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Introduction
Large-Scale Algebraic Riccati Equations

Algebraic Riccati equation (ARE)

For A,G = GT ,W = WT ∈ Rn×n given and X ∈ Rn×n unknown:

0 = R(X) := ATX +XA−XGX +W.

Many applications:

model reduction of (unstable) linear time-invariant (LTI) systems,

linear-quadratic optimal control problems for LTI systems,

H∞-control, . . .

Typical situation in model reduction and control:

G,W low-rank with G,W ∈ {BBT , CTC}, where
B ∈ Rn×m, m� n, and C ∈ Rp×n, p� n.

Want: solution with X = XT ≥ 0 (and Λ (A−GX) ⊂ C−), notation: X≥.

n = 103 – 106

=⇒ X has 106 – 1012 unknowns
=⇒ as X is dense in general, we face a storage problem!
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Introduction
Low-Rank Approximation

Consider spectrum of ARE solution.

Example:

Linear 1D heat equation with point control,

Ω = [ 0, 1 ],

FEM discretization using linear B-splines,

h = 1/100 =⇒ n = 101.

Idea: X = XT ≥ 0 =⇒

X = ZZT =
n∑

k=1

λkzkz
T
k ≈

r∑
k=1

λkzkz
T
k =

r∑
k=1

(√
λkzk

)(√
λkzk

)T
=: Z(r)(Z(r))T .

=⇒ Goal: compute Z(r) ∈ Rn×r directly w/o ever forming X!
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The Sign Function Method for Algebraic Riccati Equations

∃ many numerical methods to solve AREs.
Here: revisit the matrix sign function method.
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The Sign Function Method for Algebraic Riccati Equations

∃ many numerical methods to solve AREs.
Here: revisit the matrix sign function method.

Definition

For Z ∈ Rn×n with Λ (Z) ∩ ıR = ∅ and Jordan canonical form

Z = S

[
J+ 0

0 J−

]
S−1

the matrix sign function is

sign(Z) := S

[
Ik 0

0 −In−k

]
S−1.
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0 J−
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Lemma

Let T ∈ Rn×n be nonsingular and Z as before, then

sign
(
TZT−1) = T sign(Z)T−1.

© benner@mpi-magdeburg.mpg.de AREs, the matrix sign function, and PPTs 5/18

mailto:benner@mpi-magdeburg.mpg.de


The Sign Function Method for Algebraic Riccati Equations

∃ many numerical methods to solve AREs.
Here: revisit the matrix sign function method.

Computation of sign(Z)

sign(Z) is root of In =⇒ use Newton’s method to compute it:

Z0 ← Z, Zj+1 ←
1

2

(
cjZj +

1

cj
Z−1

j

)
, j = 1, 2, . . .

=⇒ sign(Z) = limj→∞ Zj .

cj > 0 is scaling parameter for convergence acceleration and rounding error minimization, e.g.

cj =

√√√√∥∥∥Z−1
j

∥∥∥
F

‖Zj‖F
,

based on “equilibrating” the norms of the two summands [Higham 1986].
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Solving AREs with the Matrix Sign Function Method
ARE: 0 = ATX + XA − XGX + W

Key observations:

1 Let H =

[
A G
W −AT

]
be the Hamiltonian matrix associated to the ARE and X≥

the desired symmetric positive semidefinite solution. Then

H

[
In
−X≥

]
=

[
In
−X≥

]
(A−GX≥),

i.e., X≥ defines an n-dimensional invariant subspace of H corresponding to its
left-half-plane eigenvalues.

2
1
2

(I2n + sign(H)) is a projector onto the H-invariant subspace corresponding to its
left-half-plane eigenvalues

=⇒ (I2n + sign(H))

[
In
−X≥

]
= 0.

3 Hence, X≥ is determined by overdetermined, but consistent linear system of
equations once sign(H) is known.
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Main Goal

So far:

Solution of AREs via sign(H), fully dense computations!

Newton iteration for sign(H) preserves structure, as inversion and addition preserve
Hamiltonian structure.

But:

1 off-diagonal blocks are not treated in low-rank format,
2 X≥ cannot be determined in factored form directly from this.

Goals

1 Keep the off-diagonal blocks in H in low-rank form — this would save a significant
amount of memory, i.e., working with A,B,C directly would reduce memory
requirements by a factor of ∼ 3− 4.

2 Obtain X≥ in low-rank factored form directly.
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Another Motivating Application
Closed-loop Balanced Truncation for Unstable LTI Systems

Theorem (Kenney/Laub/Jonckheere 1989, B. 2019/22)

Let (A,B) be stabilizable, (A,C) be detectable, and define the Hamiltonian matrix[
A −BBT

−CTC −AT

]
.

Then the unique stabilizing solution X≥ to the LQR Riccati equation exists and is
symmetric positive semidefinite.

Hence, A−BBTXs is stable, the closed-loop Lyapunov equations

(A−BBTX≥)P + P (A−BBTX≥)T +BBT = 0,

(A−BBTX≥)TQ+Q(A−BBTX≥) + CTC = 0,

have unique solutions P = PT ≥ 0, Q = QT ≥ 0, resp., and it holds

sign(H) =

[
−I + 2PX≥ −2P

2X≥PX≥ − 2X≥ I − 2X≥P

]
.

Hence, P (and by duality, Q) can be obtained from sign(H) directly, without solving the
AREs at all, and in factored form if sign iterates preserve the off-diagonal low-rank
structure!
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Quasi-semidefinite Sign Function Iteration

Re-write the sign function iteration for H =

[
A BBT

CTC −AT

]
in ”symmetrized” form:

1

2

(
H +H−1) =

1

2

(
H + (JTJH)−1

)
=

1

2

(
HJT + (JH)−1

)
J =:

1

2

(
M̃ +M−1

)
J,

where

J =

[
0 In
−In 0

]
, M =

[
CTC −AT

−A −BBT

]
, M̃ =

[
BBT −A
−AT −CTC

]
.

Important observation: M, M̃ are symmetric quasi-semidefinite (SQSD).

Here: inversion of SQSD matrices using principal pivot transforms

1 is numerically more robust than standard inversion of symmetric matrices,

2 allows to work directly with A,B,C without ever forming 2n× 2n-matrices,

3 yields a sign function iteration for AREs using A,B,C without ever forming
2n× 2n-matrices!
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Important observation: M, M̃ are symmetric quasi-semidefinite (SQSD).

Here: inversion of SQSD matrices using principal pivot transforms

1 is numerically more robust than standard inversion of symmetric matrices,

2 allows to work directly with A,B,C without ever forming 2n× 2n-matrices,

3 yields a sign function iteration for AREs using A,B,C without ever forming
2n× 2n-matrices!
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Principal Pivot Transforms
Inverting symmetric matrices

Definition (Principal Pivot Transform)

Let M be symmetric and invertible, and set M (0) := M, W (0) =
[
M (0) −In

]
.

Select a u× u pivot block M
(0)
11 (u ∈ {1, 2}) and permute W (0) accordingly, call the

result again W (0).

Define K0 =

[
M

(0)
11 0

M
(0)
21 In−u

]
and compute

W (1) := K−1
0 W (0) =

[
Iu M

(1)
12 M

(1)
11 0

0 M
(1)
22 M

(1)
21 −In−u

]
.

Then

M (1) :=

[
M

(1)
11 M

(1)
12

M
(1)
21 M

(1)
22

]
:=

[
−M−1

11 M−1
11 M12

M21M
−1
11 M22 −M21M

−1
11 M12

]
.

The mapping M (0) →M (1) is called principal pivot transform (PPT).

Repeating this m times with pivots of size uk, so that u0 + · · ·+ um−1 = n, yields
M (m) = −M−1, i.e., a Gauß-Jordan-type inversion procedure for symmetric matrices.
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Inversion of Symmetric Matrices

Most software packages compute inverses of symmetric matrices M using LDLT factroization

with Bunch-Kaufman (diagonal, partial) or Bunch-Parlett (complete) pivoting, e.g., xSYTRI

from LAPACK and the MATLAB function inv based on this. SQSD structure is usually ignored,

but turns out to be beneficial!

Theorem (Bunch–Parlett)

Let LDLT = ΠMΠT be the LDLT factorization with Bunch–Parlett pivoting of a

symmetric matrix M , with pivoting threshold τ = 1+
√
17

8
≈ 0.64. Then,

‖D‖max ≤ (2.57)n−1 ‖M‖max , and ‖L‖max ≤ 2.78.

Here: a scalar pivot is chosen if maxk=1,...,n |M [k, k]| ≥ τ maxi 6=j |M [i, j]|, if such k exists;

otherwise maximum 2× 2 pivot is chosen.

Worst-case element growth can be slightly improved for SQSD matrices:

Theorem (B./Poloni 2019)

Let LDLT = ΠMΠT be the LDLT factorization with Bunch–Parlett pivoting of a
SQSD matrix M , with pivoting threshold τ = 1. Then,

1 ‖D‖max ≤ 2n−1 ‖M‖max, and ‖L‖max ≤ 2.

2

∥∥|D| ∣∣D−1
∣∣∥∥

max
≤ 2, and

∥∥|D| ∣∣D−1
∣∣∥∥ ≤ 3.
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Backward Stability of PPT-based Inersion of SQSD Matrices

Theorem (Backward stability of symmetric GJE)

Let X̂ be the approximation of X = −M−1 computed by the PPT-based symmetric
Gauss–Jordan elimination algorithm. Then, each column x̂j = X̂ej satisfies

−ej = (M + ∆j)x̂j , |∆j | ≤ |M |
∣∣∣L−T

∣∣∣ ∣∣∣LT
∣∣∣ εn,

where εn := cnu
1−cnu

with a constant c independent of n.
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Structure-preserving Inversion of SQSD Matrices
Numerical experiment for computing M−1

Inversion of 200 random 200× 200
SQD matrices with

MATLAB inv, based on
DSYTRI from LAPACK

Bunch-Parlett with complete
pivoting,

structured inversion using
PPTs.
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Factored Form of Sign Function Iteration

Recall: M+ =: 1
2

(
M̃ +M−1

)
J with M, M̃ SQSD.

For inversion of M =

[
CTC −AT

−A −BBT

]
, use symmetric GJE based on PPT.

The inverse of a SQSD matrix is again SQSD, i.e.,

M−1 =

[
CTC −AT

−A −BBT

]−1

=

[
ĈT Ĉ −ÂT

−Â −B̂B̂T

]
.

Inversion can be implemented using A,B,C only using again PPT-variant applied to
generator matrix

G =

[
B A
∗ C

]
,

i.e., compute X =

[
B̂ Â

∗ Ĉ

]
representing M−1 using A,B,C only without ever forming M

[Poloni/Strabić 2016]!

Update M →M+ can then be performed also on generators (potentially using rank
truncation for offline blocks).

 new version of sign function iteration working directly on generators!
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−Â −B̂B̂T

]
.

Inversion can be implemented using A,B,C only using again PPT-variant applied to
generator matrix

G =

[
B A
∗ C

]
,

i.e., compute X =

[
B̂ Â
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Factored Form of Sign Function Iteration
Numercial example

Test the new sign function iteration for AREs based on PPTs (pptsign)

vs. MATLAB function care (based on Schur vector method) and classical sign
function method (signcare) from MORLab [B./Werner 2006–2023],
using 18 examples from carex benchmark collection [B./Laub/Mehrmann 1995].

Measure accuracy by
‖R(X̃)‖

F

‖CTC‖
F
+2‖A‖F‖X̃‖F+‖BBT‖

F
‖X̃2‖

F

.

© benner@mpi-magdeburg.mpg.de AREs, the matrix sign function, and PPTs 15/18

mailto:benner@mpi-magdeburg.mpg.de


Conclusions

Symmetric quasi-semidefinite matrices can be inverted using PPT-based
Gauß-Jordan type elimination in a structure-preserving and numerically robust way.

Sign function iteration for AREs can be reformulated in terms of SQSD matrix
inversions and summations, allowing to work with generator matrices (A,B,C)
only, without ever forming 2n× 2n matrices.

Leads to much lower storage requirements and potentially to faster algorithms
(fewer flops).

Application: cloed-loop balanced truncation without ever solving AREs.

Future work: sophisticated implementation to really test performance.
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Principal pivot transforms of quasidefinite matrices and semidefinite Lagrangian subspaces.
Electronic Journal of Linear Algebra, 31:200–231, 2016.

© benner@mpi-magdeburg.mpg.de AREs, the matrix sign function, and PPTs 17/18

mailto:benner@mpi-magdeburg.mpg.de


Commercial: METT-X

METT X
10th Workshop on Matrix Equations and Tensor Techniques

September 13–15, 2023
RWTH Aachen University (main building)

https://www.igpm.rwth-aachen.de/workshop/mett2023

Special Issue of ETNA (Electronic Transactions on Numerical Analysis),
open for participants only!

Fully (diamond) Open Access without OA charges!

© benner@mpi-magdeburg.mpg.de AREs, the matrix sign function, and PPTs 18/18

https://www.igpm.rwth-aachen.de/workshop/mett2023
mailto:benner@mpi-magdeburg.mpg.de

	Introduction
	The Sign Function Method for Algebraic Riccati Equations
	Another Motivating Application
	Closed-loop Balanced Truncation

	Principal Pivot Transforms
	Backward Stability of PPT-based Inersion of SQSD Matrices
	Structure-preserving Inversion of SQSD Matrices

	Factored Form of Sign Function Iteration
	Conclusions
	References

