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Problem Setting

Quadratic Lyapunov Equation

For A,Ak ∈ Rn×n, k = 1, . . . ,m, B ∈ Rn×m, H ∈ Rn×n2

, find symmetric
positive semidefinite solution P of

0 = AP + PAT +

m∑
k=1

AkPAT
k +H(P ⊗ P )HT +BBT

=: L(P ) + Π(P ) + K(P ) +BBT .

We assume A stable throughout, i.e. Λ (A) ⊂ C−, implying Λ (L) ⊂ C−.

Note:

L is the standard Lyapunov operator.

For Ak ≡ 0, H = 0, we obtain a standard Lyapunov equation.

Π,K are nonnegative operators, i.e., they map spsd matrices to spsd matrices.

L+Π is linear (”Lyapunov-plus-positive”/”bilinear Lyapunov”); K is
nonlinear.
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Motivation
Model Reduction for Control Systems

Nonlinear Control Systems

Σ :

{
Eẋ(t) = f(t, x(t), u(t)), Ex(t0) = Ex0,
y(t) = g(t, x(t), u(t))

with

(generalized) states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.

If E singular ⇝ descriptor system. Here, E = In for simplicity.
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Model Reduction for Control Systems

Original System (E = In)

Σ :

{
ẋ(t) = f(t, x(t), u(t)),
y(t) = g(t, x(t), u(t)).

states x(t) ∈ Rn,

inputs u(t) ∈ Rm,

outputs y(t) ∈ Rq.

Reduced-Order Model (ROM)

Σ̂ :

{
˙̂x(t) = f̂(t, x̂(t), u(t)),
ŷ(t) = ĝ(t, x̂(t), u(t)).

states x̂(t) ∈ Rr, r ≪ n

inputs u(t) ∈ Rm,

outputs ŷ(t) ∈ Rq.

Goal:

∥y − ŷ∥ < tolerance · ∥u∥ for all admissible input signals.
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System Classes

Control-Affine (Autonomous) Systems

ẋ(t) = f(t, x, u) = A(x(t)) + B(x(t))u(t), A : Rn → Rn, B : Rn → Rn×m,

y(t) = g(t, x, u) = C(x(t)) +D(x(t))u(t), C : Rn → Rq, D : Rn → Rq×m.
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Quadratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [Phillips ’03].

But exact representation of smooth nonlinear systems possible:

Theorem [Gu ’09/’11]

Assume that the state equation of a nonlinear system is given by

ẋ = a0x+ a1g1(x) + . . .+ akgk(x) +Bu,

where gi(x) : Rn → Rn are compositions of uni-variable rational, exponential,
logarithmic, trigonometric or root functions, respectively. Then, by iteratively taking
derivatives and adding algebraic equations, respectively, the nonlinear system can be
transformed into a QB(DAE) system.

C. Gu. QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(9):1307–1320, 2011.

L. Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316–1321.

J. R. Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 22(2):171–187, 2003.
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Some QB-transformable Systems

FitzHugh-Nagumo model

Model describes activation and
de-activation of neurons.

Contains a cubic nonlinearity,
which can be transformed to QB
form.

Sine-Gordon equation

Applications in biomedical studies,
mechanical transmission lines, etc.

Contains sin function, which can
also be rewritten into QB form.
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Balanced Truncation for Linear Systems

Basic concept

System Σ :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization (needs P,Q!) of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1, TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

])
.

Truncation ⇝ (Â, B̂, Ĉ) = (A11, B1, C1).
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ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
with A stable, i.e., Λ (A) ⊂ C−,

is balanced, if system Gramians, i.e., solutions P,Q of the Lyapunov equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0,

satisfy: P = Q = diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

{σ1, . . . , σn} are the Hankel singular values (HSVs) of Σ.

Compute balanced realization (needs P,Q!) of the system via state-space
transformation

T : (A,B,C) 7→ (TAT−1, TB,CT−1)

=

([
A11 A12

A21 A22

]
,

[
B1

B2

]
,
[
C1 C2

])
.
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Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr.

Adaptive choice of r via computable error bound:

∥y − ŷ∥2 ≤ ∥G− Ĝ∥H∞ ∥u∥2 ≤
(
2
∑n

k=r+1
σk

)
∥u∥2 .
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Balanced Truncation for Linear Systems

Properties

Reduced-order model is stable with HSVs σ1, . . . , σr.

Adaptive choice of r via computable error bound:

∥y − ŷ∥2 ≤ ∥G− Ĝ∥H∞ ∥u∥2 ≤
(
2
∑n

k=r+1
σk

)
∥u∥2 .

Practical implementation

Rather than solving Lyapunov equations for P,Q (n2 unknowns!), find
S,R ∈ Rn×s with s ≪ n such that P ≈ SST , Q ≈ RRT .
Many algorithms: [Antoulas, Baur, B., Chu, Druskin, Hammarling, Faßbender,

Freitag, Grasedyck, Gugercin, Jaimoukha, Knizherman, Köhler, Kressner, Kürschner, Li,

Palitta, Penzl, Quintana-Ort́ı, Saad, Saak, Simoncini, Sorensen, Stykel, White, . . . ]

Reduced-order model directly obtained via small-scale (s× s) SVD of RTS!

No O(n3) or O(n2) computations necessary!
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Balanced Truncation for Nonlinear Systems
Energy Functionals and Gramians

Nonlinear balancing based on energy functionals [Scherpen ’93, Gray/Mesko ’96].

Definition [Scherpen ’93, Gray/Mesko ’96]

The reachability energy functional, Lc(x0), and observability energy functional, Lo(x0)
of a system are given as:

Lc(x0) = inf
u∈L2(−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
∥u(t)∥2dt, Lo(x0) =

1

2

∫ ∞

0

∥y(t)∥2dt.

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

Empirical Gramians/frequency-domain POD [Lall et al ’99, Willcox/Peraire ’02].

Disadvantage: Depends on chosen training input (e.g., δ(t0)) like other POD
approaches.

⇝ Goal: computationally efficient and input-independent method!
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Nonlinear balancing based on energy functionals [Scherpen ’93, Gray/Mesko ’96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

Empirical Gramians/frequency-domain POD [Lall et al ’99, Willcox/Peraire ’02].

Example: controllability Gramian from time domain data (snapshots)

1. Define reachability Gramian of the system

P =
∫∞
0

x(t)x(t)T dt, where x(t) solves ẋ = f(x, δ), x(0) = x0.

2. Use time-domain integrator to produce snapshots xk ≈ x(tk), k = 1, . . . ,K.
3. Approximate P ≈

∑K
k=0 wkxkx

T
k with positive weights wk.

4. Analogously for observability Gramian.
5. Compute balancing transformation and apply it to nonlinear system.

Disadvantage: Depends on chosen training input (e.g., δ(t0)) like other POD
approaches.

⇝ Goal: computationally efficient and input-independent method!
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W. S. Gray and J. P. Mesko. Controllability and observability functions for model reduction of nonlinear systems. In Proc. of the Conf. on Information
Sci. and Sys., pp. 1244–1249, 1996.

S. Lall, J. Marsden, and S. Glavaški. A subspace approach to balanced truncation for model reduction of nonlinear control systems. International
Journal of Robust and Nonlinear Control, 12:519–535, 2002.

J. M. A. Scherpen. Balancing for nonlinear systems. Systems & Control Letters, 21:143–153, 1993.

K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40:2323–2330, 2002.
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New ”Gramians”

A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

For example, (locally) Lc(x0) ≥
1

2
xT
0 P̃

−1x0, where P̃ = P̃T > 0

[Gray/Mesko ’96].

For bilinear systems, such local bounds were derived in [B./Damm ’11] using the
solutions to the Lyapunov-plus-positive equations:

AP + PAT +
∑m

i=1 AiPAT
i +BBT = 0,

ATQ+QAT +
∑m

i=1 A
T
i QAi + CTC = 0.

(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./Breiten ’13, Shank/Simoncini/Szyld ’16, Kürschner ’17, . . . ].

Here we aim at determining algebraic Gramians for QB systems, which

provide bounds for the energy functionals of QB systems,
generalize the Gramians of linear and bilinear systems, and
allow us to find the states that are hard to control as well as hard to
observe in an efficient and reliable way.
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Gramians for QB Systems
Controllability Gramians

Consider input → state map of QB system (m = 1, N ≡ A1):

ẋ(t) = Ax(t) +Hx(t)⊗ x(t) +Nx(t)u(t) +Bu(t), x(0) = 0.

Integration yields

x(t) =

t∫
0

e
Aσ1Bu(t − σ1)dσ1 +

t∫
0

e
Aσ1Nx(t − σ1)u(t − σ1)dσ1

+

t∫
0

e
Aσ1Hx(t − σ1) ⊗ x(t − σ1)dσ1

=

t∫
0

e
Aσ1Bu(t − σ1)dσ1 +

t∫
0

t−σ1∫
0

e
Aσ1Ne

Aσ2Bu(t − σ1)u(t − σ1 − σ2)dσ1dσ2

+

t∫
0

t−σ1∫
0

t−σ1∫
0

e
Aσ1H(e

Aσ2B ⊗ e
Aσ3B)u(t − σ1 − σ2)u(t − σ1 − σ3)dσ1dσ2dσ3 + . . .

By iteratively inserting expressions for x(t− •), we obtain the Volterra series
expansion for the QB system.

[Rugh ’81]
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Gramians for QB Systems
Controllability Gramians

Using the Volterra kernels, we can define the controllability mappings

Π1(t1) := eAt1B, Π2(t1, t2) := eAt1NΠ1(t2),

Π3(t1, t2, t3) := eAt1 [H(Π1(t2)⊗Π1(t3)), NΠ2(t1, t2)], . . .

and a candidate for a new Gramian:

P :=
∞∑

k=1

Pk, where Pk =

∫ ∞

0

· · ·
∫ ∞

0

Πk(t1, . . . , tk)Πk(t1, . . . , tk)
T dt1 . . . dtk.

Theorem [B./Goyal ’16]

If it exists, the new controllability Gramian P for QB (MIMO) systems with stable A
solves the quadratic Lyapunov equation

AP + PAT +

m∑
k=1

AkPAT
k +H(P ⊗ P )HT +BBT = 0.

Note: H = 0 ⇝ ”bilinear reachability Gramian”; if additionally, all Ak = 0 ⇝ linear one.
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Numerical Methods
Truncated Gramians

Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

Fix point iteration scheme can be employed ⇝ next subsection.

For model order reduction, we proposed truncated Gramians for QB systems.

Definition (Truncated Gramians) [B./Goyal ’16, B./Goyal/Redmann ’17]

The truncated Gramians PT and QT for QB systems satisfy

APT + PT A
T = −BBT −

∑m

k=1
AkPlA

T
k −H(Pl ⊗ Pl)H

T ,

ATQT +QT A = −CTC −
∑m

k=1
AT

kQlAk −H(2)(Pl ⊗Ql)(H
(2))T ,

where
APl + PlA

T = −BBT and ATQl +QlA = −CTC.
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Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

T-Gramians approximate energy functionals better than the actual Gramians.

σi(P ·Q) > σi(PT ·QT ) ⇒ obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.
Most importantly, we need solutions of only four standard Lyapunov
equations.
Interpretation of controllability/observability of the system via T-Gramians

© Peter Benner Solving Quadratic Lyapunov Equations 18/22



Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

T-Gramians approximate energy functionals better than the actual Gramians.

−0.2 0 0.2
0

1

2

3

·10−2

x

Actual energy

Via Gramians

Via T-Gramians

(a) Input energy lower bounds.

−0.2 0 0.2
0

2

4

6

·10−2

x

Actual energy
Via Gramians

Via T-Gramians

(b) Output energy upper bounds.

Figure: Comparison of energy functionals for −a = b = c = 2, h = 1, n = 0.
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Truncated Gramians
Advantages of truncated Gramians (T-Gramians)

T-Gramians approximate energy functionals better than the actual Gramians.

σi(P ·Q) > σi(PT ·QT ) ⇒ obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

Most importantly, we need solutions of only four standard Lyapunov
equations.

Interpretation of controllability/observability of the system via T-Gramians:

If the system is to be steered from 0 to x0, where x0 ̸∈ range(PT ), then
Lc(x0) = ∞.

If the system is controllable and x0 ∈ ker (QT ), then Lo(x0) = 0.
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP + PAT +
∑m

k=1
AkPlA

T
k +H(Pl ⊗ Pl)H

T +BBT .
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP + PAT +
∑m

k=1
AkPlA

T
k +H(Pl ⊗ Pl)H

T +BBT .

Lyapunov iteration:

P0 = 0

L(Pj+1) = APj+1 + Pj+1A
T

= −BBT −
∑m

k=1
AkPjA

T
k −H(Pj ⊗ Pj)H

T , j = 0, 1, . . .

Note: P1 is reachability Gramian of associated linear-time invariant system.
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k=1
AkPjA

T
k −H(Pj ⊗ Pj)H

T , j = 0, 1, . . .

Note: P1 is reachability Gramian of associated linear-time invariant system.

Lyapunov operator remains constant over the iteration; this can be exploited
using, e.g., Bartels-Stewart, Hammarling, sign function,. . .
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= −BBT −
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k=1
AkPjA

T
k −H(Pj ⊗ Pj)H

T , j = 0, 1, . . .

Note: P1 is reachability Gramian of associated linear-time invariant system.

Lyapunov operator remains constant over the iteration; this can be exploited
using, e.g., Bartels-Stewart, Hammarling, sign function,. . .

Conjecture: converges to the minimal spsd solution under certain stability
assumptions.
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP + PAT +
∑m

k=1
AkPlA

T
k +H(Pl ⊗ Pl)H

T +BBT .

Lyapunov-plus-positive iteration:

P0 = 0(
L+Π

)
(Pj+1) = APj+1 + Pj+1A

T +
∑m

k=1
AkPj+1A

T
k

= −BBT −H(Pk ⊗ Pj)H
T , j = 0, 1, . . .

Note: P1 is reachability Gramian of associated bilinear system if it exists.
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP + PAT +
∑m

k=1
AkPlA

T
k +H(Pl ⊗ Pl)H

T +BBT .

Lyapunov-plus-positive iteration:

P0 = 0(
L+Π

)
(Pj+1) = APj+1 + Pj+1A

T +
∑m

k=1
AkPj+1A

T
k

= −BBT −H(Pk ⊗ Pj)H
T , j = 0, 1, . . .

Note: P1 is reachability Gramian of associated bilinear system if it exists.

Conjecture: converges to the minimal spsd solution under BIBO stability
assumptions.
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Numerical Methods
Numerical Example

Toy data (homogeneous bilinear term)

A =

[
−1 0
0 −3

]
, H =

[
1 0 0 −1
0 1 −1 0

]
, B =

[
0
2

]
⇝ X =

[
0.3410 0

0 0.7522

]
.
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Conclusions

Extension of balanced truncation to asymptotically stable quadratic (and
polynomial) systems leads to quadratic Lyapunov equations.

Can be solved by fix point iteration or truncated series formula.

Each step requires solution of standard Lyapunov equation; via sign function
method or other Lyapunov solvers.

Factorized versions possible ⇝ large-scale, sparse solvers can be employed,
but controlling rank growth might be problematic.

Code will be available in upcoming MORLAB release, see
https://www.mpi-magdeburg.mpg.de/projects/morlab.

Acceleration of fix point iterations via vector extrapolation possible.

Open problems: Existence of solutions, variety of solutions, convergence of
fix point iterations.
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