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Quadratic Lyapunov Equation

For A, A, e R"*" k=1,...,m, BeER"™ H € R”X"2, find symmetric
positive semidefinite solution P of

0=AP+PAT +) APA{ + HP® P)H" + BBT
p=Il

= L(P) + OWP) + KPP + BBT.

We assume A stable throughout, i.e. A(A) C C—, implying A (£) C C™.
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Quadratic Lyapunov Equation

For A, A, e R"*" k=1,...,m, BeER"™ H € R”X"2, find symmetric
positive semidefinite solution P of

0=AP+PAT +) APA{ + HP® P)H" + BBT
p=Il
= L(P) + OWP) + KPP + BBT.

We assume A stable throughout, i.e. A(A) C C—, implying A (£) C C™.

Note:
o L is the standard Lyapunov operator.
o For Ay, =0, H =0, we obtain a standard Lyapunov equation.
o IT, IC are nonnegative operators, i.e., they map spsd matrices to spsd matrices.

o L +1Iis linear (" Lyapunov-plus-positive” /" bilinear Lyapunov”); K is
nonlinear.
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Motivation
Model Reduction for Control Systems

5. { Exz(t) = f(t,z(t),u(t)), FEx(ty) = Exo,
Lov®) = gt a(t)
with
o (generalized) states z(t) € R,
o inputs u(t) € R™,
@ outputs y(t) € R
If £ singular ~~ descriptor system. Here, E = I,, for simplicity.

U Y
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A@ Model Reduction for Control Systems

Original System (E = I,,) Reduced-Order Model (ROM)

op {ﬂ'ﬂ(t) = [f{t,x(t), u(t)), SF {%(t) = f(t@(t)’u(t)),
y(t) = g(t, z(t), u(t)). 9(t) = g(t, 2(t), u(t)).
o states z(t) € R", o states Z(t) € R, r < n

@ inputs u(t) € R™, @ inputs u(t) e R™,

@ outputs y(t) € R%. @ outputs g(t) € R%.

R -
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A@ Model Reduction for Control Systems

Original System (E = I,,) Reduced-Order Model (ROM)

op {ﬂb(t) = f(t,2(t), u(®)), S {:%(t) = f(tﬁ?(t)’u(t)),
y(t) = g(t,=(t),u(t)). 9(t) = g(t, 2(t), u(t)).
o states z(t) € R", o states Z(t) € R, r < n
@ inputs u(t) € R™, @ inputs u(t) € R™,
@ outputs y(t) € R%. @ outputs y(t) € R%.
U Y u 7]

lly — 9| < tolerance - ||Ju|| for all admissible input signals.
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Control-Affine (Autonomous) Systems

z(t) = ft,zu) = Ax(t)) + B=z(t))u(t), A:R" —=R" B:R" = R"™,

y(t) = gt z,u) C(z(t)) + D(z(t))u(t), C:R™ =R D:R"™ — RI*™,
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Control-Affine (Autonomous) Systems

z(t) = f(t,z,u) A(z(t)) + B(z(t)u(t), A:R" —=R", B:R" - R"*™,
yit) = gt,z,u) = C(z(®)) +D(x())u(t), C:R*™ =R D:R" - R*™,

Linear, Time-Invariant (LTI) Systems

@t) = f(t,z,u) = Az(t)+Bu(t), AeR™" BeR™™
Cz(t) + Du(t), C €R™*" DeR>™,

y(t) = g(t7 T, u)
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Bilinear Systems

Control-Affine (Autonomous) Systems

Az (t)) + B(z(t))u(®),
C(z(?) + D(z(t))u(?),

Linear, Time-Invariant (LTI) Systems

A E Ran, B = Rnxwr,’

A:R" 5 R", B:R" — R™*™,
C:R™ = RY, D:R" — RIX™,

Ax(t) + Bu(t),
Cx(t) + Du(t),

Ax(t) + 370 ui(t) Az (t) + Bu(t),
Cz(t) + Du(t),

A A, e RY", B e R™™™,
C e R”*™ D e R¥*™,

Solving Quadratic Lyapunov Equations



Linear, Time-Invariant (LTI) Systems

z(t) = f(t,z,u) = Ax(t)+ Bu(t), AeR™™ BeR™™,
yit) = g(t,z,u) = Cx(t)+ Du(t), C e RY*" D e RIX™,

&(t) = f(t,z,u) = Ax(t) + >0, ui(t)Asx(t) + Bu(t), A, A; € R"*", B e R"™™,
y(t) = g(t,z,u) = Cxz(t) + Du(t), C e R”*™ D e R¥>*™,

Quadratic-Bilinear (QB) Systems
&(t) = ft,zu) = Az(t) + H (2(t) @ (1)) + 2271, ui(t)Aix(t) + Bu(t),
A,Ai c ]Rnxn7 He Ran27 Be ]Rnxm7
y(t) = g(t,z,u) = Cx(t) + Du(t), C €RT", D e RT*™.
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dratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS '03].

B cou QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

B L Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

B Jir Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.
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@ Quadratic-Bilinearization

QB systems can be obtained as approximation (by truncating Taylor expansion) to
weakly nonlinear systems [PHILLIPS '03].

But exact representation of smooth nonlinear systems possible:

Theorem [Gu ’09/°11]

Assume that the state equation of a nonlinear system is given by

z = aox + a191(x) + ... + argr(z) + Bu,

where g;(z) : R™ — R"™ are compositions of uni-variable rational, exponential,
logarithmic, trigonometric or root functions, respectively. Then, by iteratively taking
derivatives and adding algebraic equations, respectively, the nonlinear system can be
transformed into a QB(DAE) system.

B coau QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach Using Quadratic-Linear Representation of Nonlinear Systems. [EEE
TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 30(9):1307-1320, 2011.

B L Feng, X. Zeng, C. Chiang, D. Zhou, and Q. Fang. Direct nonlinear order reduction with variational analysis. In: Proceedings of DATE 2004,
pp. 1316-1321.

B Jr Phillips. Projection-based approaches for model reduction of weakly nonlinear time-varying systems. [EEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 22(2):171-187, 2003.
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@ Some QB-transformable Systems

FitzHugh-Nagumo model Sine-Gordon equation
0.1 T T
0.2
5-1072 7
B 0.1
>0
0 —2
1 o 0.2 —5- 107 |
0 .
—0.1 I I I I
v 0 x 0 02 04 06 08 1
length
@ Model describes activation and o Applications in biomedical studies,
de-activation of neurons. mechanical transmission lines, etc.
o Contains a cubic nonlinearity, o Contains sin function, which can
which can be transformed to QB also be rewritten into QB form.
form.
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”@ Balanced Truncation for Linear Systems

@ System X : {zgg z 222:’_ Bu®), with A stable, i.e., A(A) Cc C,

is balanced, if system Gramians, i.e., solutions P, ) of the Lyapunov equations

AP+ PAT + BBT = o0, ATQ+QA+CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02 > ... >0, > 0.
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”@ Balanced Truncation for Linear Systems

@ System X : {zgg z 222:’_ Bu®), with A stable, i.e., A(A) Cc C,

is balanced, if system Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = o0, ATQ+QA+CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02 > ... >0, > 0.
o {01,...,0n} are the Hankel singular values (HSVs) of 3.
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Q&g@ Balanced Truncation for Linear Systems

@ System X : {Zgg z 222:’_ Bu®), with A stable, i.e., A(A) Cc C,

is balanced, if system Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = o0, ATQ+QA+CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02 > ... >0, > 0.

0 {o1,...,0n} are the Hankel singular values (HSVs) of X.

o Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(A,B,C) — (TAT ', TB,CT™")

- (& &) B te @),
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Q&g@ Balanced Truncation for Linear Systems

@ System X : {Zgg z 222:’_ Bu®), with A stable, i.e., A(A) Cc C,

is balanced, if system Gramians, i.e., solutions P, @ of the Lyapunov equations

AP+ PAT + BBT = o0, ATQ+QA+CTC = 0,

satisfy: P = Q = diag(o1,...,0,) with o1 > 02 > ... >0, > 0.
0 {o1,...,0n} are the Hankel singular values (HSVs) of X.

@ Compute balanced realization (needs P, Q!) of the system via state-space
transformation

T:(A,B,C) — (TAT ', TB,CT™")
. A Ar B
- ([AZl Azz]’{Bz}’[Cl 02]>'

@ Truncation ~ (A4, B,C) = (A1, B1,Ch).
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@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o1, ..., 0.
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@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o1, ..., 0.
o Adaptive choice of r via computable error bound:

N ~ n
Iy =l < 1G = Gl ully < (2320 on) llull-
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@s‘«@ Balanced Truncation for Linear Systems

\‘4

o Reduced-order model is stable with HSVs o1, ..., 0.
o Adaptive choice of r via computable error bound:

N ~ n
ly = 3l <116 = Gllaew Nl < (2377 o) Il

Practical implementation

@ Rather than solving Lyapunov equations for P,Q (n? unknowns!), find
S, R € R™ * with s < n such that P~ SST, Q ~ RRT.
Many algorithms: [ANTouLAs, BAUR, B., CHU, DRUSKIN, HAMMARLING, FASSBENDER,

FREITAG, GRASEDYCK, GUGERCIN, JAIMOUKHA, KNIZHERMAN, KOHLER, KRESSNER, KURSCHNER, LI,

PALITTA, PENZL, QUINTANA-ORTI, SAAD, SAAK, SIMONCINI, SORENSEN, STYKEL, WHITE, ... ]
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Q&g@ Balanced Truncation for Linear Systems

o Reduced-order model is stable with HSVs o1, ..., 0.

o Adaptive choice of r via computable error bound:

N ~ n
ly = 3l <116 = Gllaew Nl < (2377 o) Il

Practical implementation

@ Rather than solving Lyapunov equations for P,Q (n? unknowns!), find
S, R € R™ * with s < n such that P~ SST, Q ~ RRT.

Many algorithms: [ANTouLAs, BAUR, B., CHU, DRUSKIN, HAMMARLING, FASSBENDER,

FREITAG, GRASEDYCK, GUGERCIN, JAIMOUKHA, KNIZHERMAN, KOHLER, KRESSNER, KURSCHNER, LI,

PALITTA, PENZL, QUINTANA-ORTI, SAAD, SAAK, SIMONCINI, SORENSEN, STYKEL, WHITE, ... ]
o Reduced-order model directly obtained via small-scale (s x s) SVD of RTS!

@ No O(n?) or O(n?) computations necessary!

(© Peter Benner Solving Quadratic Lyapunov Equations



1. Motivation

2. Balanced Truncation for Nonlinear Systems
Energy Functionals and Gramians
Gramians for QB Systems

3. Numerical Methods
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@ Balanced Truncation for Nonlinear Systems

Energy Functionals and Gramians

@ Nonlinear balancing based on energy functionals [ScuerpEN 93, GrAY/MESKO '96].

Definition [SCHERPEN ’93, GRAY/MESKO '96]

The reachability energy functional, L.(zo), and observability energy functional, L,(zo)
of a system are given as:

inf 5 t)||*dt Lo(zo) = = D12dt.
P B UCT R XEO R O
z(—00)=0, z(0)=z¢g

Lc (mo) =

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

(© Peter Benner Solving Quadratic Lyapunov Equations



A@ Balanced Truncation for Nonlinear Systems

Energy Functionals and Gramians

@ Nonlinear balancing based on energy functionals [ScuerpEN 93, GrAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL 99, WILLCOX/PERAIRE 02].

Example: controllability Gramian from time domain data (snapshots)

1. Define reachability Gramian of the system
P = [Za(t)z(t)"dt, where z(t) solves & = f(x,6), z(0) = wo.

Use time-domain integrator to produce snapshots z, ~ z(tx), k=1,..., K.
Approximate P =~ Zk:K:O wrTrTE with positive weights wy.

Analogously for observability Gramian.

Compute balancing transformation and apply it to nonlinear system.

Gl g= @9

Disadvantage: Depends on chosen training input (e.g., d(t0)) like other POD
approaches.

Peter Benner Solving Quadratic Lyapunov Equations



Balanced Truncation for Nonlinear Systems

Energy Functionals and Gramians

@ Nonlinear balancing based on energy functionals [ScuerpEN 93, GrAY/MESKO '96].

Disadvantage: energy functionals are the solutions of nonlinear Hamilton-Jacobi
equations which are hardly solvable for large-scale systems.

@ Empirical Gramians/frequency-domain POD [LaLL ET AL 99, WILLCOX/PERAIRE 02].

Disadvantage: Depends on chosen training input (e.g., 6(to)) like other POD
approaches.

@ ~~ Goal: computationally efficient and input-independent method!

B ws. Gray and J. P. Mesko. Controllability and observability functions for model r ion of lii systems. In Proc. of the Conf. on Information
Sci. and Sys., pp. 1244-1249, 1996.

B s Lall, J. Marsden, and S. Glavaski. A subspace approach to balanced truncation for model reduction of nonlinear control systems. INTERNATIONAL
JOURNAL OF ROBUST AND NONLINEAR CONTROL, 12:519-535, 2002.

B imA Scherpen. Balancing for nonlinear systems. Systins & CONTROL LETTERS, 21:143-153, 1993,

B K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA JourNAL, 40:2323-2330, 2002.
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@ New ” Gramians”

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.
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@ New ” Gramians”

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For example, (locally) L.(zo) > xOTIB_lxo, where P = PT >0
[GrAY/MESKO ’96].
@ For bilinear systems, such local bounds were derived in [B./Damum ’11] using the
solutions to the Lyapunov-plus-positive equations:
AP+ PAT 4+ A,PAT + BBT =0,
ATQ+ QAT + Y, ATQA; +CTC =0.
(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)

@ Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN ’13, SHANK/SIMONCINI/SZYLD 16, KURSCHNER '17, ...].
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@ New ” Gramians”

@ A possible solution is to obtain bounds for the energy functionals, instead of
computing them exactly.

@ For example, (locally) L.(zo) > xgﬁ_lxo, where P = PT >0
[GrAY/MESKO ’96].
@ For bilinear systems, such local bounds were derived in [B./Damum ’11] using the

solutions to the Lyapunov-plus-positive equations:
AP+ PAT 4+ A,PAT + BBT =0,
ATQ+ QAT + Y, ATQA; +CTC =0.
(If their solutions exist, they define reachability and observability Gramians of BIBO
stable bilinear system.)
@ Efficient solution methods for Lyapunov-plus-positive equations are derived in
[B./BREITEN ’13, SHANK/SIMONCINI/SZYLD 16, KURSCHNER '17, ...].
@ Here we aim at determining algebraic Gramians for QB systems, which
e provide bounds for the energy functionals of QB systems,
e generalize the Gramians of linear and bilinear systems, and

e allow us to find the states that are hard to control as well as hard to
observe in an efficient and reliable way.
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Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m =1, N = A;):
z(t) = Az(t) + Hz(t) ® z(t) + Nz(t)u(t) + Bu(t), z(0) = 0.

@ Integration yields
t t
z(t) = /eAUl Bu(t — o1)doy + / el Nz(t — o1)u(t — o1)doy
0

t
+ /e“"1 Ha(t — 01) ® 2(t — 01)dos
0

[Rucn ’81]
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Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m =1, N = A;):
z(t) = Az(t) + Hz(t) ® z(t) + Nz(t)u(t) + Bu(t), z(0) = 0.

@ Integration yields
t
z(t) = / Aoy Bu(t — o1)do +/ Aoy Nz(t — o1)u(t — o1)doy

+ / eV Ha(t — 01) @ x(t — o1)dor

t t—oq

= / Angu(t — o1)do +/ / A1 NeAo2 Bu(t — o1)u(t — 01 — 02)doidos

t t—opt—oq
+ / / / eAng(eAg2B ® A3 B)u(t — o1 — o2)u(t — 01 — o3)dordoados + . ..
0

[Rucn ’81]
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Gramians for QB Systems

Controllability Gramians

o Consider input — state map of QB system (m =1, N = A;):
z(t) = Az(t) + Hz(t) ® z(t) + Nz(t)u(t) + Bu(t), z(0) = 0.

@ Integration yields
t
z(t) = / Aoy Bu(t — o1)do +/ Aoy Nz(t — o1)u(t — o1)doy

+ / eV Ha(t — 01) @ x(t — o1)dor

t t—oq

= / Angu(t — o1)do +/ / AT1L NeAT2 Bu(t — o1)u(t — 01 — 02)doidos
t t—opt—oq

+ / / / eAng(eAg2B ® A3 B)u(t — o1 — o2)u(t — 01 — o3)dordoados + . ..
0

@ By iteratively inserting expressions for (¢ — e), we obtain the Volterra series
expansion for the QB system. [RucH "81]

(© Peter Benner Solving Quadratic Lyapunov Equations /



Gramians for QB Systems

Controllability Gramians

Using the Volterra kernels, we can define the controllability mappings

Hl(tl) = eAtlB, Hz(tl,tz) = 6At1NH1(t2),
I5(t1, ta,ts) := e [H (I (t2) ® i (ts)), NTa(t1,t2)], .. .

and a candidate for a new Gramian:

P:=> P,  where Pk:/ / g (e, ..o ti) g (tr, .. te) T dty .. dty.
k=1 0 0

(© Peter Benner Solving Quadratic Lyapunov Equations



Gramians for QB Systems

Controllability Gramians

Using the Volterra kernels, we can define the controllability mappings

Hl(tl) = eAtlB, Hz(tl,tz) = eAthl'Il(tz),
Hg(tl, tz,t;g) = eAtl [H(Hl(tz) ® Hl(tg)), NHQ(tl,tQ)], e

and a candidate for a new Gramian:

P:=> P,  where Pk:/ / g (e, ..o ti) g (tr, .. te) T dty .. dty.
k=1 0 0

[B./GoYAL ’16]
If it exists, the new controllability Gramian P for QB (MIMO) systems with stable A
solves the quadratic Lyapunov equation

AP+ PA" +Y APA + H(P® P)H" + BB” = 0.
k=1

Note: H = 0 ~~ "bilinear reachability Gramian”; if additionally, all A = 0 ~~ linear one.

(© Peter Benner Solving Quadratic Lyapunov Equations 15/22



1. Motivation
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Truncated Gramians
Fix point iterations
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: Numerical Methods
Truncated Gramians

o Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.
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: Numerical Methods
Truncated Gramians

o Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

o Fix point iteration scheme can be employed ~~ next subsection.
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Numerical Methods

Truncated Gramians

o Now, the main obstacle for using the new Gramians is the solution of the
(quadratic) Lyapunov-type equations.

o Fix point iteration scheme can be employed ~~ next subsection.

o For model order reduction, we proposed truncated Gramians for QB systems.

Definition (Truncated Gramians) [B./GovYAL 16, B./GOYAL/REDMANN ’17]
The truncated Gramians Pr and Q7 for QB systems satisfy

APr + PrAT = _BBT — Z:;l AP AT — H(P,® P)HT,

ATQr +QrA=—CTC->"" ATQA,— HO (P o Q)H)T,

h
WO AP+ PAT = _BBT  and  ATQ,+ QA= —CTC.

(© Peter Benner Solving Quadratic Lyapunov Equations



Truncated Gramians

Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.
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Truncated Gramians

Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.

1072 .
3 —— Actual energy 1 6 | = Actual energy
N\ | Via Gramians R P Via Gramians
2 - == Via T-Gramians 4 . | === Via T-Gramians |
1f s
0 L e e |
—0.2 0 0.2

(a) Input energy lower bounds. (b) Output energy upper bounds.

Figure: Comparison of energy functionals for —a =b=c=2,h=1,n=0.

Solving Quadratic Lyapunov Equations
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Truncated Gramians

Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.

e 0;(P-Q) > 0;(Pr-Q7) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.
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Truncated Gramians

Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.

e 0;(P-Q) > 0;(Pr-Q7) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

o Most importantly, we need solutions of only four standard Lyapunov
equations.
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Truncated Gramians

Advantages of truncated Gramians (T-Gramians)

o T-Gramians approximate energy functionals better than the actual Gramians.

e 0;,(P-Q) > 0;(Pr-Qt) = obtain smaller order of reduced system if
truncation is done at the same cutoff threshold.

@ Most importantly, we need solutions of only four standard Lyapunov
equations.

o Interpretation of controllability /observability of the system via T-Gramians:

o If the system is to be steered from 0 to xo, where xo ¢ range(Pr), then
Lc(l‘o) = 0.

o If the system is controllable and zo € ker (Q7), then Lo(z0) = 0.
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP+PAT + 3" ARAT + H(P @ P)H” + BB".
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP+PAT + 3" ARAT + H(P @ P)H” + BB".

Lyapunov iteration:
PO = 0
‘C(Pj"rl) = APj+1 + Pj+1AT
_BBT_Z:_lAkPjAf—H(Pj®Pj)HT7 j=0,1,...

Note: P is reachability Gramian of associated linear-time invariant system.
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP+PAT + 3" ARAT + H(P @ P)H” + BB".

Lyapunov iteration:
Pg = 0
‘C(Pj"rl) = APj+1 + Pj+1AT
_BBT_Z:_lAkPjAf—H(Pj®Pj)HT7 j=0,1,...

Note: P is reachability Gramian of associated linear-time invariant system.

Lyapunov operator remains constant over the iteration; this can be exploited
using, e.g., Bartels-Stewart, Hammarling, sign function,. ..
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5 Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP+PAT + 3" ARAT + H(P @ P)H” + BB".

Lyapunov iteration:
Pg = 0
‘C(Pj"rl) APj+1 + Pj+1AT
_BBT_Z:_lAkPjAf—H(Pj®Pj)HT7 j=0,1,...

Note: P is reachability Gramian of associated linear-time invariant system.

Lyapunov operator remains constant over the iteration; this can be exploited
using, e.g., Bartels-Stewart, Hammarling, sign function,. ..

Conjecture: converges to the minimal spsd solution under certain stability
assumptions.
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP+PAT + 3" ARAT + H(P @ P)H” + BB".

Lyapunov-plus-positive iteration:

Py = 0
(L+M)(Piy1) = APja+ P AT +) AP Af
= -BBT - H(P,®P)HT, j=0,1,...

Note: P is reachability Gramian of associated bilinear system if it exists.
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Numerical Methods
Fix point iterations

Quadratic Lyapunov equation

AP+PAT + 3" ARAT + H(P @ P)H” + BB".

Lyapunov-plus-positive iteration:
Py = 0
(L+T)(Pjt1) = APjp1+ PjaAl +Z ApPj 1 AY,
= -BBT-H(P,® Pj)HT, j=0,1,...

Note: P is reachability Gramian of associated bilinear system if it exists.

Conjecture: converges to the minimal spsd solution under BIBO stability
assumptions.
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Numerical Methods
Numerical Example

-1 0 10 0 -1 0 0.3410 0
A_[O —]’H_{ ]’B_H - X_[ 0 0.7522]'
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Numerical Methods
Numerical Example
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Numerical Methods
Numerical Example
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o Extension of balanced truncation to asymptotically stable quadratic (and
polynomial) systems leads to quadratic Lyapunov equations.

Can be solved by fix point iteration or truncated series formula.

o Each step requires solution of standard Lyapunov equation; via sign function
method or other Lyapunov solvers.

o Factorized versions possible ~ large-scale, sparse solvers can be employed,
but controlling rank growth might be problematic.

o Code will be available in upcoming MORLAB release, see
https://www.mpi-magdeburg.mpg.de/projects/morlab.
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https://www.mpi-magdeburg.mpg.de/projects/morlab

Extension of balanced truncation to asymptotically stable quadratic (and
polynomial) systems leads to quadratic Lyapunov equations.

Can be solved by fix point iteration or truncated series formula.

Each step requires solution of standard Lyapunov equation; via sign function
method or other Lyapunov solvers.

Factorized versions possible ~~ large-scale, sparse solvers can be employed,
but controlling rank growth might be problematic.

Code will be available in upcoming MORLAB release, see
https://www.mpi-magdeburg.mpg.de/projects/morlab.

Acceleration of fix point iterations via vector extrapolation possible.

Open problems: Existence of solutions, variety of solutions, convergence of
fix point iterations.
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https://www.mpi-magdeburg.mpg.de/projects/morlab
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