e_1, A^{-1}\mathbf{V}_m e_2]$ 6. $\widehat{\mathbf{V}}_{m+1} \leftarrow \text{orthogonalize } \mathbf{V}'_{m+1} \text{ w.r.to } \mathcal{V}_m$ 7. $\mathbf{V}_{m+1} = \operatorname{gram.sh}(\widehat{\mathbf{V}}_{m+1})$

At each iteration, two new vectors are added to the space.

- Unless breakdown occurs, at the *m*th iteration the method has constructed an orthonormal basis of dimension 2m, given by $\mathcal{V}_m = [V_1, V_2, \dots, V_m], V_i \in \mathbb{R}^{n \times 2}$.
- The orthogonalization is performed first with respect to the previous basis vectors, and then within the new block of 2 vectors.
- Arnoldi-like recurrence

$$A\mathcal{V}_m = \mathcal{V}_m \mathcal{T}_m + V_{m+1} \tau_{m+1,1} E_m^T$$

Given v, A, set $\mathbf{V}_1 = \operatorname{gram.sh}([v, A^{-1}v]), \mathcal{V}_0 = \emptyset$. For m = 1, 2, ...,1. $\mathcal{V}_m = [\mathcal{V}_{m-1}, \mathbf{V}_m]$ 2. Set $\mathcal{T}_m = \mathcal{V}_m^T A \mathcal{V}_m$ 3. Compute $y_m = f(\mathcal{T}_m)e_1$ 4. If converged then $u_m = \mathcal{V}_m y_m$ and stop 5. $\mathbf{V}'_{m+1} = [A\mathbf{V}_m e_1, A^{-1}\mathbf{V}_m e_2]$ 6. $\widehat{\mathbf{V}}_{m+1} \leftarrow \text{orthogonalize } \mathbf{V}'_{m+1} \text{ w.r.to } \mathcal{V}_m$ 7. $\mathbf{V}_{m+1} = \operatorname{gram.sh}(\widehat{\mathbf{V}}_{m+1})$

- At each iteration, two new vectors are added to the space.
- Unless breakdown occurs, at the *m*th iteration the method has constructed an orthonormal basis of dimension 2m, given by $\mathcal{V}_m = [V_1, V_2, \dots, V_m], V_i \in \mathbb{R}^{n \times 2}$.
- The orthogonalization is performed first with respect to the previous basis vectors, and then within the new block of 2 vectors.
- Arnoldi-like recurrence

$$A\mathcal{V}_m = \mathcal{V}_m \mathcal{T}_m + V_{m+1} \tau_{m+1,1} E_m^T$$

Given v, A, set $\mathbf{V}_1 = \operatorname{gram.sh}([v, A^{-1}v]), \mathcal{V}_0 = \emptyset$. For m = 1, 2, ...,1. $\mathcal{V}_m = [\mathcal{V}_{m-1}, \mathbf{V}_m]$ 2. Set $\mathcal{T}_m = \mathcal{V}_m^T A \mathcal{V}_m$ 3. Compute $y_m = f(\mathcal{T}_m)e_1$ 4. If converged then $u_m = \mathcal{V}_m y_m$ and stop 5. $\mathbf{V}'_{m+1} = [A\mathbf{V}_m e_1, A^{-1}\mathbf{V}_m e_2]$ 6. $\hat{\mathbf{V}}_{m+1} \leftarrow \text{orthogonalize } \mathbf{V}'_{m+1} \text{ w.r.to } \mathcal{V}_m$ 7. $\mathbf{V}_{m+1} = \operatorname{gram.sh}(\hat{\mathbf{V}}_{m+1})$

- At each iteration, two new vectors are added to the space.
- Unless breakdown occurs, at the *m*th iteration the method has constructed an orthonormal basis of dimension 2m, given by $\mathcal{V}_m = [V_1, V_2, \dots, V_m], V_i \in \mathbb{R}^{n \times 2}$.
- The orthogonalization is performed first with respect to the previous basis vectors, and then within the new block of 2 vectors.

Arnoldi-like recurrence

$$A\mathcal{V}_m = \mathcal{V}_m \mathcal{T}_m + V_{m+1} \tau_{m+1,1} E_m^T$$

Given v, A, set $\mathbf{V}_1 = \operatorname{gram.sh}([v, A^{-1}v]), \mathcal{V}_0 = \emptyset$. For m = 1, 2, ...,1. $\mathcal{V}_m = [\mathcal{V}_{m-1}, \mathbf{V}_m]$ 2. Set $\mathcal{T}_m = \mathcal{V}_m^T A \mathcal{V}_m$ 3. Compute $y_m = f(\mathcal{T}_m)e_1$ 4. If converged then $u_m = \mathcal{V}_m y_m$ and stop 5. $\mathbf{V}'_{m+1} = [A \mathbf{V}_m e_1, A^{-1} \mathbf{V}_m e_2]$ 6. $\hat{\mathbf{V}}_{m+1} \leftarrow \text{orthogonalize } \mathbf{V}'_{m+1} \text{ w.r.to } \mathcal{V}_m$ 7. $\mathbf{V}_{m+1} = \operatorname{gram.sh}(\hat{\mathbf{V}}_{m+1})$

- At each iteration, two new vectors are added to the space.
- Unless breakdown occurs, at the *m*th iteration the method has constructed an orthonormal basis of dimension 2m, given by $\mathcal{V}_m = [V_1, V_2, \dots, V_m], V_i \in \mathbb{R}^{n \times 2}$.
- The orthogonalization is performed first with respect to the previous basis vectors, and then within the new block of 2 vectors.
- Arnoldi-like recurrence

$$A\mathcal{V}_m = \mathcal{V}_m \mathcal{T}_m + V_{m+1} \tau_{m+1,1} E_m^T$$

- $H \in \mathbb{R}^{2n \times 2n}$ is Hamiltonian matrix iff
 - $J_n H = (J_n H)^T$, where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ and I_n is the $n \times n$ identity matrix, or, equivalently,
 - there exist matrices $E, B = B^T, C = C^T \in \mathbb{R}^{n \times n}$ such that $H = \begin{bmatrix} E & B \\ C & -E^T \end{bmatrix}$.
 - I is orthogonal and skew-symmetric $I^T I^{-1} I$
- Let $V \in \mathbb{R}^{2n \times 2m}$ have orthogonal columns and $H \in \mathbb{R}^{2n \times 2n}$ Hamiltonian. Then $V^T H V \in \mathbb{R}^{2m \times 2m}$ is (in general) not Hamiltonian.
- A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic* if $S^T J_n S = J_n$. Its columns are *J*-orthogonal.
- A symplectic matrix S is nonsingular with $S^{-1} = J_n^T S^T J_n$.
- Let S be symplectic and H be Hamiltonian. Then $S^{-1}HS$ is Hamiltonian again.
- Let $S \in \mathbb{R}^{2n \times 2m}$, $m \le n$, have *J*-orthogonal columns, $S^T J_n S = J_m$. Let $H \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian.
 - 1. The matrix $J_m^T S^T J_n$ is the left inverse of S, $J_m^T S^T J_n S = I_{2m}$.
 - 2. The matrix $(J_m^T S^T J_n)HS$ is Hamiltonian.

- $H \in \mathbb{R}^{2n \times 2n}$ is Hamiltonian matrix iff
 - $J_n H = (J_n H)^T$, where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ and I_n is the $n \times n$ identity matrix, or, equivalently,
 - there exist matrices E, $B = B^T$, $C = C^T \in \mathbb{R}^{n \times n}$ such that $H = \begin{bmatrix} E & B \\ C & -E^T \end{bmatrix}$.

- In is orthogonal and skew-symmetric, $J_n^T = J_n^{-1} = -J_n$.
- Let $V \in \mathbb{R}^{2n \times 2m}$ have orthogonal columns and $H \in \mathbb{R}^{2n \times 2n}$ Hamiltonian. Then $V^T H V \in \mathbb{R}^{2m \times 2m}$ is (in general) not Hamiltonian.
- A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic* if $S^T J_n S = J_n$. Its columns are *J*-orthogonal.
- A symplectic matrix S is nonsingular with $S^{-1} = J_n^T S^T J_n$.
- Let S be symplectic and H be Hamiltonian. Then $S^{-1}HS$ is Hamiltonian again.
- Let $S \in \mathbb{R}^{2n \times 2m}$, $m \le n$, have *J*-orthogonal columns, $S^T J_n S = J_m$. Let $H \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian.
 - 1. The matrix $J_m^T S^T J_n$ is the left inverse of S, $J_m^T S^T J_n S = I_{2m}$.
 - 2. The matrix $(J_m^T S^T J_n)HS$ is Hamiltonian.

- $H \in \mathbb{R}^{2n \times 2n}$ is Hamiltonian matrix iff
 - $J_n H = (J_n H)^T$, where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ and I_n is the $n \times n$ identity matrix, or, equivalently,
 - there exist matrices $E, B = B^T, C = C^T \in \mathbb{R}^{n \times n}$ such that $H = \begin{bmatrix} E & B \\ C & -E^T \end{bmatrix}$.

- J_n is orthogonal and skew-symmetric, $J_n^T = J_n^{-1} = -J_n$.
- Let $V \in \mathbb{R}^{2n \times 2m}$ have orthogonal columns and $H \in \mathbb{R}^{2n \times 2n}$ Hamiltonian. Then $V^T H V \in \mathbb{R}^{2m \times 2m}$ is (in general) not Hamiltonian.
- A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic* if $S^T J_n S = J_n$. Its columns are *J*-orthogonal.
- A symplectic matrix S is nonsingular with $S^{-1} = J_n^T S^T J_n$.
- Let S be symplectic and H be Hamiltonian. Then $S^{-1}HS$ is Hamiltonian again.
- Let $S \in \mathbb{R}^{2n \times 2m}$, $m \le n$, have *J*-orthogonal columns, $S^T J_n S = J_m$. Let $H \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian.
 - 1. The matrix $J_m^T S^T J_n$ is the left inverse of S, $J_m^T S^T J_n S = I_{2m}$.
 - 2. The matrix $(J_m^T S^T J_n)HS$ is Hamiltonian.

- $H \in \mathbb{R}^{2n \times 2n}$ is Hamiltonian matrix iff
 - $J_n H = (J_n H)^T$, where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ and I_n is the $n \times n$ identity matrix, or, equivalently,

• there exist matrices $E, B = B^T, C = C^T \in \mathbb{R}^{n \times n}$ such that $H = \begin{bmatrix} E & B \\ C & -E^T \end{bmatrix}$.

- J_n is orthogonal and skew-symmetric, $J_n^T = J_n^{-1} = -J_n$.
- Let $V \in \mathbb{R}^{2n \times 2m}$ have orthogonal columns and $H \in \mathbb{R}^{2n \times 2n}$ Hamiltonian. Then $V^T H V \in \mathbb{R}^{2m \times 2m}$ is (in general) not Hamiltonian.
- A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic* if $S^T J_n S = J_n$. Its columns are *J*-orthogonal.
- A symplectic matrix S is nonsingular with $S^{-1} = J_n^T S^T J_n$.
- Let S be symplectic and H be Hamiltonian. Then $S^{-1}HS$ is Hamiltonian again.
- Let $S \in \mathbb{R}^{2n \times 2m}$, $m \le n$, have *J*-orthogonal columns, $S^T J_n S = J_m$. Let $H \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian.
 - 1. The matrix $J_m^T S^T J_n$ is the left inverse of S, $J_m^T S^T J_n S = I_{2m}$.
 - 2. The matrix $(J_m^T S^T J_n)HS$ is Hamiltonian.

- $H \in \mathbb{R}^{2n \times 2n}$ is Hamiltonian matrix iff
 - $J_n H = (J_n H)^T$, where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ and I_n is the $n \times n$ identity matrix, or, equivalently,
 - there exist matrices $E, B = B^T, C = C^T \in \mathbb{R}^{n \times n}$ such that $H = \begin{bmatrix} E & B \\ C & -E^T \end{bmatrix}$.

- J_n is orthogonal and skew-symmetric, $J_n^T = J_n^{-1} = -J_n$.
- Let $V \in \mathbb{R}^{2n \times 2m}$ have orthogonal columns and $H \in \mathbb{R}^{2n \times 2n}$ Hamiltonian. Then $V^T H V \in \mathbb{R}^{2m \times 2m}$ is (in general) not Hamiltonian.
- A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic* if $S^T J_n S = J_n$. Its columns are *J*-orthogonal.
- A symplectic matrix S is nonsingular with $S^{-1} = J_n^T S^T J_n$.
- Let S be symplectic and H be Hamiltonian. Then $S^{-1}HS$ is Hamiltonian again.
- Let $S \in \mathbb{R}^{2n \times 2m}$, $m \le n$, have *J*-orthogonal columns, $S^T J_n S = J_m$. Let $H \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian.
 - 1. The matrix $J_m^T S^T J_n$ is the left inverse of S, $J_m^T S^T J_n S = I_{2m}$.
 - 2. The matrix $(J_m^T S^T J_n)HS$ is Hamiltonian.

- $H \in \mathbb{R}^{2n \times 2n}$ is Hamiltonian matrix iff
 - $J_n H = (J_n H)^T$, where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ and I_n is the $n \times n$ identity matrix, or, equivalently,

• there exist matrices $E, B = B^T, C = C^T \in \mathbb{R}^{n \times n}$ such that $H = \begin{bmatrix} E & B \\ C & -E^T \end{bmatrix}$.

- J_n is orthogonal and skew-symmetric, $J_n^T = J_n^{-1} = -J_n$.
- Let $V \in \mathbb{R}^{2n \times 2m}$ have orthogonal columns and $H \in \mathbb{R}^{2n \times 2n}$ Hamiltonian. Then $V^T H V \in \mathbb{R}^{2m \times 2m}$ is (in general) not Hamiltonian.
- A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic* if $S^T J_n S = J_n$. Its columns are *J*-orthogonal.
- A symplectic matrix S is nonsingular with $S^{-1} = J_n^T S^T J_n$.
- Let S be symplectic and H be Hamiltonian. Then $S^{-1}HS$ is Hamiltonian again.

Let $S \in \mathbb{R}^{2n \times 2m}$, $m \le n$, have *J*-orthogonal columns, $S^T J_n S = J_m$. Let $H \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian.

- 1. The matrix $J_{m,2}^T S_{m,2}^T J_n$ is the left inverse of S, $J_m^T S^T J_n S = I_{2m}$.
- 2. The matrix $(J_m^T S^T J_n) HS$ is Hamiltonian.

- $H \in \mathbb{R}^{2n \times 2n}$ is Hamiltonian matrix iff
 - $J_n H = (J_n H)^T$, where $J_n = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \in \mathbb{R}^{2n \times 2n}$ and I_n is the $n \times n$ identity matrix, or, equivalently.

• there exist matrices $E, B = B^T, C = C^T \in \mathbb{R}^{n \times n}$ such that $H = \begin{bmatrix} E & B \\ C & -E^T \end{bmatrix}$.

- J_n is orthogonal and skew-symmetric, $J_n^T = J_n^{-1} = -J_n$.
- Let $V \in \mathbb{R}^{2n \times 2m}$ have orthogonal columns and $H \in \mathbb{R}^{2n \times 2n}$ Hamiltonian. Then $V^T H V \in \mathbb{R}^{2m \times 2m}$ is (in general) not Hamiltonian.
- A matrix $S \in \mathbb{R}^{2n \times 2n}$ is called *symplectic* if $S^T J_n S = J_n$. Its columns are J-orthogonal.
- A symplectic matrix S is nonsingular with $S^{-1} = J_n^T S^T J_n$.
- Let S be symplectic and H be Hamiltonian. Then $S^{-1}HS$ is Hamiltonian again.
- Let $S \in \mathbb{R}^{2n \times 2m}$, $m \leq n$, have J-orthogonal columns, $S^T J_n S = J_m$. Let $H \in \mathbb{R}^{2n \times 2n}$ be Hamiltonian.
 - 1. The matrix $J_m^T S^T J_n$ is the left inverse of S, $J_m^T S^T J_n S = I_{2m}$. 2. The matrix $(J_m^T S^T J_n) HS$ is Hamiltonian.

J-orthogonal basis of Krylov subspace $\mathcal{K}_{2r}(H, u_1) = \operatorname{span}\{u_1, Hu_1, \dots, H^{2r-1}u_1\}$.

 $lacksymbol{I}$ Generates $S=[U_r \;\;V_r]$ with $U_r,V_r\in \mathbb{R}^{2n imes r}$ with J-orthogonal columns such that

$$H[U_r \ V_r] = [U_r \ V_r] \begin{bmatrix} G^{(r)} & T^{(r)} \\ D^{(r)} & -G^{(r)} \end{bmatrix} + u_{r+1} t_{r+1,r} e_{2r}^T$$

- Short recurrence to compute the next vectors u_{r+1} and v_{r+1} of the basis involving only the three preceding vectors v_r, u_r, u_{r-1} .
- **Requires** 2r matrix-vector products and 3r inner products.
- Arnoldi method requires 2r matrix-vector products and r^2 inner products.
- $f(H)u_1 \approx \|u_1\|_2 Sf(J_r^T S^T J_n HS)e_1 \quad \text{ as } \quad J_r^T(S^T(J_n u_1)) = \|u_1\|_2 e_1.$

- J-orthogonal basis of Krylov subspace $\mathcal{K}_{2r}(H, u_1) = \operatorname{span}\{u_1, Hu_1, \dots, H^{2r-1}u_1\}$.
- Generates $S = [U_r \ V_r]$ with $U_r, V_r \in \mathbb{R}^{2n \times r}$ with J-orthogonal columns such that

$$H[U_r \ V_r] = [U_r \ V_r] \begin{bmatrix} G^{(r)} & T^{(r)} \\ D^{(r)} & -G^{(r)} \end{bmatrix} + u_{r+1} t_{r+1,r} e_{2r}^T$$

- Short recurrence to compute the next vectors u_{r+1} and v_{r+1} of the basis involving only the three preceding vectors v_r, u_r, u_{r-1} .
- **Requires** 2r matrix-vector products and 3r inner products.
- Arnoldi method requires 2r matrix-vector products and r^2 inner products.
- $f(H)u_1 \approx \|u_1\|_2 Sf(J_r^T S^T J_n HS)e_1 \quad \text{ as } \quad J_r^T(S^T(J_n u_1)) = \|u_1\|_2 e_1.$

- J-orthogonal basis of Krylov subspace $\mathcal{K}_{2r}(H, u_1) = \operatorname{span}\{u_1, Hu_1, \dots, H^{2r-1}u_1\}$.
- Generates $S = [U_r \ V_r]$ with $U_r, V_r \in \mathbb{R}^{2n \times r}$ with J-orthogonal columns such that

$$H[U_r \ V_r] = [U_r \ V_r] \begin{bmatrix} G^{(r)} & T^{(r)} \\ D^{(r)} & -G^{(r)} \end{bmatrix} + u_{r+1} t_{r+1,r} e_{2r}^T$$

- Short recurrence to compute the next vectors u_{r+1} and v_{r+1} of the basis involving only the three preceding vectors v_r, u_r, u_{r-1} .
- **Requires** 2r matrix-vector products and 3r inner products.
- Arnoldi method requires 2r matrix-vector products and r^2 inner products.
- $f(H)u_1 \approx \|u_1\|_2 Sf(J_r^T S^T J_n HS)e_1 \quad \text{ as } \quad J_r^T(S^T(J_n u_1)) = \|u_1\|_2 e_1.$

- J-orthogonal basis of Krylov subspace $\mathcal{K}_{2r}(H, u_1) = \operatorname{span}\{u_1, Hu_1, \dots, H^{2r-1}u_1\}$.
- Generates $S = [U_r \ V_r]$ with $U_r, V_r \in \mathbb{R}^{2n \times r}$ with J-orthogonal columns such that

$$H[U_r \ V_r] = [U_r \ V_r] \begin{bmatrix} G^{(r)} & T^{(r)} \\ D^{(r)} & -G^{(r)} \end{bmatrix} + u_{r+1} t_{r+1,r} e_{2r}^T$$

- Short recurrence to compute the next vectors u_{r+1} and v_{r+1} of the basis involving only the three preceding vectors v_r, u_r, u_{r-1} .
- Requires 2r matrix-vector products and 3r inner products.
- Arnoldi method requires 2r matrix-vector products and r^2 inner products. $f(H)u_1 \approx ||u_1||_2 Sf(J_r^T S^T J_n HS)e_1$ as $J_r^T(S^T(J_n u_1)) = ||u_1||_2 e_1$.

- J-orthogonal basis of Krylov subspace $\mathcal{K}_{2r}(H, u_1) = \operatorname{span}\{u_1, Hu_1, \dots, H^{2r-1}u_1\}$.
- Generates $S = [U_r \ V_r]$ with $U_r, V_r \in \mathbb{R}^{2n \times r}$ with J-orthogonal columns such that

$$H[U_r \ V_r] = [U_r \ V_r] \begin{bmatrix} G^{(r)} & T^{(r)} \\ D^{(r)} & -G^{(r)} \end{bmatrix} + u_{r+1} t_{r+1,r} e_{2r}^T$$

- Short recurrence to compute the next vectors u_{r+1} and v_{r+1} of the basis involving only the three preceding vectors v_r, u_r, u_{r-1} .
- Requires 2r matrix-vector products and 3r inner products.
- Arnoldi method requires 2r matrix-vector products and r^2 inner products.

 $f(H)u_1 \approx \|u_1\|_2 Sf(J_r^T S^T J_n HS)e_1 \quad \text{ as } \quad J_r^T(S^T(J_n u_1)) = \|u_1\|_2 e_1.$

- J-orthogonal basis of Krylov subspace $\mathcal{K}_{2r}(H, u_1) = \operatorname{span}\{u_1, Hu_1, \dots, H^{2r-1}u_1\}$.
- Generates $S = [U_r \ V_r]$ with $U_r, V_r \in \mathbb{R}^{2n \times r}$ with J-orthogonal columns such that

$$H[U_r \ V_r] = [U_r \ V_r] \begin{bmatrix} G^{(r)} & T^{(r)} \\ D^{(r)} & -G^{(r)} \end{bmatrix} + u_{r+1} t_{r+1,r} e_{2r}^T$$

- Short recurrence to compute the next vectors u_{r+1} and v_{r+1} of the basis involving only the three preceding vectors v_r, u_r, u_{r-1} .
- Requires 2r matrix-vector products and 3r inner products.
- Arnoldi method requires 2r matrix-vector products and r^2 inner products.
- $f(H)u_1 \approx \|u_1\|_2 Sf(J_r^T S^T J_n HS)e_1$ as $J_r^T(S^T(J_n u_1)) = \|u_1\|_2 e_1.$

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

Step 1: Start with the two vectors in $\mathcal{K}_2(H,u_1)$ and construct

 $S_1 = \begin{bmatrix} u_1 \mid v_1 \end{bmatrix} \in \mathbb{R}^{2n \times 2}$

with $S_1^TJ_nS_1=J_1$ and span $\{S_1\}=\mathcal{K}_2(H,oldsymbol{u}_1).$ (r=1,s=0)

Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1},H^{-1}u_1)$ and construct

 $S_2 = \begin{bmatrix} y_1 & u_1 & x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 & X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

Let a Hamiltonian matrix $H \in \mathbb{R}^{2n \times 2n}$ and a vector $u_1 \in \mathbb{R}^{2n}$ be given.

Construct $S_{r+s} \in \mathbb{R}^{2n \times 2(r+s)}$ with *J*-orthonormal columns such that the columns of S_{r+s} span the same subspace as $\mathcal{K}_{2r}(H, u_1) + \mathcal{K}_{2s}(H^{-1}, H^{-1}u_1)$. Assume that dim $\mathcal{K}_{2r}(H, u_1) = 2r$ and dim $\mathcal{K}_{2s}(H^{-1}, H^{-1}u_1) = 2s$.

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

Step 1: Start with the two vectors in $\mathcal{K}_2(H,u_1)$ and construct

 $S_1 = ig[u_1 \mid v_1ig] \in \mathbb{R}^{2n imes 2}$

with $S_1^T J_n S_1 = J_1$ and ${
m span}\{S_1\} = {\cal K}_2(H,u_1).$ (r=1,s=0) .

Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1},H^{-1}u_1)$ and construct

 $S_2 = \begin{bmatrix} y_1 & u_1 \mid x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 \mid X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

Let a Hamiltonian matrix $H \in \mathbb{R}^{2n imes 2n}$ and a vector $u_1 \in \mathbb{R}^{2n}$ be given.

Construct $S_{r+s} \in \mathbb{R}^{2n \times 2(r+s)}$ with *J*-orthonormal columns such that the columns of S_{r+s} span the same subspace as $\mathcal{K}_{2r}(H, u_1) + \mathcal{K}_{2s}(H^{-1}, H^{-1}u_1)$.

Assume that dim $\mathcal{K}_{2r}(H, u_1) = 2r$ and dim $\mathcal{K}_{2s}(H^{-1}, H^{-1}u_1) = 2s$.

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

Step 1: Start with the two vectors in $\mathcal{K}_2(H,u_1)$ and construct

 $S_1 = \begin{bmatrix} u_1 \mid v_1 \end{bmatrix} \in \mathbb{R}^{2n imes 2}$

with $S_1^T J_n S_1 = J_1$ and span $\{S_1\} = \mathcal{K}_2(H, u_1).$ (r=1,s=0)

Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1},H^{-1}u_1)$ and construct

 $S_2 = \begin{bmatrix} y_1 & u_1 \mid x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 \mid X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

cep 1: Start with the two vectors in $\mathcal{K}_2(H,u_1)$ and construct

 $S_1 = \begin{bmatrix} u_1 \mid v_1 \end{bmatrix} \in \mathbb{R}^{2n \times 2}$

with $S_1^T J_n S_1 = J_1$ and span $\{S_1\} = \mathcal{K}_2(H, u_1)$. (r = 1, s = 0)Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1}, H^{-1}u_1)$ and construct

 $S_2 = \begin{bmatrix} y_1 & u_1 & x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 & X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

Step 1: Start with the two vectors in $\mathcal{K}_2(H,u_1)$ and construct

 $S_1 = \left[u_1 \mid v_1\right] \in \mathbb{R}^{2n \times 2}$

with $S_1^T J_n S_1 = J_1$ and span $\{S_1\} = \mathcal{K}_2(H, u_1)$. (r = 1, s = 0)

Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1}, H^{-1}u_1)$ and construct

$$S_2 = \begin{bmatrix} y_1 & u_1 \mid x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 \mid X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

Step 1: Start with the two vectors in $\mathcal{K}_2(H, u_1)$ and construct

 $S_1 = \left[u_1 \mid v_1\right] \in \mathbb{R}^{2n \times 2}$

with $S_1^T J_n S_1 = J_1$ and span $\{S_1\} = \mathcal{K}_2(H, u_1)$. (r = 1, s = 0)

Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1}, H^{-1}u_1)$ and construct

$$S_2 = \begin{bmatrix} y_1 & u_1 \mid x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 \mid X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

Step 1: Start with the two vectors in $\mathcal{K}_2(H, u_1)$ and construct

 $S_1 = \begin{bmatrix} u_1 \mid v_1 \end{bmatrix} \in \mathbb{R}^{2n \times 2}$

with $S_1^T J_n S_1 = J_1$ and span $\{S_1\} = \mathcal{K}_2(H, u_1)$. (r = 1, s = 0)

Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1}, H^{-1}u_1)$ and construct

$$S_2 = \begin{bmatrix} y_1 & u_1 \mid x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 \mid X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

In [Meister 2011], it is suggested to construct S_{r+s} in the following way:

Step 1: Start with the two vectors in $\mathcal{K}_2(H, u_1)$ and construct

$$S_1 = \begin{bmatrix} u_1 \mid v_1 \end{bmatrix} \in \mathbb{R}^{2n \times 2}$$

with $S_1^T J_n S_1 = J_1$ and span $\{S_1\} = \mathcal{K}_2(H, u_1)$. (r = 1, s = 0)

Step 2: Take the two vectors in $\mathcal{K}_2(H^{-1}, H^{-1}u_1)$ and construct

$$S_2 = \begin{bmatrix} y_1 & u_1 \mid x_1 & v_1 \end{bmatrix} = \begin{bmatrix} Y_1 & U_1 \mid X_1 & V_1 \end{bmatrix} \in \mathbb{R}^{2n \times 4}$$

with $S_2^T J_n S_2 = J_2$ and span $\{S_2\} = \mathcal{K}_2(H, u_1) + \mathcal{K}_2(H^{-1}, H^{-1}u_1)$. (r = s = 1)

$$S_{2k} = \begin{bmatrix} Y_k & U_k \mid X_k & V_k \end{bmatrix} \in \mathbb{R}^{2n \times 4k}, \qquad Y_k, U_k, X_k, V_k \in \mathbb{R}^{2n \times k}$$

with J-orthonormal columns has been constructed such that its columns span the same space as $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$.

Repeat the following steps until done:

• Construct u_{k+1} and v_{k+1} and set

$$S_{2k+1} = \begin{bmatrix} Y_k & U_k & u_{k+1} \mid X_k & V_k & v_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} Y_k & U_{k+1} \mid X_k & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+2}$$

such that $S_{2k+1}^T J_n S_{2k+1} = J_{2k+1}$ and

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

• Construct y_{k+1} and x_{k+1} and set

$$S_{2k+2} = \begin{bmatrix} y_{k+1} & Y_k & U_{k+1} | x_{k+1} & X_k & V_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} Y_{k+1} & U_{k+1} | X_{k+1} & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+4}$$

such that $S_{2k+2}^T J_n S_{2k+2} = J_{2k+2}$ and

span{ S_{2k+2} } = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k+2}(H^{-1}, H^{-1}u_1).$

$$S_{2k} = \begin{bmatrix} Y_k & U_k \mid X_k & V_k \end{bmatrix} \in \mathbb{R}^{2n \times 4k}, \qquad Y_k, U_k, X_k, V_k \in \mathbb{R}^{2n \times k}$$

with J-orthonormal columns has been constructed such that its columns span the same space as $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$.

Repeat the following steps until done:

• Construct
$$u_{k+1}$$
 and v_{k+1} and set

$$S_{2k+1} = \begin{bmatrix} Y_k & U_k & u_{k+1} \mid X_k & V_k & v_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} Y_k & U_{k+1} \mid X_k & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+2}$$

such that $S_{2k+1}^T J_n S_{2k+1} = J_{2k+1}$ and

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

• Construct y_{k+1} and x_{k+1} and set

$$S_{2k+2} = \begin{bmatrix} y_{k+1} & Y_k & U_{k+1} | x_{k+1} & X_k & V_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} Y_{k+1} & U_{k+1} | X_{k+1} & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+4}$$

such that $S_{2k+2}^T J_n S_{2k+2} = J_{2k+2}$ and

span{ S_{2k+2} } = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k+2}(H^{-1}, H^{-1}u_1).$

$$S_{2k} = \begin{bmatrix} Y_k & U_k \mid X_k & V_k \end{bmatrix} \in \mathbb{R}^{2n \times 4k}, \qquad Y_k, U_k, X_k, V_k \in \mathbb{R}^{2n \times k}$$

with J-orthonormal columns has been constructed such that its columns span the same space as $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$.

Repeat the following steps until done:

Construct u_{k+1} and v_{k+1} and set

$$S_{2k+1} = \begin{bmatrix} Y_k & U_k & u_{k+1} \mid X_k & V_k & v_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} Y_k & U_{k+1} \mid X_k & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+2}$$

such that $S_{2k+1}^T J_n S_{2k+1} = J_{2k+1}$ and

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

Construct y_{k+1} and x_{k+1} and set

$$S_{2k+2} = \begin{bmatrix} y_{k+1} & Y_k & U_{k+1} | x_{k+1} & X_k & V_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} Y_{k+1} & U_{k+1} | X_{k+1} & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+4}$$

such that $S_{2k+2}^T J_n S_{2k+2} = J_{2k+2}$ and

span{ S_{2k+2} } = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k+2}(H^{-1}, H^{-1}u_1).$

$$S_{2k} = \begin{bmatrix} Y_k & U_k \mid X_k & V_k \end{bmatrix} \in \mathbb{R}^{2n \times 4k}, \qquad Y_k, U_k, X_k, V_k \in \mathbb{R}^{2n \times k}$$

with J-orthonormal columns has been constructed such that its columns span the same space as $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$.

Repeat the following steps until done:

 \blacksquare Construct u_{k+1} and v_{k+1} and set

$$S_{2k+1} = \begin{bmatrix} Y_k & U_k & u_{k+1} \mid X_k & V_k & v_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} Y_k & U_{k+1} \mid X_k & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+2}$$

such that $S_{2k+1}^T J_n S_{2k+1} = J_{2k+1}$ and

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

Construct y_{k+1} and x_{k+1} and set

$$\begin{split} S_{2k+2} &= \begin{bmatrix} y_{k+1} & Y_k & U_{k+1} \mid x_{k+1} & X_k & V_{k+1} \end{bmatrix} \\ &= \begin{bmatrix} Y_{k+1} & U_{k+1} \mid X_{k+1} & V_{k+1} \end{bmatrix} \in \mathbb{R}^{2n \times 4k+4} \end{split}$$

such that $S_{2k+2}^T J_n S_{2k+2} = J_{2k+2}$ and

span{
$$S_{2k+2}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k+2}(H^{-1}, H^{-1}u_1).$

Hamiltonian Extended Krylov Subspace (HEKS) Method

Observation: In case r = s = k, $H_{2k} = J_{2k}S_{2k}^TJ_nHS_{2k} \in \mathbb{R}^{4k \times 4k}$ has the form (Hamiltonian)

CSC

Observation: In case r = s + 1 = k + 1 the special form of the Hamiltonian matrix $H_{2k+1} = J_{2k+1}S_{2k+1}^T J_n HS_{2k+1}$ is given by

Inductive proof: Assume that we have constructed

 $S_{2k} = [y_k \cdots y_1 \ u_1 \cdots u_k \ | \ x_k \cdots x_1 \ v_1 \cdots v_k] = [Y_k \ U_k \ | \ X_k \ V_k] \in \mathbb{R}^{2n \times 4k}$ such that $S_{2k}^T JnS_{2k} = J_{2k}$,

$$\begin{aligned} H_{2k} &= J_{2k}^T S_{2k}^T J_n H S_{2k} \\ &= \begin{bmatrix} -X_k^T J_n H Y_k & -X_k^T J_n H U_k & -X_k^T J_n H X_k & -X_k^T J_n H V_k \\ -V_k^T J_n H Y_k & -V_k^T J_n H U_k & -V_k^T J_n H X_k & -V_k^T J_n H V_k \\ Y_k^T J_n H Y_k & Y_k^T J_n H U_k & Y_k^T J_n H X_k & Y_k^T J_n H V_k \\ U_k^T J_n H Y_k & U_k^T J_n H U_k & U_k^T J_n H X_k & U_k^T J_n H V_k \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 & \Lambda_k & B_{kk} \\ 0 & 0 & B_{kk}^T & T_k \\ \Delta_k & 0 & 0 & 0 \\ 0 & \Theta_k & 0 & 0 \end{bmatrix} \end{aligned}$$

span{
$$S_{2k}$$
} = $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

The next two vectors $H^{2k}u_1$ and $H^{2k+1}u_1$ from $\mathcal{K}_{2k+2}(H, u_1)$ are added as u_{k+1} and v_{k+1}

$$S_{2k+1} = [y_k \cdots y_1 \ u_1 \cdots u_{k+1} \ | \ x_k \cdots x_1 \ v_1 \cdots v_{k+1}]$$
$$= [Y_k \ U_{k+1} \ | \ X_k \ V_{k+1}] \in \mathbb{R}^{2n \times 4k+2}.$$

Then by construction

$$S_{2k+1}^T J_n S_{2k+1} = J_{2k+1}$$

and

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

It remains to prove the special form of $H_{2k+1} = J_{2k+1}^T S_{2k+1}^T J_n H S_{2k+1}$.

The next two vectors $H^{2k}u_1$ and $H^{2k+1}u_1$ from $\mathcal{K}_{2k+2}(H, u_1)$ are added as u_{k+1} and v_{k+1}

$$S_{2k+1} = [y_k \cdots y_1 \ u_1 \cdots u_{k+1} \ | \ x_k \cdots x_1 \ v_1 \cdots v_{k+1}]$$
$$= [Y_k \ U_{k+1} \ | \ X_k \ V_{k+1}] \in \mathbb{R}^{2n \times 4k+2}.$$

Then by construction

$$S_{2k+1}^T J_n S_{2k+1} = J_{2k+1}$$

and

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

It remains to prove the special form of $H_{2k+1} = J_{2k+1}^T S_{2k+1}^T J_n H S_{2k+1}$.

The next two vectors $H^{2k}u_1$ and $H^{2k+1}u_1$ from $\mathcal{K}_{2k+2}(H, u_1)$ are added as u_{k+1} and v_{k+1}

$$S_{2k+1} = [y_k \cdots y_1 \ u_1 \cdots u_{k+1} \ | \ x_k \cdots x_1 \ v_1 \cdots v_{k+1}]$$
$$= [Y_k \ U_{k+1} \ | \ X_k \ V_{k+1}] \in \mathbb{R}^{2n \times 4k+2}.$$

Then by construction

$$S_{2k+1}^T J_n S_{2k+1} = J_{2k+1}$$

and

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1).$

It remains to prove the special form of $H_{2k+1} = J_{2k+1}^T S_{2k+1}^T J_n H S_{2k+1}$.

$$H_{2k+1} = J_{2k+1}^T S_{2k+1}^T J_n H S_{2k+1} =$$

0	0	$-X_k^T J_n H u_{k+1}$	Λ_k	B_{kk}	$-X_k^T J_n H v_{k+1}$
0	0	$-V_k^T J_n H u_{k+1}$	B_{kk}^{T}	T_k	$-V_k^T J_n H v_{k+1}$
$-v_{k+1}^T J_n HY_k$	$-v_{k+1}^T J_n H U_k$	$-v_{k+1}^T J_n H u_{k+1}$	$-v_{k+1}^T J_n H X_k$	$-v_{k+1}^T J_n H V_k$	$-v_{k+1}^T J_n H v_{k+1}$
Δ_k	0	$Y_k^T J_n H u_{k+1}$	0	0	$Y_k^T J_n H v_{k+1}$
					10
0	Θ_k	$U_k^T J_n H u_{k+1}$	0	0	$U_k^T J_n H v_{k+1}$

	0	0	0	Λ_k	B_{kk}	
_	0	0	0	$B_{kk}{}^T$	T_k	
	0	0	0	$\mu_k \ 0 \ \cdots \ 0$	$0 \cdots 0 \beta_{k+1}$	α_{k+1}
	Δ_k	0	0	0	0	0
	0	Θ_k	0	0	0	0
	0	0	ϑ_{k+1}	0	0	0

Yields algorithm with short recurrences, about 1 page long.

Efficient implementation requires

- 4 matrix-vector-multiplications with H,
- 3 linear solves with *H*,
- 14 scalar products.

Theorem

Let $H \in \mathbb{R}^{2n \times 2n}$ be a Hamiltonian matrix. Let r + s = n and either r = s + 1 or r = s. Then in case the procedure sketched does not break down for $u_1 \in \mathbb{R}^{2n}$ with $||u_1||_2 = 1$, there exists a symplectic matrix $S \in \mathbb{R}^{2n \times 2n}$ such that $Se_{s+1} = u_1$,

span{S} =
$$\mathcal{K}_{2r}(H, u_1) + \mathcal{K}_{2s}(H^{-1}, H^{-1}u_1),$$

$$S^{-1}HS = H_{r+s}.$$

Yields algorithm with short recurrences, about 1 page long.

Efficient implementation requires

- 4 matrix-vector-multiplications with *H*,
- 3 linear solves with *H*,
- 14 scalar products.

Theorem

Let $H \in \mathbb{R}^{2n \times 2n}$ be a Hamiltonian matrix. Let r + s = n and either r = s + 1 or r = s. Then in case the procedure sketched does not break down for $u_1 \in \mathbb{R}^{2n}$ with $||u_1||_2 = 1$, there exists a symplectic matrix $S \in \mathbb{R}^{2n \times 2n}$ such that $Se_{s+1} = u_1$,

span{S} =
$$\mathcal{K}_{2r}(H, u_1) + \mathcal{K}_{2s}(H^{-1}, H^{-1}u_1),$$

$$S^{-1}HS = H_{r+s}.$$

Yields algorithm with short recurrences, about 1 page long.

Efficient implementation requires

- 4 matrix-vector-multiplications with *H*,
- 3 linear solves with *H*,
- 14 scalar products.

Theorem

Let $H \in \mathbb{R}^{2n \times 2n}$ be a Hamiltonian matrix. Let r + s = n and either r = s + 1 or r = s. Then in case the procedure sketched does not break down for $u_1 \in \mathbb{R}^{2n}$ with $||u_1||_2 = 1$, there exists a symplectic matrix $S \in \mathbb{R}^{2n \times 2n}$ such that $Se_{s+1} = u_1$,

span{
$$S$$
} = $\mathcal{K}_{2r}(H, u_1) + \mathcal{K}_{2s}(H^{-1}, H^{-1}u_1),$

$$S^{-1}HS = H_{r+s}.$$

$$HS_{2k} = S_{2k}H_{2k} + u_{k+1}(\mu_{k+1}e_{2k+1}^T + \beta_{k+1}e_{4k}^T).$$

In case $\mu_{k+1} = \beta_{k+1} = 0$ or $u_{k+1} = 0$, we have a lucky breakdown as

span{
$$S_{2k}$$
} = $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$

is H-invariant.

• HEKS-recursion for r = s + 1 = k + 1

 $HS_{2k+1} = S_{2k+1}H_{2k+1} + (\gamma_{k+1}y_{k+1} + \beta_{k+2}u_{k+2})e_{4k+2}^T.$

In case $\gamma_{k+1} = \beta_{k+2} = 0$, we have a lucky breakdown as

span{
$$S_{2k+1}$$
} = $\mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$

is *H*-invariant.

Note that $y_{k+1} \neq 0$ as it is a column of S_{2k+1} !

$$HS_{2k} = S_{2k}H_{2k} + u_{k+1}(\mu_{k+1}e_{2k+1}^T + \beta_{k+1}e_{4k}^T).$$

In case $\mu_{k+1} = \beta_{k+1} = 0$ or $u_{k+1} = 0$, we have a lucky breakdown as

span{
$$S_{2k}$$
} = $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$

is H-invariant.

• HEKS-recursion for r = s + 1 = k + 1 $HS_{2k+1} = S_{2k+1}H_{2k+1} + (\gamma_{k+1}y_{k+1} + \beta_{k+2}u_{k+2})e_{4k+2}^{T}$. In case $\gamma_{k+1} = \beta_{k+2} = 0$, we have a lucky breakdown as $span\{S_{2k+1}\} = \mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$ is *H*-invariant.

Note that $y_{k+1} \neq 0$ as it is a column of S_{2k+1} !

$$HS_{2k} = S_{2k}H_{2k} + u_{k+1}(\mu_{k+1}e_{2k+1}^T + \beta_{k+1}e_{4k}^T).$$

In case $\mu_{k+1} = \beta_{k+1} = 0$ or $u_{k+1} = 0$, we have a lucky breakdown as

span{
$$S_{2k}$$
} = $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$

is H-invariant.

• HEKS-recursion for r = s + 1 = k + 1 $HS_{2k+1} = S_{2k+1}H_{2k+1} + (\gamma_{k+1}y_{k+1} + \beta_{k+2}u_{k+2})e_{4k+2}^{T}$. In case $\gamma_{k+1} = \beta_{k+2} = 0$, we have a lucky breakdown as $span\{S_{2k+1}\} = \mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$ is *H*-invariant.

Note that $y_{k+1} \neq 0$ as it is a column of S_{2k+1} !

$$HS_{2k} = S_{2k}H_{2k} + u_{k+1}(\mu_{k+1}e_{2k+1}^T + \beta_{k+1}e_{4k}^T).$$

In case $\mu_{k+1} = \beta_{k+1} = 0$ or $u_{k+1} = 0$, we have a lucky breakdown as

span{
$$S_{2k}$$
} = $\mathcal{K}_{2k}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$

is H-invariant.

• HEKS-recursion for r = s + 1 = k + 1 $HS_{2k+1} = S_{2k+1}H_{2k+1} + (\gamma_{k+1}y_{k+1} + \beta_{k+2}u_{k+2})e_{4k+2}^{T}$. In case $\gamma_{k+1} = \beta_{k+2} = 0$, we have a lucky breakdown as $span\{S_{2k+1}\} = \mathcal{K}_{2k+2}(H, u_1) + \mathcal{K}_{2k}(H^{-1}, H^{-1}u_1)$ is *H*-invariant.

Note that $y_{k+1} \neq 0$ as it is a column of S_{2k+1} !

$$H = \begin{bmatrix} A & 0\\ 0 & -A^T \end{bmatrix},$$

for A = diag(logspace(-1,0,500)); (500 logarithmically equally spaced points between 10^{-1} and 10^{0}).

Consider

- exp(H)v
- cos(H)v
- ∎ sign(H)v

for random vector v = x or all-ones-vector v = e.

$$H = \begin{bmatrix} A & 0\\ 0 & -A^T \end{bmatrix},$$

for A = diag(logspace(-1,0,500)); (500 logarithmically equally spaced points between 10^{-1} and 10^{0}).

Consider

- exp(H)v
- cos(H)v
- ∎ sign(H)v

for random vector v = x or all-ones-vector v = e.

Numerical Experiment 1

$$H = \begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix} \in \mathbb{R}^{1998 \times 1998},$$

with ${\cal N}=500~{\rm and}$

$$\begin{split} G &= \operatorname{diag}(1,0,1,0,\dots,1,0,1) \in \mathbb{R}^{2N-1 \times 2N-1}, \\ Q &= \operatorname{diag}(0,10,0,10,\dots,0,10,0) \in \mathbb{R}^{2N-1 \times 2N-1}, \\ A &= \begin{bmatrix} A_{11} & A_{12} & 0 & \cdots & 0 \\ 0 & A_{22} & A_{23} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & A_{N-2,N-2} & A_{N-2,N-1} & 0 \\ 0 & \cdots & 0 & 0 & A_{N-1,N-1} & \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \\ 0 & \cdots & 0 & 0 & \begin{bmatrix} 0 & 0 \end{bmatrix} & -1 \end{bmatrix} \in \mathbb{R}^{2N-1 \times 2N-1} \end{split}$$

with

$$A_{kk} = \begin{bmatrix} -1 & 0\\ 1 & 0 \end{bmatrix}, \qquad A_{k,k+1} = \begin{bmatrix} 0 & 0\\ -1 & 0 \end{bmatrix}.$$

Numerical Experiment 2

