
Learning Mechanical Systems from Data,
with Stability Certificates

Peter Benner

Joint work with
Yevgeniya Filanova, Igor Pontes Duff (MPI Magdeburg)

Pawan K. Goyal (appliedAI Initiative, Heilbronn/Germany)

1st International Symposium on modelling and efficient
computation of high dimensional problems in computational mechanics

August 29–30 2024
Leibnizhaus Hannover

Supported by: Partners:



Overview

1. Model Order Reduction of Dynamical Systems
Problem Setting
Model Order Reduction of Linear Systems

2. Data-driven/-enhanced Model Reduction
A Brief History of System Identification
DMD in a Nutshell
Operator Inference

3. OpInf for Mechanical Systems
Motivation
Force-informed Learning
Parametrized inference (p-OpInf)
Numerical Results

4. Preserving Stability in Operator Inference
Linear Systems / Local Stability
Nonlinear Systems / Global Stability

© benner@mpi-magdeburg.mpg.de Learning Mechanical Systems from Data with Stability Certificates 2/34

mailto:benner@mpi-magdeburg.mpg.de


Model Order Reduction of Dynamical Systems

Original System

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)),

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)),

states x̂(t) ∈ Rr, r ≪ n,

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

∥y − ŷ∥ < tolerance · ∥u∥ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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∥y − ŷ∥ < tolerance · ∥u∥ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.

© benner@mpi-magdeburg.mpg.de Learning Mechanical Systems from Data with Stability Certificates 3/34

mailto:benner@mpi-magdeburg.mpg.de


Model Order Reduction of Dynamical Systems

Original System

Σ :

{
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Model Order Reduction of Linear Systems
Linear Time-Invariant (LTI) Systems

Original System

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rp.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t).

states x̂(t) ∈ Rr, r ≪ n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rp.

Goals:

∥y − ŷ∥ < tolerance · ∥u∥ for all admissible input signals.

Secondary goal: reconstruct approximation of x from x̂.
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Model Order Reduction of Linear Systems
Model Reduction Schematically

E,A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m

Ê, Â ∈ Rr×r

B̂ ∈ Rr×m

Ĉ ∈ Rp×r

D̂ ∈ Rp×m
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From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V ) = V, range(W ) = W, WTV = Ir.

The reduced-order model is

x̂ = WT x, Â := WTAV, B̂ := WTB, Ĉ := CV, (D̂ := D).

But: we need the matrices A,B,C,D to compute the reduced-order model!

Using proprietary simulation software, we would need to intrude the software to get the matrices

⇝ intrusive MOR

= learning (compact, surrogate) models from (full, detailed) models.

This is often impossible!

⇝ non-intrusive MOR

= LEARNING (compact, surrogate) MODELS FROM DATA!

© benner@mpi-magdeburg.mpg.de Learning Mechanical Systems from Data with Stability Certificates 6/34

mailto:benner@mpi-magdeburg.mpg.de


From intrusive to non-intrusive MOR

Assumption: trajectory x(t;u) is contained in low-dimensional subspace V ⊂ Rn.
Thus, use Galerkin or Petrov-Galerkin-type projection of state-space onto V (trial space) along
complementary subspace W (test space), where

range(V ) = V, range(W ) = W, WTV = Ir.

The reduced-order model is
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ȷωk) and Xk ≈ X(ȷωk) or Yk ≈ Y (ȷωk).
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Data-driven/-enhanced Model Reduction
Learning Models from Data

Now assume we are only given an oracle, allowing us to compute y (including cases with
y ≡ x), given u(t) or U(s):

Black box Σ: the only information we can get is either

time domain data / times series: uk ≈ u(tk) and xk ≈ x(tk) or yk ≈ y(tk), or

frequency domain data / measurements: Uk ≈ U(ȷωk) and Xk ≈ X(ȷωk) or Yk ≈ Y (ȷωk).

Some methods:

System identification (incl. ERA, N4SID, MOESP): frequency and time domain
[Ho/Kalman 1966; Ljung 1987/1999; Van Overschee/De Moor 1994; Verhaegen 1994; De Wilde, Eykhoff, Moonen, Sima, . . . ]

Neural networks: time domain [Narendra/Parthasarathy 1990; . . . Lee/Carlberg 2019; . . . ]

Loewner interpolation: frequency and time domain
[Antoulas/Anderson 1986; Mayo/Antoulas 2007; Gosea, Gugercin, Ionita, Lefteriu, Peherstorfer, . . . ]

Koopman/Dynamic Mode Decomposition (DMD): time domain
[Mezič 2005; Schmid 2008; Brunton, Kevrekidis, Kutz, Rowley, Noé, Nüske, Schütte, Peitz, Klus, . . . ],

for control systems [Kaiser/Kutz/Brunton 2017, B./Himpe/Mitchell 2018]

Operator inference (OpInf): time domain [Peherstorfer/Willcox 2016; Kramer, Qian, Farcas, B., Goyal,

Pontes Duff, Yıldız,. . . ]
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A Brief History of System Identification

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

© benner@mpi-magdeburg.mpg.de Learning Mechanical Systems from Data with Stability Certificates 8/34

mailto:benner@mpi-magdeburg.mpg.de


A Brief History of System Identification

A paper from 1990. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

© benner@mpi-magdeburg.mpg.de Learning Mechanical Systems from Data with Stability Certificates 8/34

mailto:benner@mpi-magdeburg.mpg.de


A Brief History of System Identification

A book from 1996. . .

Narendra, K.S., Parthasarathy, K. (1990): Identification and control of dynamical systems using neural networks. IEEE
Transactions on Neural Networks 1(1):4–27.

Suykens, J.A.K., Vandewalle, J.P.L., de Moor, B.L. (1996): Artificial Neural Networks for Modelling and Control of
Non-Linear Systems. Springer US.
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DMD in a Nutshell
Basic Framework

Given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment ⇝ nonintrusive!), and find ”best
possible” A∗ such that

xk+1 ≈ A∗xk.
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Motivation: Koopman theory
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appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.
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possible” A∗ such that

xk+1 ≈ A∗xk.

Motivation: Koopman theory

∃ a linear, infinite-dimensional operator describing the evolution of f(x(·)) in an
appropriate function space setting.

Can be considered as lifting of a finite-dimensional, nonlinear problem to a
infinite-dimensional, linear problem.

Basic DMD Algorithm

Set X0 := [x0, x1, . . . , xK−1 ] ∈ Rn×K , X1 := [x1, x2, . . . , xK ] ∈ Rn×K and note that
X1 = AX0 is desired ⇝ over-/underdetermined linear system, solved by linear least-squares
problem (regression):

A∗ := argminA∈Rn×n∥X1 −AX0∥2F+R(A)

with a potential regularization term R(A), e.g., Tikhonov regularization aka kernel ridge
regression: R(A) = β∥A∥2F .
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DMD in a Nutshell
DMD with Inputs and Outputs

Given a smooth control system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.
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ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn, y(t) = g(x(t), u(t)),

with control u(t) ∈ Rm and output y(t) ∈ Rp.

Take state, control, and output snapshots

xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment ⇝ nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.
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xk := x(tk), uk := u(tk), yk := y(tk), k = 0, 1, . . . ,K

(using simulation software, or measurements from real life experiment ⇝ nonintrusive!), and find
”best possible” discrete-time LTI system such that

xk+1 ≈ A∗xk +B∗uk, yk ≈ C∗xk +D∗uk.

Basic ioDMD Algorithm (≡ N4SID)

Let S := Rn×n × Rn×m × Rp×n × Rp×m. Set X0, X1 as before and

U0 := [u0, u1, . . . , uK−1 ] ∈ Rm×K , Y0 := [ y0, y1, . . . , yK−1 ] ∈ Rp×K .

Solve the linear least-squares problem (regression):

(A∗, B∗, C∗, D∗) := argmin(A,B,C,D)∈S

∥∥∥∥[X1

Y0

]
−

[
A B
C D

] [
X0

U0

]∥∥∥∥2
F

+R(A, B, C, D)

with a potential regularization term R(A, B, C, D).
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Operator Inference
Reduced-order / compressive DMD/OpInf

Same setting as before: given a smooth dynamical system

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn.

Take snapshots xk := x(tk) on grid tk := kh for k = 0, 1, . . . ,K and fixed h > 0 (using
simulation software, or measurements from real life experiment ⇝ nonintrusive!).

By construction, DMD yields a linear system of order n — this may be too large!

Idea: compress trajectories using POD / PCA:

1 Let X := [x0, x1, . . . , xK−1, xK ] ∈ Rn×K+1 be the matrix of all snapshots.

2 Compute principal / dominant singular vectors via SVD X = UΣV T and set
W := U(:, 1 : r) such that

∑K+1
k=r+1 σk < ε (potentially, use centered data).

3 Compute compressed snapshot matrix X̂ := WTX.

4 Apply DMD using X̂0, X̂1 and compute reduced-order Â via

Â∗ := argminÂ∈Rr×r∥X̂1 − ÂX̂0∥2F+R(Â).

Can be combined with ioDMD to obtain reduced-order LTI system.
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Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Learning Mechanical Systems from Data with Stability Certificates 12/34

mailto:benner@mpi-magdeburg.mpg.de


Operator Inference
Reduced-order / compressive DMD/OpInf

Same setting as before: given a smooth dynamical system
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Can be combined with ioDMD to obtain reduced-order LTI system.

© benner@mpi-magdeburg.mpg.de Learning Mechanical Systems from Data with Stability Certificates 12/34

mailto:benner@mpi-magdeburg.mpg.de


Operator Inference
Reduced-order / compressive DMD/OpInf

Same setting as before: given a smooth dynamical system
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Operator Inference
Basic Algorithm

Basic idea: apply compressive ioDMD in continuous-time setting,

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system

˙̂x(t) = Âx̂(t) + Ĥ (x̂(t)⊗ x̂(t)) + B̂u(t),

where P ⊗Q := [pijQ]ij denotes the Kronecker (tensor) product, from data

X := [x0, x1, . . . , xK ] ∈ Rn×(K+1), U := [u0, u1, . . . , uK ] ∈ Rm×(K+1).

Use compressed trajectories (via POD / PCA) ⇝ X̂.

Compress snapshot matrix of time derivatives: if residuals f(xj , uj) are available

˙̂
X := [ ẋ(0), ẋ(t1), . . . , ẋ(tK) ] ≈ [ f(x0, u0), f(x1, u1), . . . , f(xK , uK) ] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ⇝ ˙̂
X.

Solve the linear least-squares problem (regression):

(Â∗, Ĥ∗, B̂∗) := argmin(Â,Ĥ,B̂)

∥∥ ˙̂
X −

[
Â Ĥ B̂

]  X̂

X̂2

U

∥∥2
F
+R(Â, Ĥ, B̂)

with potential regularization as before and X̂2 := [x0 ⊗ x0, . . . , xK ⊗ xK ].
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ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system
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X := [ ẋ(0), ẋ(t1), . . . , ẋ(tK) ] ≈ [ f(x0, u0), f(x1, u1), . . . , f(xK , uK) ] ∈ Rn×(K+1),

otherwise, approximate time-derivatives by finite differences ⇝ ˙̂
X.

Solve the linear least-squares problem (regression):
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ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

and impose a nonlinear structure.

Here: try to infer quadratic system
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Operator Inference: A Numerical Example
Batch Chromatography: A Chemical Separation Process (Pilot Plant at MPI Magdeburg)

Desorbent

Feed (A+B)

Pump

fractionation 

valve
Chromatographic column

Pulse injection

AB

A

B

A
B

AB

A

B

The dynamics of a batch chromatography column can be described by the coupled PDE
system of advection-diffusion type:

∂ci

∂t
+

1− ϵ

ϵ

∂qi

∂t
+

∂ci

∂x
−

1

Pe

∂2ci

∂x2
= 0,

∂qi

∂t
= κi

(
qEq
i − qi

)
.

Coupled nonlinear PDE system; preservation of coupling structure desirable!

This is achieved by block diagonal projection, thereby not mixing separate physical
quantities.
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Figure: Batch chromatography example: A comparison of the POD intrusive model with the
learned model of order r = 4× 22, where n = 1600 and Pe = 2000.
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Operator Inference: Extension to Parametric Systems
Example: Parameterized Shallow Water Equations

Parameterized shallow water equations are given by [Yıldız et al 2021]

∂

∂t
ũ = −hx + sin θ ṽ − ũũx − ṽũy + δ cos θ(hũ)x −

3

8
(δ cos θ)

2
(h

2
)x,

∂

∂t
ṽ = −hy + sin θ ũ +

1

2
δ sin θ cos θ h − ũṽx − ṽṽy

+ δ cos θ

(
(hũ)y +

1

2
h (ṽx − ũy)

)
−

3

8
(δ cos θ)

2
(h

2
)y,

∂

∂t
h = −(hũ)x − (hṽ)y +

1

2
δ cos θ(h

2
)x.

Parameterized by the latitude θ.

ũ =: (ũ; ṽ) is the canonical velocity.

h is the height field.

We collect the training data for 5 different parameter realizations θ in
[π
6
,
π

3

]
.

Infer a reduced parametric model directly from data of order r = 75.
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Comparison of the height field for the parameter θ =
5π

24
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(b) Learned parametric model
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Operator Inference: Extension to Constrained PDEs
Example: Navier-Stokes Equations

Tailored operator inference for incompressible Navier-Stokes equations, by heeding
incompressibility condition. [B./Goyal/Heiland/Pontes Duff 2022]

Γ0 Γ1
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OpInf for Mechanical Systems
Motivation

Experiment
measurements

or

Simulation
results

x(t),

u(t),
. . .

M̂, Ê,

K̂, B̂

• robustness
• interpretability

[M?]ẍ(t) + [E?]ẋ(t) + [K?]x(t) = [B?]u(t)

≻ 0 ≻ 0
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OpInf for Mechanical Systems
Problem statement

Simulation
results

X =

 | |
x(t1) ... x(tk)
| |



Ẋ =

 | |
ẋ(t1) ... ẋ(tk)
| |



Ẍ =

 | |
ẍ(t1) ... ẍ(tk)
| |



U =

 | |
u(t1) ... u(tk)
| |


From the given data identify the ROM:

M̂¨̂x(t) + (D̂+ Ĝ) ˙̂x(t) + K̂x̂(t) = B̂u(t),

where

M̂ ≻ 0, K̂ ≻ 0, D̂ ⪰ 0, Ĝ = −ĜT
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| |



U =

 | |
u(t1) ... u(tk)
| |


From the given data identify the ROM:
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Ẋ =

 | |
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OpInf for Mechanical Systems
Force-informed Learning

Force-informed operator inference (fi-OpInf) [Filanova/Pontes Duff/Goyal/B. 2023]

Assumption: complete information about external forces is available F = BU.

Using this knowledge, the reduced force is calculated as F̂ = VTF.

Constrained least-squares problem in reduced dimension:

min

∥∥∥∥∥ [ ¨̂XT ˙̂
X

T

X̂T

]
︸ ︷︷ ︸

D

 M̂T

(D̂+ Ĝ)T

K̂T


︸ ︷︷ ︸

O

− F̂T︸︷︷︸
R

∥∥∥∥∥
2

F

,

s.t. M̂ ⪰ 0, D̂ ⪰ 0, K̂ ⪰ 0, Ĝ = −ĜT .

Efficient solution using semidefinite programming tools1.

Not suitable if only U is known.

1http://www.cvxpy.org/
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OpInf for Mechanical Systems
Force-informed Learning

If only unforced data is available (or no force information F) −→ following the
fi-OpInf approach we have

min

∥∥∥∥∥ [ ¨̂XT ˙̂
X

T

X̂T ÛT

]
︸ ︷︷ ︸

D


M̂T

(D̂+ Ĝ)T

K̂T

B̂T


︸ ︷︷ ︸

O

− 0︸︷︷︸
R

∥∥∥∥∥
2

F

a homogeneous least-squares problem, yielding the zero solution.

If F is not accessible −→ we propose another optimization problem, with the
parametrization of the unknown operators instead of imposing the LMI constraints.
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OpInf for Mechanical Systems
Parametrized inference (p-OpInf)

Inference problem

If stiffness is invertible:

Mẍ+ (D+G)ẋ+Kx = Bu ⇐⇒ x = −K−1Mẍ−K−1(D+G)ẋ+K−1Bu.

Loss function F =
1

k

k∑
i

(
x̂pred
i − x̂true

i

)2

, where

X̂pred = −K̂invM̂
¨̂
X− K̂inv(D̂+ Ĝ)

˙̂
X+ K̂invB̂U, and X̂true = X̂, K̂inv = K̂−1.

Minimize the loss function F −→ min.

Parametrization

Preservation of the SPD properties: K̂inv = K̃T K̃, M̂ = M̃TM̃, D̂ = D̃T D̃.

Preservation of the skew-symmetry: Ĝ = G̃− G̃T .

Include the parametrization into the optimization problem:

min
M̃,K̃,D̃,G̃,B̂

1

k

∥∥∥K̃T K̃M̃TM̃
¨̂
X+ K̃T K̃(D̃T D̃+ G̃− G̃T )

˙̂
X− K̃T K̃B̂U− X̂true

∥∥∥2

F

.

Enforcing the SPD and skew-symmetry properties by construction.
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OpInf for Mechanical Systems
Numerical Results— Overview

Implementation of p-OpInf

The implementation is done in using stochstic gradient decent optimizer Adam .

For better convergence, the snapshots are normalized:

X :=
X

∥X∥F︸ ︷︷ ︸
αX

, Ẋ :=
Ẋ

∥Ẋ∥F︸ ︷︷ ︸
αV

, Ẍ :=
Ẋ

∥Ẍ∥F︸ ︷︷ ︸
αA

, U :=
U

∥U∥F︸ ︷︷ ︸
αU

.

Post-processing scaling: K̂inv := αXK̂inv, D̂ :=
D̂

αV
, Ĝ :=

Ĝ

αV
, M̂ :=

M̂

αA
, B̂ :=

B̂

αU
.

Training & testing

Training: chirp input signal u(t) = sin
(
2π

(
f1−f0

2(t1−t0)
t2 + f0t

))
.

Validation: simulation of the inferred ROM under the training conditions.

Test: simulation of the inferred ROM under new conditions.

Relative error measure: ε =
∥xi − x̂i∥F

max ∥xi∥F

, i = 1, . . . , k.
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Validation: simulation of the inferred ROM under the training conditions.

Test: simulation of the inferred ROM under new conditions.

Relative error measure: ε =
∥xi − x̂i∥F

max ∥xi∥F

, i = 1, . . . , k.
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OpInf for Mechanical Systems
Cantilever beam

Cantilever beam, dimension n = 537.

Singular value decay for chirp signal,
f ∈ [0.01, 1]Hz.

Validation: Relative error in displacement for
ROMs of order r = 4.

Deformed shape of FOM and p-OpInf ROM of
order r = 4.

Solution trajectory of FOM and ROMs of order
r = 4 for f = 7 Hz.

Test: max. relative error for ROMs of order
r = 4 for different frequencies.
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OpInf for Mechanical Systems
Four-point bending test

Four-point bending model
dimension n = 6225.

Singular value decay for chirp signal
f ∈ [20, 100]Hz.

Validation: relative error in displacement for ROMs
of order r = 3.

Deformed shape of FOM and p-OpInf ROM of
order r = 3.

Solution trajectory of FOM and ROMs of order
r = 3 for f = 50Hz.

Test: max. relative error for ROMs of order
r = 3 for different frequencies.
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OpInf for Mechanical Systems
Rotor

Rotor model, dimension n = 224.

Singular value decay for chirp multiple-input signal
f ∈ [6, 9]Hz.

Validation: relative error in displacement and
rotation DOFs for ROMs of order r = 2.

Deformed shape of FOM and p-OpInf ROM of
order r = 2.

Solution trajectory in the rotation plane of FOM
and ROMs of order r = 2.

Test: max. relative error for ROMs of order
r = 2 for different frequencies.
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Preserving Stability in Operator Inference
Linear Systems / Local Stability

Asymptotic (exponential, Lyapunov) stability of linear systems

ẋ(t) = Ax(t), x(0) = x0,

can be explicitly parameterized:

Theorem (Gillis/Sharma 2017)

A matrix A ∈ Rn×n is asymptotically stable (Hurwitz, Lyapunov stable) if and only if it
can be represented as

A = (J −R)Q,

where J = −JT and R = RT , Q = QT are both positive definite.

=⇒ Stability-preserving OpInf for linear systems [Goyal/Pontes Duff/B. 2023]:

(S∗, L∗,K∗) := argminL,K upper triangular
with positive diagonals

(
∥Ẋ − (S − ST − LTL)KTKX∥2F +R(L,K, S)

)
.

The matrix obtained from this nonlinear (regularized) least-squares problem,

A∗ =
(
S∗ − ST

∗ − LT
∗ L∗

)
KT

∗ K∗,

is guaranteed to be stable due to [Gillis/Sharma 2017].

Related work by Schwerdtner, Voigt, . . .
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Preserving Stability in Operator Inference
Linear Systems / Local Stability— Numerical Example

Consider 1D Burgers’ equation for viscous flow

vt + vvx = νvxx in (0, 1)× (0, T )

vx(0, t) = vx(1, t) = 0,

v(x, 0) = v0(x, µ),

discretized on uniform 1000× 500 space-time grid for 17 + 3 training+testing initial conditions.

Reduced-order model (r = 21) computed using standard (”LSI”) and stabilized (”SLSI”) OpInf
applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

Eigenvalues of linearization
Errors for different initial conditions

(test data)
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Solving the OpInf regression problem

(A∗, H∗) := argmin(A,H)

∥∥Ẋ −
[
A H

] [X
X2

] ∥∥2

F
+R(AH)

using the stability-constraint on A as just discussed leads to a nonlinear system with
local Lyapunov stability, noting that the inferred Q∗ = KT

∗ K∗ > 0 provides a quadratic
Lyapunov function for the identified system [Goyal/Pontes Duff/B. 2023].

We can achieve more for energy-preserving quadratic systems, i.e.,

Hijk +Hikj +Hjik +Hjki +Hkij +Hkji = 0 for all i, j, k ∈ {1, . . . , n}.

Note: the latter is equivalent to xTH(x⊗ x) = 0 for all x ∈ Rn
[Schlegel/Noack 2015].

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable if and only if the symmetric part of A
is asymptotically stable.
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Theorem (Goyal/Pontes Duff/B. 2023)

An energy-preserving quadratic system

ż = Az +H(z ⊗ z)

is monotonically and globally asymptotically stable (GAS) if and only if the symmetric
part of A is asymptotically stable.

Question: can we encode the energy-preservation property explicitly, so that we
constrain the OpInf problem accordingly? (If the answer is yes, then we can learn a GAS model using OpInf.)

Answer: yes, we can!

Theorem (Goyal/Pontes Duff/B. 2023)

A locally Lyapunov stable quadratic system in Rn

ż = Az +H(z ⊗ z), A = (J −R)Q, J = −JT , R = RT > 0, Q = QT > 0,

is generalized energy-preserving w.r.t. Q, i.e., xTQH(x⊗ x) = 0 for all x, if

H = [H1Q, . . . ,HnQ] , where Hj = −HT
j , j = 1, . . . , n.

Moreover, V (x) = 1
2
xTQx is a global Lyapunov function for the quadratic system.
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability

Constrained OpInf problem for learning GAS systems [Goyal/Pontes Duff/B. 2023]

(A∗, H∗) := argmin(A,H)

∥∥Ẋ −
[
A H

] [X
X2

] ∥∥2

F
+R(AH)

subject to the stability constraints

A =
(
S − ST − LTL

)
KTK with L,K upper triangular with positive diagonals

H = [H1Q, . . . ,HnQ] , with Hj = −HT
j , j = 1, . . . , n.

Implementation:

Usually, as discussed before, the data are projected onto the leading r PCA modes
for dimension reduction.

Quite involved optimization problem, can be solved via stochastic gradient descent
(Adam) and backpropagation (setting Q = Ir may be necessary).

We do not explicitly need derivative data by using a Neural ODE approach for noisy
data [Goyal/B. 2023].
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers’ equation for viscous flow

vt + vvx = νvxx in (0, 1)× (0, T )

v(0, t) = v(1, t) = 0,

v(x, 0) = v0(x, µ),

discretized on uniform 250× 500 space-time grid for 17 + 3 training+testing initial conditions
and ν = 0.05.

Reduced-order model (r = 20) computed using standard, locally stable (lasMI) and globally
stable (gasMI) OpInf applied to (POD)-projected data.
(Implementation using PyTorch and Adam optimizer for solving nonlinear regression problem.)

(missing data = blow-up in numerical simulation)
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Preserving Stability in Operator Inference
Nonlinear Systems / Global Stability— Numerical Example

Consider again 1D Burgers’ equation for viscous flow

Full simulation for test initial condition (not seen during training)
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Conclusions

Operator inference (OpInf) is a regression-based powerful method to infer linear and
certain nonlinear dynamical systems from data, very similar to DMD in the linear
case.

Looks simple, but the devil is in the details.

Stability constraints can be encoded explicitly in the regression problem for the
model inference [Goyal/Pontes Duff/B. 2023].

Concept can be adapted to nonlinear systems with attractor [Goyal/Pontes

Duff/B. 2023].

For application to control problems, see [Pontes Duff/Goyal/B. 2024].

Structure of mechanical systems can be enforced in OpInf regression problem.

Recent work combines OpInf with neural networks to solve nonlinear identification
problems.

Error bounds for non-intrusive MOR not well developed yet, but theoretic results
indicate that the OpInf model asymptotically (when increasing the number of
snapshots) yields the POD model [Peherstorfer/Willcox 2016]. Then, intrusive
MOR error bounds can be applied.
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