
Rational Approximation of Passive Systems
— Where to Interpolate?

Peter Benner
joint work with Chris Beattie,

Serkan Gugercin, Petar Mlinarić
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Passive LTI Systems

Definition

A linear time-invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t), A ∈ Rn×n, B ∈ Rn×m,

y(t) = Cx(t) + Du(t), C ∈ Rm×n, D ∈ Rm×m

is passive if ∫ t

−∞
u(τ)T y(τ) dτ ≥ 0 ∀t ∈ R and ∀u ∈ L2(R,Rm).

Examples: RLC circuits, micro-/nano-electronic devices, damped mechanical systems, . . .

Engineering interpretation:

“The system cannot generate energy.” or “The system dissipates energy.”

Usual characterization via positive realness of transfer function G(s) = C(sIn − A)−1B + D.
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Positive-real Transfer Functions

Definition (Cauer 1926, Brune 1931)

A real, rational matrix-valued function G : C→ C̄m×m is positive real if

1 G is analytic in C+ := {s ∈ C | Re(s) > 0},
2 G(s) + GT (s̄) ≥ 0 for all s ∈ C+.

Theorem

An LTI system is passive ⇐⇒ its transfer function is positive real.

Remark

G(s) positive real ⇒ A stable.

A stable ⇔ A = (J − R)Q with J = −JT , R = RT � 0, Q = QT � 0 [Gillis/Sharma 2017].

 Port-Hamiltonian representation (if C = BT ) of passive systems:

ẋ = (J − R)Qx + Bu, y = BT x + Du.

©P. Benner <benner@mpi-magdeburg.mpg.de> Rational approximation of passive systems 4/12

benner@mpi-magdeburg.mpg.de


Positive-real Transfer Functions

Definition (Cauer 1926, Brune 1931)

A real, rational matrix-valued function G : C→ C̄m×m is positive real if

1 G is analytic in C+ := {s ∈ C | Re(s) > 0},
2 G(s) + GT (s̄) ≥ 0 for all s ∈ C+.

Theorem

An LTI system is passive ⇐⇒ its transfer function is positive real.

Remark

G(s) positive real ⇒ A stable.

A stable ⇔ A = (J − R)Q with J = −JT , R = RT � 0, Q = QT � 0 [Gillis/Sharma 2017].

 Port-Hamiltonian representation (if C = BT ) of passive systems:
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Model Reduction of LTI Systems

Original System

Σ :

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t) + D̂u(t).

states x̂(t) ∈ Rr , r � n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

‖y − ŷ‖ < tolerance · ‖u‖ for all admissible input signals.

Preserve passivity in ROM.
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Model Reduction in Frequency Domain
The Model Reduction Problem as Rational Approximation Problem

Formulating model reduction in frequency domain

Approximate the time-domain dynamical system

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m,
y = Cx + Du, C ∈ Rp×n, D ∈ Rp×m,

by ROM
˙̂x = Âx̂ + B̂u, Â ∈ Rr×r , B̂ ∈ Rr×m,

ŷ = Ĉ x̂ + D̂u, Ĉ ∈ Rp×r , D̂ ∈ Rp×m

of order r � n, such that

‖y − ŷ‖ '
∥∥∥Y − Ŷ

∥∥∥ =
∥∥∥GU − ĜU

∥∥∥
≤
∥∥∥G − Ĝ

∥∥∥ · ‖U‖ ' ∥∥∥G − Ĝ
∥∥∥ · ‖u‖ ≤ tolerance · ‖u‖ .

=⇒ Rational approximation problem: min
order (Ĝ)≤r

∥∥∥G − Ĝ
∥∥∥, where, mostly, ‖ . ‖ = ‖. ‖H∞ or ‖ . ‖ = ‖ . ‖H2 .

Here: approximation by rational interpolation: G (j)(sk) = Ĝ (j)(sk), j = 0, . . . , `k .
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Literature

Padé-type methods with post-processing
[Bai/(Feldmann)/Freund 1998,2001].

PRIMA [Odabasioglu et al.1996/97] preserves passivity for
interconnect models, basically Arnoldi process.

SyPVL preserves passivity for RLC circuits
[Feldmann/Freund 1996/97].

LR-ADI/dominant subspace approximation can preserve
passivity [Li/White 2001].

. . .

[Antoulas 2005]: Interpolation at spectral zeros preserves
passivity! But: which ones to choose?

IRKA-PH [Gugercin/Polyuga/Beattie/Van Der

Schaft 2009/12], IRKA iteration for port-Hamiltonian systems.

Remaining issue: IRKA-PH does not satisfy necessary
optimality conditions.

 Starting point of 2014 BB preprint.
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A Quick Recap on IRKA [Antoulas/Beattie/Gugercin 2008]

H2-optimal rational approximation problem

Ĝ = argmin order(G̃)=r

G̃ stable

‖G − G̃‖H2 , where ‖Z‖H2 =

(
1

2π

∫ ∞
−∞
‖Z(ω)‖2F dω

) 1
2

.

Candidate solution combines two facts (here, m = 1 for simplicity):

1 Necessary optimality conditions:

G(−µi ) = Ĝ(−µi ) and G ′(−µi ) = Ĝ ′(−µi ), i = 1, . . . , r , where Λ (Â) = {µ1, . . . , µr}.
2 Interpolation via projection:

Ĝ(s) = Ĉ(sIr − Â)−1B̂ = CV
(
sIr −W TAV

)−1

W TB,

where V and W are given as

V =
[
(ν1I − A)−1B, . . . , (νr I − A)−1B

]
, W =

[
(ν1I − AT )−1CT , . . . , (νr I − AT )−1CT

]
,

Hermite interpolates G(s) at given {ν1, . . . , νr}.
Starting with an initial guess for Â, compute Λ (Â), set νi := −µi , compute V ,W , Â, B̂, Ĉ , repeat
 iterative rational Krylov algorithm (IRKA) that yields H2-(sub)optimal model.
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H2-Optimal Port-Hamiltonian ROMs?

H2-optimal rational approximation problem

Ĝ = argmin order(G̃)=r

G̃ pH

‖G − G̃‖H2 . (1)
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H2-Optimal Port-Hamiltonian ROMs?

H2-optimal rational approximation problem

Ĝ = argmin order(G̃)=r

G̃ pH

‖G − G̃‖H2 . (1)

Main questions:

1 What are the complete necessary optimality conditions for (1)?
Do they come in the form of rational Hermite interpolation as in the standard LTI case?

2 IRKA-PH(-like) algorithm to obtain a candidate satisfying these optimality conditions?
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H2-Optimal Port-Hamiltonian ROMs?

H2-optimal rational approximation problem

Ĝ = argmin order(G̃)=r

G̃ pH

‖G − G̃‖H2 . (1)

Theorem ((partial) answer to 1., [Beattie/B. 2014])

Suppose that Ĝ is a solution to (1) with a reduced dissipation matrix R̂ � 0. Suppose further that Ĝ has r
distinct poles and is represented in pole-residue form as Ĝ(s) =

∑r
i=1

1
s−µi

`i℘
T
i . Then

L[G ,S] = L[Ĝ ,S].

where S here denotes the interpolation data: S = {{−µi}r1, {`i}r1, {℘i}r1} and

(L[G ,S])i,j :=


`Ti G(−µi )℘j − `Ti G(−µj)℘j

−µi + µj
if i 6= j

`Ti G
′(−µi )℘i if i = j

is the associated Loewner matrix.

©P. Benner <benner@mpi-magdeburg.mpg.de> Rational approximation of passive systems 9/12

benner@mpi-magdeburg.mpg.de


H2-Optimal Port-Hamiltonian ROMs?

H2-optimal rational approximation problem
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Partial answer to 1. by [Beattie/B. 2014]

`
T
i (G(−µi )− G(−µj ))℘j = `

T
i

(
Ĝ(−µi )− Ĝ(−µj )

)
℘j for i 6= j, `

T
i G

′(−µi )℘i = `
T
i Ĝ

′(−µi )℘i ,

requires interpolation at mirror images of ROM poles as in LTI case, but has several drawbacks:

Mismatch in number of conditions and degrees of freedom  incomplete!

Bi-variate (non-Hermitian) interpolation conditions, unclear how to satisfy.

No algorithm known to achieve these conditions.
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Completing the Necessary Conditions [B./Gugercin/Mlinarić 2023]

Based on a new look at L2/H2-optimal rational approximation and using the Wirtinger calculus, general
necessary optimality conditions for structured dynamical systems could be derived.

Theorem

Suppose that Ĝ is a solution to (1) with a reduced dissipation and energy matrices R̂ � 0 and Q̂ � 0. Suppose
further that Ĝ has r distinct poles and is represented in pole-residue form as

Ĝ(s) =
r∑

i=1

1

s − µi
`i℘

T
i .

Then

`Ti (G(−µi )− G(−µj))℘j = `Ti

(
Ĝ(−µi )− Ĝ(−µj)

)
℘j for i 6= j ,

`Ti G
′(−µi )℘i = `Ti Ĝ

′(−µi )℘i ,
r∑

i=1

(
G(−µi )℘i t

H
i + G(−µi )

H`i s
H
i )
)

=
r∑

i=1

(
Ĝ(−µi )℘i t

H
i + Ĝ(−µi )

H`i s
H
i

)
,

where ti and si are right and left eigenvectors of Ĵ − R̂, resp.
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Suppose that Ĝ is a solution to (1) with a reduced dissipation and energy matrices R̂ � 0 and Q̂ � 0. Suppose
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Completing the Necessary Conditions [B./Gugercin/Mlinarić 2023]

The complete set of necessary optimality conditions is not a set of standard Hermite interpolation
conditions.

An algorithm for computing a ROM satisfying these optimality conditions is not known — so we still do not
know where to interpolate.

We can relate the interpolation conditions to tangential Hermite interpolation of the real part, though.

Corollary

Let Z(s) = G(s) + G(s)H , Ẑ(s) = Ĝ(s) + Ĝ(s)H . Then under the same conditions as for the theorem, and
assuming J − R to be normal, we have for i = 1, . . . , r :

Z(−µi )℘i = Ẑ(−µi )℘i ,

`Ti Z(−µi ) = `Ti Ẑ(−µi ),

`Ti Z
′(−µi )℘i = `Ti Ẑ

′(−µi )℘i .
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