

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Model reduction of descriptor systems with quadratic output functionals

Jennifer Przybilla, Igor Pontes Duff, Pawan Goyal, Peter Benner

GAMM Annual Meeting 18th – 22nd March 2022 Magdeburg

Problem setting

DAE with quadratic output

$$\begin{split} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= x(t)^{\mathrm{T}} M x(t) \end{split}$$

with $E,\;A\in\mathbb{R}^{n\times n},\;B\in\mathbb{R}^{n\times m}$ and $M\in\mathbb{R}^{n\times n},$ where E is singular and $M=M^{\mathrm{T}}$

Aim: find surrogate model that

- approximates the input-to-output behavior,
- has the same structure,
- is of smaller dimension.
- Method: apply balanced truncation.

Problem setting

DAE with quadratic output

$$\begin{split} E\dot{x}(t) &= Ax(t) + Bu(t),\\ y(t) &= x(t)^{\mathrm{T}} M x(t) \end{split}$$

with $E,\;A\in\mathbb{R}^{n\times n},\;B\in\mathbb{R}^{n\times m}$ and $M\in\mathbb{R}^{n\times n},$ where E is singular and $M=M^{\mathrm{T}}$

- Aim: find surrogate model that
 - approximates the input-to-output behavior,
 - has the same structure,
 - is of smaller dimension.
- Method: apply balanced truncation.

Problem setting

DAE with quadratic output

$$\begin{split} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= x(t)^{\mathrm{T}} M x(t) \end{split}$$

with $E,\;A\in\mathbb{R}^{n\times n},\;B\in\mathbb{R}^{n\times m}$ and $M\in\mathbb{R}^{n\times n},$ where E is singular and $M=M^{\mathrm{T}}$

- Aim: find surrogate model that
 - approximates the input-to-output behavior,
 - has the same structure,
 - is of smaller dimension.
- Method: apply balanced truncation.

Problem setting

DAE with quadratic output

$$\begin{split} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= x(t)^{\mathrm{T}} M x(t) \end{split}$$

with $E,\;A\in\mathbb{R}^{n\times n},\;B\in\mathbb{R}^{n\times m}$ and $M\in\mathbb{R}^{n\times n},$ where E is singular and $M=M^{\rm T}$

- Aim: find surrogate model that
 - approximates the input-to-output behavior,
 - has the same structure,
 - is of smaller dimension.
- Method: apply balanced truncation.

Table of contents

- 1. Weierstraß canonical form
- 2. Controllability
- 3. Observability
- 4. Balanced truncation Energy functionals Reduction Error estimator A numerical example

SYSTEMS AND CONTROL THEOR

Table of contents

1. Weierstraß canonical form

2. Controllability

3. Observability

4. Balanced truncation Energy functionals Reduction Error estimator A numerical example

Weierstraß canonical form

DAE with quadratic output

 $\begin{aligned} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= x(t)^{\mathrm{T}} M x(t). \end{aligned}$

• There exist W, T nonsingular¹ such that

$$E = W \begin{bmatrix} I_{n_f} & 0\\ 0 & N \end{bmatrix} T, \quad A = W \begin{bmatrix} J & 0\\ 0 & I_{n_{\infty}} \end{bmatrix} T, \quad Tx(t) = \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}$$

with

- n_f number of finite eigenvalues of (E, A),
- n_{∞} number of infinite eigenvalues of (E, A),
- J nonsingular, N nilpotent with nilpotency index ν .

¹P. Kunkel; V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution, EMS Publishing House, 2006.

Weierstraß canonical form

DAE with quadratic output

$$\begin{split} E\dot{x}(t) &= Ax(t) + Bu(t),\\ y(t) &= x(t)^{\mathrm{T}} M x(t). \end{split}$$

• There exist W, T nonsingular¹ such that

$$E = W \begin{bmatrix} I_{n_f} & 0\\ 0 & N \end{bmatrix} T, \quad A = W \begin{bmatrix} J & 0\\ 0 & I_{n_{\infty}} \end{bmatrix} T, \quad Tx(t) = \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}.$$

Transformed system ¥

$$\begin{bmatrix} I_{n_f} & 0\\ 0 & N \end{bmatrix} \begin{bmatrix} \dot{x}_1(t)\\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} J & 0\\ 0 & I_{n_{\infty}} \end{bmatrix} \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix} + W^{-1}Bu(t),$$
$$y(t) = \begin{bmatrix} x_1(t)^{\mathrm{T}} & x_2(t)^{\mathrm{T}} \end{bmatrix} T^{-\mathrm{T}}MT^{-1} \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}$$

Weierstraß canonical form

Transformed state equation

$$E\dot{x}(t) = Ax(t) + Bu(t) \qquad \Rightarrow \qquad \begin{bmatrix} I_{n_f} & 0\\ 0 & N \end{bmatrix} \begin{bmatrix} \dot{x}_1(t)\\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} J & 0\\ 0 & I_{n_\infty} \end{bmatrix} \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix} + W^{-1}Bu(t)$$

Decompose state
$$x(t) = x_p(t) + x_i(t) = T^{-1} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
.

Proper state

$$x_p(t) = T^{-1} \begin{bmatrix} x_1(t) \\ 0 \end{bmatrix} = \int_0^t T^{-1} \begin{bmatrix} e^{J(t-\tau)} & 0 \\ 0 & 0 \end{bmatrix} W^{-1} B u(\tau) \mathrm{d}\tau$$

Improper state

$$x_i(t) = T^{-1} \begin{bmatrix} 0\\x_2(t) \end{bmatrix} = \sum_{k=0}^{\nu-1} T^{-1} \begin{bmatrix} 0 & 0\\0 & -N^k \end{bmatrix} W^{-1} B u^{(k)}(t)$$

Weierstraß canonical form

Transformed state equation

$$E\dot{x}(t) = Ax(t) + Bu(t) \qquad \Rightarrow \qquad \begin{bmatrix} I_{n_f} & 0\\ 0 & N \end{bmatrix} \begin{bmatrix} \dot{x}_1(t)\\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} J & 0\\ 0 & I_{n_{\infty}} \end{bmatrix} \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix} + W^{-1}Bu(t)$$

Decompose state
$$x(t) = x_p(t) + x_i(t) = T^{-1} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
.

Proper state

$$x_p(t) = T^{-1} \begin{bmatrix} x_1(t) \\ 0 \end{bmatrix} = \int_0^t T^{-1} \begin{bmatrix} e^{J(t-\tau)} & 0 \\ 0 & 0 \end{bmatrix} W^{-1} Bu(\tau) d\tau = \int_0^t F_J(t-\tau) Bu(\tau) d\tau.$$

Improper state

$$x_i(t) = T^{-1} \begin{bmatrix} 0\\ x_2(t) \end{bmatrix} = \sum_{k=0}^{\nu-1} T^{-1} \begin{bmatrix} 0 & 0\\ 0 & -N^k \end{bmatrix} W^{-1} B u^{(k)}(t) = \sum_{k=0}^{\nu-1} F_N(k) B u^{(k)}(t).$$

Weierstraß canonical form

DAE with quadratic output

$$\begin{split} E\dot{x}(t) &= Ax(t) + Bu(t),\\ y(t) &= x(t)^{\mathrm{T}} M x(t). \end{split}$$

• Consider proper and improper state $x(t) = x_p(t) + x_i(t)$.

Weierstraß canonical form

DAE with quadratic output

$$\begin{split} E\dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= x(t)^{\mathrm{T}} M x(t). \end{split}$$

- Consider proper and improper state $x(t) = x_p(t) + x_i(t)$.

Table of contents

1. Weierstraß canonical form

2. Controllability

3. Observability

4. Balanced truncation

Energy functionals Reduction Error estimator A numerical example

Controllability

Proper state

• Consider the proper state

$$x_p(t) = \int_0^t F_J(t-\tau)Bu(\tau)\mathrm{d} au.$$

Improper state

Consider the improper state

$$x_i(t) = \sum_{k=0}^{\nu-1} F_N(k) B u^{(k)}(t).$$

Controllability

Proper state

Consider the proper state

$$x_p(t) = \int_0^t F_J(t- au) B u(au) \mathrm{d} au.$$

Define proper controllability mapping

 $\mathcal{C}_p(t) = F_J(t)B.$

Improper state

Consider the improper state

$$x_i(t) = \sum_{k=0}^{\nu-1} F_N(k) B u^{(k)}(t).$$

Define improper controllability mapping

$$\mathcal{C}_i(k) = F_N(k)B.$$

Controllability

Proper state

Consider the proper state

$$x_p(t) = \int_0^t F_J(t- au) B u(au) \mathrm{d} au.$$

Define proper controllability mapping

 $\mathcal{C}_p(t) = F_J(t)B.$

Define corresponding Gramian

$$P_p = \int_0^\infty C_p(t) C_p(t)^{\mathrm{T}} \mathrm{d}t$$
$$= \int_0^\infty F_J(t) B B^{\mathrm{T}} F_J(t)^{\mathrm{T}} \mathrm{d}t$$

Improper state

Consider the improper state

$$x_i(t) = \sum_{k=0}^{\nu-1} F_N(k) B u^{(k)}(t).$$

Define improper controllability mapping

 $\mathcal{C}_i(k) = F_N(k)B.$

Define corresponding Gramian

$$P_i = \sum_{k=0}^{\nu-1} C_i(k) C_i(k)^{\mathrm{T}}$$
$$= \sum_{k=0}^{\nu-1} F_N(k) B B^{\mathrm{T}} F_N(k)^{\mathrm{T}}.$$

Controllability Gramians:

$$P_p = \int_0^\infty F_J(t) \boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} F_J(t)^{\mathrm{T}} \mathrm{d}t,$$

$$P_i = \sum_{k=0}^{\nu-1} F_N(k) B B^{\mathrm{T}} F_N(k)^{\mathrm{T}}$$

Theorem ²

The controllability Gramians P_p and P_i solve the projected Lyapunov equations

$$EP_pA^{\mathrm{T}} + AP_pE^{\mathrm{T}} = -P_lBB^{\mathrm{T}}P_l^{\mathrm{T}}, \qquad P_p = P_rP_pP_r^{\mathrm{T}},$$
$$AP_iA^{\mathrm{T}} - EP_iE^{\mathrm{T}} = (I - P_l)BB^{\mathrm{T}}(I - P_l)^{\mathrm{T}}, \qquad 0 = P_rP_pP_r^{\mathrm{T}}$$

where
$$P_l = W \begin{bmatrix} I_{n_f} & 0 \\ 0 & 0 \end{bmatrix} W^{-1}$$
, $P_r = T^{-1} \begin{bmatrix} I_{n_f} & 0 \\ 0 & 0 \end{bmatrix} T$ are projections.

Controllability

 $^{^2}$ T. Stykel, Gramian-based model reduction for descriptor systems, Math. Control Signals Systems, 16(4):297-319, 2004.

Table of contents

1. Weierstraß canonical form

2. Controllability

3. Observability

4. Balanced truncation

Energy functionals Reduction Error estimator A numerical example

Original system

CSC

• Original and decomposed system result in the same output:

$$y(t) = \underbrace{x_p(t)^{\mathrm{T}} M x_p(t)}_{=:y_{pp}(t)} + \underbrace{x_p(t)^{\mathrm{T}} M x_i(t)}_{=:y_{pi}(t)} + \underbrace{x_i(t)^{\mathrm{T}} M x_p(t)}_{=:y_{ip}(t)} + \underbrace{x_i(t)^{\mathrm{T}} M x_i(t)}_{=:y_{ii}(t)}.$$

• We consider the observability of the right states under consideration of the left state.

Original system

CSC

• Original and decomposed system result in the same output:

$$y(t) = \underbrace{x_p(t)^{\mathrm{T}} M x_p(t)}_{=:y_{pp}(t)} + \underbrace{x_p(t)^{\mathrm{T}} M x_i(t)}_{=:y_{pi}(t)} + \underbrace{x_i(t)^{\mathrm{T}} M x_p(t)}_{=:y_{ip}(t)} + \underbrace{x_i(t)^{\mathrm{T}} M x_i(t)}_{=:y_{ii}(t)}.$$

• We consider the observability of the right states under consideration of the left state.

Proper-proper Observability

DAE system with proper-proper output

$$x_p(t) = \int_0^t F_J(t) Bu(\tau) \mathrm{d}\tau, \qquad y_{pp}(t) = x_p(t)^{\mathrm{T}} M x_p(t)$$

Investigate the output

$$y_{pp}(t) = x_{p}(t)^{\mathrm{T}} M x_{p}(t) = \int_{0}^{t} \int_{0}^{t} u(\tau_{1})^{\mathrm{T}} B^{\mathrm{T}} F_{J}(t-\tau_{1})^{\mathrm{T}} M F_{J}(t-\tau_{2}) B u(\tau_{2}) \mathrm{d}\tau_{1} \mathrm{d}\tau_{2}$$
$$= \int_{0}^{t} \int_{0}^{t} \operatorname{vec} \left(B^{\mathrm{T}} F_{J}(t-\tau_{1})^{\mathrm{T}} M F_{J}(t-\tau_{2}) B \right) (u(\tau_{2}) \otimes u(\tau_{1})) \mathrm{d}\tau_{1} \mathrm{d}\tau_{2}$$

- We recognize $C_p(t \tau_2) = F_J(t \tau_2)B$.
- The remaining observability mapping is defined as

$$\mathcal{O}_{pp}(t_1, t_2) := B^{\mathrm{T}} F_J(t_1)^{\mathrm{T}} M F_J(t_2).$$

The observability mapping is defined as

$$\mathcal{O}_{pp}(t_1, t_2) = B^{\mathrm{T}} F_J(t_1)^{\mathrm{T}} M F_J(t_2).$$

Define the corresponding observability Gramian³

$$Q_{pp} := \int_{0}^{\infty} \int_{0}^{\infty} \mathcal{O}_{pp}(t_{1}, t_{2})^{\mathrm{T}} \mathcal{O}_{pp}(t_{1}, t_{2}) \mathrm{d}t_{1} \mathrm{d}t_{2}$$
$$= \int_{0}^{\infty} \int_{0}^{\infty} F_{J}(t_{2})^{\mathrm{T}} M F_{J}(t_{1}) B B^{\mathrm{T}} F_{J}(t_{1})^{\mathrm{T}} M F_{J}(t_{2}) \mathrm{d}t_{1} \mathrm{d}t_{2}$$

$$Q_{pp} = \int_0^\infty F_J(t_2)^{\mathrm{T}} M P_p M F_J(t_2) \mathrm{d}t_2.$$

³P. Benner, P. Goyal, and I. Pontes Duff, Gramians, energy functionals and balanced truncation for linear dynamical systems with quadratic outputs, IEEE Trans. Autom. Control, 67(2):886-893, 2021.

Summary — Gramians

Observability Gramians:

$$\begin{aligned} Q_{pp} &= \int_0^\infty F_J(t)^{\mathrm{T}} M P_p M F_J(t) \mathrm{d}t, \qquad Q_{ip} = \int_0^\infty F_J(t)^{\mathrm{T}} M P_i M F_J(t) \mathrm{d}t \quad \Rightarrow \quad Q_p = Q_{pp} + Q_{ip}, \\ Q_{pi} &= \sum_{k=0}^{\nu-1} F_N(k)^{\mathrm{T}} M P_p M F_N(k), \qquad Q_{ii} = \sum_{k=0}^{\nu-1} F_N(k)^{\mathrm{T}} M P_i M F_N(k) \quad \Rightarrow \quad Q_i = Q_{pi} + Q_{ii} \end{aligned}$$

Theorem

The observability Gramians Q_{pp} , Q_{pi} , Q_{ip} and Q_{ii} solve the projected Lyapunov equations

$$\begin{split} E^{\mathrm{T}}Q_{pp}A + A^{\mathrm{T}}Q_{pp}E &= -P_{r}^{\mathrm{T}}MP_{p}MP_{r}, \qquad P_{p} = P_{l}^{\mathrm{T}}Q_{pp}P_{l}, \\ A^{\mathrm{T}}Q_{pi}A - E^{\mathrm{T}}Q_{pi}E &= (I - P_{r})^{\mathrm{T}}MP_{p}M(I - P_{r}), \qquad 0 = P_{l}^{\mathrm{T}}Q_{pi}P_{l}, \\ E^{\mathrm{T}}Q_{ip}A + A^{\mathrm{T}}Q_{ip}E &= -P_{r}^{\mathrm{T}}MP_{i}MP_{r}, \qquad P_{p} = P_{l}^{\mathrm{T}}Q_{ip}P_{l}, \\ A^{\mathrm{T}}Q_{ii}A - E^{\mathrm{T}}Q_{ii}E &= (I - P_{r})^{\mathrm{T}}MP_{i}M(I - P_{r}), \qquad 0 = P_{l}^{\mathrm{T}}Q_{ip}P_{l}. \end{split}$$

Table of contents

- 1. Weierstraß canonical form
- 2. Controllability
- 3. Observability
- 4. Balanced truncation Energy functionals Reduction Error estimator A numerical example

- **Idea:** Truncate states that are hard to reach and to observe.
- Evaluate energy norms to detect most dominant subspaces.

Input energy:

• Energy norm of the proper input-to-state mapping $C_p(t)$ and $C_i(t)$:

$$\begin{aligned} \|\mathcal{C}_p\| &= \int_0^\infty \operatorname{tr} \left(\mathcal{C}_p(t) \mathcal{C}_p(t) \right) \mathrm{d}t = \operatorname{tr} \left(P_p \right) = \sigma_1 + \dots + \sigma_{n_f}, \\ \|\mathcal{C}_i\| &= \sum_0^{\nu-1} \operatorname{tr} \left(\mathcal{C}_i(k) \mathcal{C}_i(k) \right) = \operatorname{tr} \left(P_i \right) = \theta_1 + \dots + \theta_{n_\infty}, \end{aligned}$$

where $\sigma_1, \ldots, \sigma_{n_f}$ are the nonzero singular values of P_p and $\theta_1, \ldots, \theta_{n_\infty}$ those from P_i .

- **Idea:** Truncate states that are hard to reach and to observe.
- Evaluate energy norms to detect most dominant subspaces.

Input energy:

• Energy norm of the proper input-to-state mapping $C_p(t)$ and $C_i(t)$:

$$\begin{aligned} \|\mathcal{C}_p\| &= \int_0^\infty \operatorname{tr} \left(\mathcal{C}_p(t) \mathcal{C}_p(t) \right) \mathrm{d}t = \operatorname{tr} \left(P_p \right) = \sigma_1 + \dots + \sigma_{n_f}, \\ \|\mathcal{C}_i\| &= \sum_0^{\nu-1} \operatorname{tr} \left(\mathcal{C}_i(k) \mathcal{C}_i(k) \right) = \operatorname{tr} \left(P_i \right) = \theta_1 + \dots + \theta_{n_\infty}, \end{aligned}$$

where $\sigma_1, \ldots, \sigma_{n_f}$ are the nonzero singular values of P_p and $\theta_1, \ldots, \theta_{n_\infty}$ those from P_i .

- \Rightarrow Small singular values and respective states have little effect on system dynamics.
- \Rightarrow Truncate the respective subspaces.

Output energy:

CSC

Evaluate the energy norms of the proper and improper state-to-output mappings $\mathcal{O}_{pp}(t_1, t_2)$, \mathcal{O}_{ip} , \mathcal{O}_{pi} , and \mathcal{O}_{ii} , which yields:

$$\|\mathcal{O}_{pp}\| = \operatorname{tr}(Q_{pp}), \quad \|\mathcal{O}_{ip}\| = \operatorname{tr}(Q_{ip}), \quad \|\mathcal{O}_{pi}\| = \operatorname{tr}(Q_{pi}), \quad \|\mathcal{O}_{ii}\| = \operatorname{tr}(Q_{ii}).$$

Proper output energy corresponding to a differential right state:

$$E_{y_p} = \|\mathcal{O}_{pp}\| + \|\mathcal{O}_{ip}\| = \operatorname{tr} \left(Q_{pp} + Q_{ip}\right)$$
$$= \operatorname{tr} \left(Q_p\right)$$

Improper output energy corresponding to an algebraic right state:

$$E_{y_i} = \|\mathcal{O}_{pi}\| + \|\mathcal{O}_{ii}\| = \operatorname{tr} (Q_{pi} + Q_{ii})$$
$$= \operatorname{tr} (Q_i)$$

Balanced truncation

Output energy:

Evaluate the energy norms of the proper and improper state-to-output mappings $\mathcal{O}_{pp}(t_1, t_2)$, \mathcal{O}_{ip} , \mathcal{O}_{pi} , and \mathcal{O}_{ii} , which yields:

$$\|\mathcal{O}_{pp}\| = \operatorname{tr}(Q_{pp}), \quad \|\mathcal{O}_{ip}\| = \operatorname{tr}(Q_{ip}), \quad \|\mathcal{O}_{pi}\| = \operatorname{tr}(Q_{pi}), \quad \|\mathcal{O}_{ii}\| = \operatorname{tr}(Q_{ii}).$$

Proper output energy corresponding to a differential right state:

$$E_{y_p} = \|\mathcal{O}_{pp}\| + \|\mathcal{O}_{ip}\| = \operatorname{tr} \left(Q_{pp} + Q_{ip}\right)$$
$$= \operatorname{tr} \left(Q_p\right)$$

Improper output energy corresponding to an algebraic right state:

$$E_{y_i} = \|\mathcal{O}_{pi}\| + \|\mathcal{O}_{ii}\| = \operatorname{tr} (Q_{pi} + Q_{ii})$$
$$= \operatorname{tr} (Q_i)$$

 \Rightarrow Truncate states corresponding to small eigenvalues of P_p and Q_p .

Balanced truncation

- Use low-rank factors $P_p = R_p R_p^{\mathrm{T}}$, $P_i = R_i R_i^{\mathrm{T}}$, $Q_p = S_p S_p^{\mathrm{T}}$, $Q_i = S_i S_i^{\mathrm{T}}$.
- Compute the SVDs: $S_p^{\mathrm{T}} E R_p = U_p \Sigma V_p^{\mathrm{T}} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{vmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{vmatrix} \begin{vmatrix} V_1^{\mathrm{T}} \\ V_2^{\mathrm{T}} \end{vmatrix}, \qquad S_i^{\mathrm{T}} A R_i = U_i \Theta V_i^{\mathrm{T}}.$
- Balancing and truncating projection matrices:

$$W_{\mathbf{r}} = \begin{bmatrix} S_p^{\mathrm{T}} U_1 \Sigma_1^{-\frac{1}{2}} & S_i U_i \Theta^{-\frac{1}{2}} \end{bmatrix}, \qquad T_{\mathbf{r}} = \begin{bmatrix} R_p^{\mathrm{T}} V_1 \Sigma_1^{-\frac{1}{2}} & R_i V_i \Theta^{-\frac{1}{2}} \end{bmatrix}$$

Reduced system

$$W_{\mathrm{r}}^{\mathrm{T}} E T_{\mathrm{r}} \dot{\widehat{x}}(t) = W_{\mathrm{r}}^{\mathrm{T}} A T_{\mathrm{r}} \hat{x}(t) + W_{\mathrm{r}}^{\mathrm{T}} B u(t),$$

$$\widehat{y}(t) = \widehat{x}(t)^{\mathrm{T}} T_{\mathrm{r}}^{\mathrm{T}} M T_{\mathrm{r}} \widehat{x}(t)$$

Balanced truncation

- Use low-rank factors $P_p = R_p R_p^{\mathrm{T}}$, $P_i = R_i R_i^{\mathrm{T}}$, $Q_p = S_p S_p^{\mathrm{T}}$, $Q_i = S_i S_i^{\mathrm{T}}$.
- Compute the SVDs: $S_p^{\mathrm{T}} E R_p = U_p \Sigma V_p^{\mathrm{T}} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^{\mathrm{T}} \\ V_2^{\mathrm{T}} \end{bmatrix}, \quad S_i^{\mathrm{T}} A R_i = U_i \Theta V_i^{\mathrm{T}}.$
- Balancing and truncating projection matrices:

$$W_{\mathrm{r}} = \begin{bmatrix} S_p^{\mathrm{T}} U_1 \boldsymbol{\Sigma}_1^{-\frac{1}{2}} & S_i U_i \boldsymbol{\Theta}^{-\frac{1}{2}} \end{bmatrix}, \qquad T_{\mathrm{r}} = \begin{bmatrix} R_p^{\mathrm{T}} V_1 \boldsymbol{\Sigma}_1^{-\frac{1}{2}} & R_i V_i \boldsymbol{\Theta}^{-\frac{1}{2}} \end{bmatrix}$$

Reduced system $\begin{bmatrix} I_r & 0\\ 0 & E_2 \end{bmatrix} \begin{bmatrix} \dot{\hat{x}}_1(t)\\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} \widehat{A}_1 & 0\\ 0 & I_{n_{\infty}} \end{bmatrix} \begin{bmatrix} \widehat{x}_1(t)\\ x_2(t) \end{bmatrix} + \begin{bmatrix} \widehat{B}_1\\ \widehat{B}_2 \end{bmatrix} u(t),$ $\widehat{y}(t) = \begin{bmatrix} \widehat{x}_1(t)\\ x_2(t) \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \widehat{M}_{11} & \widehat{M}_{12}\\ \widehat{M}_{12}^{\mathrm{T}} & \widehat{M}_{22} \end{bmatrix} \begin{bmatrix} \widehat{x}_1(t)\\ x_2(t) \end{bmatrix}$

Error Estimation

Output error

$$\begin{aligned} \|y(t) - \widehat{y}(t)\|_{L_{\infty}} \\ &\leq \|y_{pp}(t) - \widehat{y}_{pp}(t)\|_{L_{\infty}} + \|y_{pi}(t) - \widehat{y}_{pi}(t)\|_{L_{\infty}} + \|y_{ip}(t) - \widehat{y}_{ip}(t)\|_{L_{\infty}} + \underbrace{\|y_{ii}(t) - \widehat{y}_{ii}(t)\|_{L_{\infty}}}_{ \\ \end{aligned}$$

As example estimate

$$\|y_{ip}(t) - \hat{y}_{ip}(t)\|_{L_{\infty}} \le \left(\operatorname{tr} \left(B^{\mathrm{T}} Q_{ip} B \right) - 2 \operatorname{tr} \left(B^{\mathrm{T}} \widetilde{Q}_{ip} \hat{B} \right) + \operatorname{tr} \left(\hat{B}^{\mathrm{T}} \hat{Q}_{ip} \hat{B} \right) \right)^{\frac{1}{2}} \nu^{\frac{1}{2}} \|u\|_{\mathcal{C}^{\nu-1}} \|u\|_{L_{2}}$$

with

- \widehat{Q}_{ip} Gramian of the reduced system,
- \widetilde{Q}_{ip} mixed Gramian that solves a particular projected Sylvester equation.

=0

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY A numerical example

Mechanical system described by an index 3 DAE system⁴

• Input $u(t) = \sin(2t)^2 e^{-\frac{t}{2}}$.

• Original dimensions: $n_f = 1200, n_\infty = 1.$

• Output matrix $M = I_{n_f + n_\infty}$.

⁴V. Mehrmann and T. Stykel, Balanced truncation model reduction for large-scale systems in descriptor form. In P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension Reduction of Large-Scale Systems, volume 45 of Lect. Notes Comput. Sci. Eng., pages 83-115.Springer-Verlag, Berlin/Heidelberg, Germany, 2005.

A numerical example

Mechanical system described by an index 3 DAE system ⁴

- Input $u(t) = \sin(2t)^2 e^{-\frac{t}{2}}$.
- Output matrix $M = I_{n_f + n_\infty}$.
 - Singular value decay in Σ :

- Original dimensions: $n_f = 1200, n_\infty = 1.$
- Reduced dimensions: $\hat{n}_f = 20$, $\hat{n}_{\infty} = 1$.

A numerical example

Mechanical system described by an index 3 DAE system

- Input $u(t) = \sin(2t)^2 e^{-\frac{t}{2}}$.
- Output matrix $M = I_{n_f + n_\infty}$.

- Original dimensions: $n_f = 1200, n_{\infty} = 1.$
- Reduced dimensions: $\hat{n}_f = 20$, $\hat{n}_{\infty} = 1$.

Singular value decay in Σ :

Output and output error:

Jennifer Przybilla przybilla@mpi-magdeburg.mpg.de

• We defined (new) Gramians:

$$\begin{split} P_{p} &= \int_{0}^{\infty} F_{J}(t) B B^{\mathrm{T}} F_{J}(t)^{\mathrm{T}} \mathrm{d}t, \qquad P_{i} = \sum_{k=0}^{\nu-1} F_{N}(k) B B^{\mathrm{T}} F_{N}(k)^{\mathrm{T}}, \\ Q_{pp} &= \int_{0}^{\infty} F_{J}(t)^{\mathrm{T}} M P_{p} M F_{J}(t) \mathrm{d}t, \qquad Q_{pi} = \sum_{k=0}^{\nu-1} F_{N}(k)^{\mathrm{T}} M P_{p} M F_{N}(k), \\ Q_{ip} &= \int_{0}^{\infty} F_{J}(t)^{\mathrm{T}} M P_{i} M F_{J}(t) \mathrm{d}t, \qquad Q_{ii} = \sum_{k=0}^{\nu-1} F_{N}(k)^{\mathrm{T}} M P_{i} M F_{N}(k), \\ Q_{p} &= Q_{pp} + Q_{ip}, \qquad Q_{i} = Q_{pi} + Q_{ii}. \end{split}$$

• We investigated the energy functionals of the systems

$$E_u(x_p^*) = (x_p^*) P_p^I x_p^*, \qquad E_{y_p}(x_p^*) \le (x_p^*)^{\mathrm{T}} E^{\mathrm{T}} Q_p E x_p^*.$$

• We propose a balanced truncation method for DAE systems with quadratic output.

Summary

• We derived an error estimator.

Thank you for your attention!

References	
	P. Kunkel; V. Mehrmann Differential-Algebraic Equations: Analysis and Numerical Solution <i>EMS Publishing House</i> , 2006.
	T. Stykel Gramian-based model reduction for descriptor systems <i>Math. Control Signals Systems</i> , 16(4):297-319, 2004.
	V. Mehrmann and T. Stykel Balanced truncation model reduction for large-scale systems in descriptor form. In P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension Reduction of Large-Scale Systems <i>volume 45 of Lect. Notes Comput. Sci. Eng.</i> , 83-115.Springer-Verlag, Berlin/Heidelberg, Germany, 2005.
	P.Benner, P. Goyal, and I. Pontes Duff

Gramians, energy functionals and balanced truncation for linear dynamical systems with quadratic outputs *IEEE Trans. Autom. Control*, 67(2):886-893, 2021.