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Numerical Approximation of f(A)v

Given a function f : Rn×n → Rn×n, we are interested in approximating

f(A)v

for a large and sparse matrix A and a vector v (where we assume that f is sufficiently
regular so that f(A) is well defined).

Typical approach for large-scale computations:
find a matrix V ∈ Rn×k with orthogonal columns so that

f(A)v ≈ V f(V TAV )V T v.

As Ak = V TAV ∈ Rk×k, the evaluation of V f(Ak)V T v should be much faster
than that of f(A)v.

Note: The problem of approximating the action of f(A) to a vector is significantly
different from that of approximating f(A) (see seminal Higham book).
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Numerical Approximation of f(A)v

Given a function f : Rn×n → Rn×n, we are interested in approximating

f(A)v

for a large and sparse matrix A and a vector x (where we assume that f is sufficiently
regular so that f(A) is well defined).

Typical approach: find a matrix V ∈ Rn×k with orthogonal columns so that

f(A)x ≈ V f(V TAV )V T v. (1)

Use, e.g., Arnoldi method to compute V as an orthogonal basis of Krylov subspace

Kk(A, v) = span{v,Av,A2v, . . . , Ak−1v}.

As V e1 = v/‖v‖2, (1) simplifies to

f(A)v ≈ ‖v‖2V f(V TAV )e1.
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Numerical Approximation of f(A)v

Given a function f : Rn×n → Rn×n, we are interested in approximating

f(A)v

for a large and sparse matrix A and a vector x (where we assume that f is sufficiently
regular so that f(A) is well defined).

Typical approach: find a matrix V ∈ Rn×k with orthogonal columns so that

f(A)x ≈ V f(V TAV )V T v.

[Druskin/Knizhnerman 1998] suggest to use orthogonal basis of the extended Krylov
subspace

Kk(A, v) +Kk(A−1, A−1v) = span{A−kv, . . . , A−2v,A−1v, v, Av,A2v, . . . , Ak−1v}.
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Extended Krylov Subspace Method (EKSM)

At each iteration, two new vectors are added to the space.

Unless breakdown occurs, at the mth iteration the method has constructed an
orthonormal basis of dimension 2m, given by Vm = [V1, V2, . . . , Vm], Vi ∈ Rn×2.

The orthogonalization is performed first with respect to the previous basis vectors,
and then within the new block of 2 vectors.

Arnoldi-like recurrence

AVm = VmTm + Vm+1τm+1,1E
T
m

holds, where Em = [e2m−1e2m] ∈ R2m×2 and τm+1,1 = V Tm+1AVm.
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Numerical Approximation of f(H)v for Hamiltonian matrices H

H ∈ R2n×2n is Hamiltonian matrix iff
JnH = (JnH)T , where Jn =

[
0 In

−In 0

]
∈ R2n×2n and In is the n× n identity

matrix, or, equivalently,

there exist matrices E, B = BT , C = CT ∈ Rn×n such that H =

[
E B
C −ET

]
.

In case H is nonsingular, H−1 is Hamiltonian as well.

Jn is orthogonal and skew-symmetric, JTn = J−1
n = −Jn.

Let V ∈ R2n×2m have orthogonal columns and H ∈ R2n×2n Hamiltonian. Then
V THV ∈ R2m×2m is (in general) not Hamiltonian.

A matrix S ∈ R2n×2n is called symplectic if STJnS = Jn. Its columns are
J-orthogonal.

A symplectic matrix S is nonsingular with S−1 = JTn S
TJn.

Let S be symplectic and H be Hamiltonian. Then S−1HS is Hamiltonian again.

Let S ∈ R2n×2m,m ≤ n, have J-orthogonal columns, STJnS = Jm.
Let H ∈ R2n×2n be Hamiltonian.

1. The matrix JTmST Jn is the left inverse of S, JTmST JnS = I2m.
2. The matrix (JTmST Jn)HS is Hamiltonian.
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Hamiltonian Lanczos Method [B./Faßbender 1997, Ferng et al 1997]

J-orthogonal basis of Krylov subspace K2r(H,u1) = span{u1, Hu1, . . . , H
2r−1u1}.

Generates S = [Ur Vr] with Ur, Vr ∈ R2n×r with J-orthogonal columns such that

H[Ur Vr] = [Ur Vr]

[
G(r) T (r)

D(r) −G(r)

]
+ ur+1tr+1,re

T
2r

where G(r), D(r) ∈ Rr×r are diagonal and T (r) ∈ Rr×r is tridiagonal.

Short recurrence to compute the next vectors ur+1 and vr+1 of the basis involving
only the three preceding vectors vr, ur, ur−1.

Requires 2r matrix-vector products and 3r inner products.

Arnoldi method requires 2r matrix-vector products and r2 inner products.

f(H)u1 ≈ ‖u1‖2Sf(JTr S
TJnHS)e1 as JTr (ST (Jnu1)) = ‖u1‖2e1.
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Let a Hamiltonian matrix H ∈ R2n×2n and a vector u1 ∈ R2n be given.

Construct Sr+s ∈ R2n×2(r+s) with J-orthonormal columns such that the columns of
Sr+s span the same subspace as K2r(H,u1) +K2s(H

−1, H−1u1).

Assume that dim K2r(H,u1) = 2r and dim K2s(H
−1, H−1u1) = 2s.

In [Meister 2011], it is suggested to construct Sr+s in the following way:

Step 1: Start with the two vectors in K2(H,u1) and construct

S1 =
[
u1 | v1

]
∈ R2n×2

with ST1 JnS1 = J1 and span{S1} = K2(H,u1). (r = 1, s = 0)

Step 2: Take the two vectors in K2(H−1, H−1u1) and construct

S2 =
[
y1 u1 | x1 v1

]
=
[
Y1 U1 | X1 V1

]
∈ R2n×4

with ST2 JnS2 = J2 and span{S2} = K2(H,u1) +K2(H−1, H−1u1). (r = s = 1)

Proceed in this fashion by alternating between K2r(H,u1) and K2s(H
−1, H−1u1).
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Assume that
S2k =

[
Yk Uk | Xk Vk

]
∈ R2n×4k, Yk, Uk, Xk, Vk ∈ R2n×k

with J-orthonormal columns has been constructed such that its columns span the same
space as K2k(H,u1) +K2k(H−1, H−1u1).

Repeat the following steps until done:
Construct uk+1 and vk+1 and set

S2k+1 =
[
Yk Uk uk+1 | Xk Vk vk+1

]
=
[
Yk Uk+1 | Xk Vk+1

]
∈ R2n×4k+2

such that ST2k+1JnS2k+1 = J2k+1 and

span{S2k+1} = K2k+2(H,u1) +K2k(H
−1, H−1u1).

Construct yk+1 and xk+1 and set

S2k+2 =
[
yk+1 Yk Uk+1 | xk+1 Xk Vk+1

]
=
[
Yk+1 Uk+1 | Xk+1 Vk+1

]
∈ R2n×4k+4

such that ST2k+2JnS2k+2 = J2k+2 and

span{S2k+2} = K2k+2(H,u1) +K2k+2(H
−1, H−1u1).
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Observation: In case r = s = k, H2k = J2kS
T
2kJnHS2k ∈ R4k×4k has the form

(Hamiltonian)


0 λk γk
. . .

. . . . .
.

µk

. . .
. . . . .

.
. .
.

0 λ1 γ1 µ2
0 γ1 α1 β2

. . . . .
.

µ2 β2

. . .
. . .

. . . . .
.

. .
. . . .

. . . βk
0 γk µk βk αk

δk 0

. . .
. . .

. . .
. . .

δ1 0
ϑ1 0

. . .
. . .

. . .
. . .

ϑk 0



© h.fassbender@tu-braunschweig.de, benner@mpi-magdeburg.mpg.de HEKS 10/20

mailto:h.fassbender@tu-braunschweig.de
mailto:benner@mpi-magdeburg.mpg.de


Hamiltonian Extended Krylov Subspace (HEKS) Method

Observation: In case r = s+ 1 = k + 1 the special form of the Hamiltonian matrix
H2k+1 = J2k+1S

T
2k+1JnHS2k+1 is given by
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Inductive proof:
Assume that we have constructed

S2k = [yk · · · y1 u1 · · · uk | xk · · · x1 v1 · · · vk] = [Yk Uk | Xk Vk] ∈ R2n×4k

such that ST2kJnS2k = J2k,

H2k = JT2kS
T
2kJnHS2k

=

−X
T
k JnHYk −XT

k JnHUk −XT
k JnHXk −XT

k JnHVk
−V Tk JnHYk −V Tk JnHUk −V Tk JnHXk −V Tk JnHVk
Y Tk JnHYk Y Tk JnHUk Y Tk JnHXk Y Tk JnHVk
UTk JnHYk UTk JnHUk UTk JnHXk UTk JnHVk



=


0 0 Λk Bkk
0 0 BTkk Tk

∆k 0 0 0
0 Θk 0 0


and

span{S2k} = K2k(H,u1) +K2k(H−1, H−1u1).
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Hamiltonian Extended Krylov Subspace (HEKS) Method

The next two vectors H2ku1 and H2k+1u1 from K2k+2(H,u1) are added as uk+1 and
vk+1

S2k+1 = [yk · · · y1 u1 · · · uk+1 | xk · · · x1 v1 · · · vk+1]

= [Yk Uk+1 | Xk Vk+1] ∈ R2n×4k+2.

Then by construction
ST2k+1JnS2k+1 = J2k+1

and
span{S2k+1} = K2k+2(H,u1) +K2k(H−1, H−1u1).

It remains to prove the special form of H2k+1 = JT2k+1S
T
2k+1JnHS2k+1.
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Hamiltonian Extended Krylov Subspace (HEKS) Method

H2k+1 = JT2k+1S
T
2k+1JnHS2k+1 =



0 0 −XT
k JnHuk+1 Λk Bkk −XT

k JnHvk+1

0 0 −V T
k JnHuk+1 Bkk

T Tk −V T
k JnHvk+1

−vT
k+1JnHYk −vT

k+1JnHUk −vT
k+1JnHuk+1 −vT

k+1JnHXk −vT
k+1JnHVk −vT

k+1JnHvk+1

∆k 0 Y T
k JnHuk+1 0 0 Y T

k JnHvk+1

0 Θk UT
k JnHuk+1 0 0 UT

k JnHvk+1

uT
k+1JnHYk uT

k+1JnHUk uT
k+1JnHuk+1 uT

k+1JnHXk uT
k+1JnHVk uT

k+1JnHvk+1



=



0 0 0 Λk Bkk

µk
0
...
0

0 0 0 Bkk
T Tk

0
...
0

βk+1

0 0 0 µk 0 ··· 0 0 ··· 0 βk+1 αk+1

∆k 0 0 0 0 0

0 Θk 0 0 0 0
0 0 ϑk+1 0 0 0
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Hamiltonian Extended Krylov Subspace (HEKS) Method

Yields algorithm with short recurrences, about 1 page long.

Efficient implementation requires

4 matrix-vector-multiplications with H,

3 linear solves with H,

14 scalar products.

Theorem
Let H ∈ R2n×2n be a Hamiltonian matrix. Let r + s = n and either r = s+ 1 or r = s.
Then in case the procedure sketched does not break down for u1 ∈ R2n with ‖u1‖2 = 1,
there exists a symplectic matrix S ∈ R2n×2n such that Ses+1 = u1,

span{S} = K2r(H,u1) +K2s(H
−1, H−1u1),

and
S−1HS = Hr+s.
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Hamiltonian Extended Krylov Subspace (HEKS) Method

HEKS-recursion for r = s = k

HS2k = S2kH2k + uk+1(µk+1e
T
2k+1 + βk+1e

T
4k).

In case µk+1 = βk+1 = 0 or uk+1 = 0, we have a lucky breakdown as

span{S2k} = K2k(H,u1) +K2k(H−1, H−1u1)

is H-invariant.

HEKS-recursion for r = s+ 1 = k + 1

HS2k+1 = S2k+1H2k+1 + (γk+1yk+1 + βk+2uk+2)eT4k+2.

In case γk+1 = βk+2 = 0, we have a lucky breakdown as

span{S2k+1} = K2k+2(H,u1) +K2k(H−1, H−1u1)

is H-invariant.
Note that yk+1 6= 0 as it is a column of S2k+1!

Serious breakdown is possible.
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Numerical Experiment 1

H =

[
A 0
0 −AT

]
,

for A = diag(logspace(-1,0,500));
(500 logarithmically equally spaced points between 10−1 and 100).

Consider

exp(H)v

cos(H)v

sign(H)v

for random vector v = x or all-ones-vector v = e.
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Numerical Experiment 1
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Numerical Experiment 2 (CAREX15, [B./Laub/Mehrmann 1995])

H =

[
A −G
−Q −AT

]
∈ R1998×1998,

with N = 500 and

G = diag(1, 0, 1, 0, . . . 1, 0, 1) ∈ R2N−1×2N−1,

Q = diag(0, 10, 0, 10, . . . 0, 10, 0) ∈ R2N−1×2N−1,

A =



A11 A12 0 · · · · · · 0
0 A22 A23 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 AN−2,N−2 AN−2,N−1 0
0 · · · 0 0 AN−1,N−1

[
0
−1

]
0 · · · 0 0 [0 0] −1


∈ R2N−1×2N−1

with

Akk =

[
−1 0
1 0

]
, Ak,k+1 =

[
0 0
−1 0

]
.
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Numerical Experiment 2
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